Management of obesity-related diseases through the gut microbiome

Obesity is a multifactorial disease that results in the excessive accumulation of adipose tissue in humans. It poses a major global public health crisis, as it increases the risk of several pathologies. The gut microbiome is considered a potential modulator in the development of obesity, alongside environmental factors, lifestyle, and genetic makeup. The qualitative and quantitative composition of the gut microbiome is greatly influenced by the type, quality, and quantity of diet. We have found that a vegetarian diet facilitates the growth and development of beneficial bacteria in the gut. This review discusses the relationship between the human gut microbiome, energy balance, and various obesity-related diseases. The metabolic products of the gut microbiome (such as short-chain fatty acids and secondary bile acids) and their effects on the gut microbiome, intestinal barrier function, and immune homeostasis are explored in the context of obesity. However, the specific roles of individual gut microbiota species and their interactions with the gut environment, host genetics, and medications (including antibiotics) require further investigation. We also discuss the potential of the gut microbiome in managing obesity-related diseases through dietary modifications, with reference to dietary fiber, resistant starch, gluten, high-fat diets, and proteins and carbohydrates from both vegetarian and animal sources.

- NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387:1377e96. doi: 10.1016/S0140-6736(16)30472-X
- Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond). 2008;32:1431-1437. doi: 10.1038/ijo.2008.102
- Haslam DW, James WP. Obesity. Lancet. 2005;366:1197- 1209. doi: 10.1016/S0140-6736(05)67483-1
- Ghosh S, Bouchard C. Convergence between biological, behavioural and genetic determinants of obesity. Nat Rev Genet. 2017;18:731-748. doi: 10.1038/nrg.2017.72
- Hruby A, Hu FB. The epidemiology of obesity: A big picture. Pharmacoeconomics. 2015;33:673-689. doi: 10.1038/nrmicro3089
- Zhao L. The gut microbiota and obesity: From correlation to causality. Nat Rev Microbiol. 2013;11:639-647. doi: 10.1038/nrmicro3089
- Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718-15723. doi: 10.1073/pnas.0407076101
- Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102:11070-11075. doi: 10.1073/pnas.0504978102
- Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-1031. doi: 10.1038/nature05414.
- Martins Dos Santos V, Müller M, De Vos W. Systems biology of the gut: The interplay of food, microbiota and host at the mucosal interface. Curr Opin Biotechnol. 2010;21(4):539-550. doi: 10.1016/j.copbio.2010.08.003
- Rajani C, Jia W. Disruptions in gut microbial-host co-metabolism and the development of metabolic disorders. Clin Sci (Lond). 2018;132(7):791-811. doi: 10.1042/CS20171328
- Agus A, Clemen TK, Soko LH. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut. 2021;70(6):1174-1182. doi: 10.1136/gutjnl-2020-323071
- Khan MJ, Gerasimidis K, Edwards CA, Shaikh MG. Role of gut microbiota in the aetiology of obesity: Proposed mechanisms and review of the literature. J Obes. 2016;2016:7353642. doi: 10.1155/2016/7353642
- Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61(2):364-371. doi: 10.2337/db11-1019
- Softic S, Cohen DE, Kahn CR. Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig Dis Sci. 2016;61(5):1282-1293. doi: 10.1007/s10620-016-4054-0
- Da Silva HE, Teterina A, Comelli EM, et al. Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance. Sci Rep. 2018;8:1466. doi: 10.1038/s41598-018-19753-9
- Beaumont M, Neyrinck AM, Olivares M, et al. The gut microbiota metabolite indole alleviates liver inflammation in mice. FASEB J. 2018;32(10):5445-5455. doi: 10.1096/fj.201800544
- Matsubara T, Li F, Gonzalez FJ. FXR signaling in the enterohepatic system. Mol Cell Endocrinol. 2013; 368(1-2):17-29. doi: 10.1016/j.mce.2012.05.004
- Harrison SA, Rinella ME, Abdelmalek MF, et al. NGM282 for treatment of non-alcoholic steatohepatitis: A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2018;391(10126):1174-1185. doi: 10.1016/S0140-6736(18)30474-4
- Trabelsi MS, Daoudi M, Prawitt J, et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat Commun. 2015;6:7629. doi: 10.1038/ncomms8629
- Wang L, Ren B, Zhang Q, et al. Methionine restriction alleviates high-fat diet-induced obesity: Involvement of diurnal metabolism of lipids and bile acids. Biochim Biophys Acta Mol Basis Dis. 2020;1866(11):165908. doi: 10.1016/j.bbadis.2020.165908
- Huang ZR, Deng JC, Li QY, et al. Protective mechanism of common buckwheat (Fagopyrum esculentum Moench.) against nonalcoholic fatty liver disease associated with dyslipidemia in mice fed a high-fat and high-cholesterol diet. J Agric Food Chem. 2020;68(24):6530-6543. doi: 10.1021/acs.jafc.9b08211
- Yaron JR, Gangaraju S, Rao MY, et al. K(+) regulates Ca(2+) to drive inflammasome signaling: Dynamic visualization of ion flux in live cells. Cell Death Dis. 2015;6:e1954. doi: 10.1038/cddis.2015.277
- Round JL, Lee SM, Li J, et al. The toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011;332(6032):974-977. doi: 10.1126/science.1206095
- Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47(2):241-259. doi: 10.1194/jlr.R500013-JLR200
- Corbin KD, Carnero EA, Dirks B, et al. Host-diet-gut microbiome interactions influence human energy balance: A randomized clinical trial. Nat Commun. 2023;14:3161. doi: 10.1038/s41467-023-38778-x
- Lund J, Gerhart-Hines Z, Clemmensen C. Role of energy excretion in human body weight regulation. Trends Endocrinol Metab. 2020;31:705-708. doi: 10.1016/j.tem.2020.06.002
- Elia M, Cummings JH. Physiological aspects of energy metabolism and gastrointestinal effects of carbohydrates. Eur J Clin Nutr. 2007;61(Suppl 1):S40-S74. doi: 10.1038/sj.ejcn.1602938
- Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484-489. doi: 10.1038/nature04330
- Stephen AM, Cummings JH. The microbial contribution to human faecal mass. J Med Microbiol. 1980;13:45-56. doi: 10.1099/00222615-13-1-45
- Achour L, Nancey S, Moussata D, Graber I, Messing B, Flourié B. Faecal bacterial mass and energetic losses in healthy humans and patients with a short bowel syndrome. Eur J Clin Nutr. 2007;61:233-238. doi: 10.1038/sj.ejcn.1602496
- Corbin KD, Igudesman D, Smith SR, Zengler K, Krajmalnik- Brown R. Targeting the gut microbiota’s role in host energy absorption with precision nutrition interventions for the prevention and treatment of obesity. Nutr Rev. 2025:nuaf046. doi: 10.1093/nutrit/nuaf046
- Abuqwider JN, Mauriello G, Altamimi M. Akkermansia muciniphila, a new generation of beneficial microbiota in modulating obesity: A systematic review. Microorganisms. 2021;9:1098. doi: 10.1093/nutrit/nuaf046
- Saad MJA, Santos A. The microbiota and evolution of obesity. Endocr Rev. 2025;46:300-316. doi: 10.1210/endrev/bnae033
- Depommier C, Van Hul M, Everard A, Delzenne NM, De Vos WM, Cani PD. Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes. 2020;11:1231-1245. doi: 10.1080/19490976.2020.1737307
- Liu R, Hong J, Xu X, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017;23:859-868. doi: 10.1038/nm.4358
- Dirks B, Davis TL, Carnero EA, et al. Methanogens are Associated with Altered Microbial Production of Short-Chain Fatty Acids and Human-Host Metabolizable Energy. bioRxiv. [Preprint]; 2025. doi: 10.1093/ismejo/wraf103
- Koh A, Backhed F. From association to causality: The role of the gut microbiota and its functional products on host metabolism. Mol Cell. 2020;78:584-596. doi: 10.1016/j.molcel.2020.03.005
- Marcus A, Davis TL, Rittmann BE, et al. Developing a model for estimating the activity of colonic microbes after intestinal surgeries. PLoS One. 2021;16:e0253542. doi: 10.1371/journal.pone.0253542
- Den Besten G, Bleeker A, Gerding A, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes. 2015;64:2398-2408. doi: 10.2337/db14-1213
- Ecklu-Mensah G, Choo-Kang C, Maseng MG, et al. Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: The METS-Microbiome study. Nat Commun. 2023;14:5160. doi: 10.1038/s41467-023-40874-x
- Canfora EE, Van Der Beek CM, Jocken JW, et al. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: A randomized crossover trial. Sci Rep. 2017;7:2360. doi: 10.1038/s41598-017-02546-x
- Vijay-Kumar RM, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science. 2010;328(5975):228-231. doi: 10.1126/science.1179721
- Van Son J, Koekkoek LL, La Fleur SE, Serlie MJ, Nieuwdorp M. The role of the gut microbiota in the gut-brain axis in obesity: Mechanisms and future implications. Int J Mol Sci. 2021;22(6):2993. doi: 10.3390/ijms22062993
- Dinan TG, Cryan JF. Mood by microbe: Towards clinical translation. Genome Med. 2016;8(1):36. doi: 10.1186/s13073-016-0292-1
- Procházková N, Falony G, Dragsted LO, Licht TR, Raes J, Roager HM. Advancing human gut microbiota research by considering gut transit time. Gut. 2023;72:180-191. doi: 10.1136/gutjnl-2022-328166
- Boekhorst J, Venlet N, Prochazkova N, et al. Stool energydensity is positively correlated to intestinal transit time and related to microbial enterotypes. Microbiome. 2022;10:223. doi: 10.1186/s40168-022-01418-5
- Prochazkova N, Venlet N, Hansen ML, et al. Effects of a wholegrain-rich diet on markers of colonic fermentation and bowel function and their associations with the gut microbiome: A randomised controlled cross-over trial. Front Nutr. 2023;10:1187165. doi: 10.3389/fnut.2023.1187165
- Mushref MA, Srinivasan S. Effect of high fat-diet and obesity on gastrointestinal motility. Ann Transl Med. 2012;1:14. doi: 10.3978/j.issn.2305-5839.2012.11.01
- Herath M, Hosie S, Bornstein JC, Franks AE, Hill-Yardin EL. The role of the gastrointestinal mucus system in intestinal homeostasis: Implications for neurological disorders. Front Cell Infect Microbiol. 2020;10:248. doi: 10.3389/fcimb.2020.00248
- Schellekens H, Finger BC, Dinan TG, Cryan JF. Ghrelin signalling and obesity: At the interface of stress, mood and food reward. Pharmacol Ther. 2012;135(3):316-326. doi: 10.1016/j.pharmthera.2012.06.004
- Riedl RA, Burnett CML, Pearson NA, et al. Gut microbiota represent a major thermogenic biomass. Function (Oxf). 2021;2: zqab019. doi: 10.1093/function/zqab019
- Gribble FM, Reimann F. Enteroendocrine cells: Chemosensors in the intestinal epithelium. Annu Rev Physiol. 2016;78:277-299. doi: 10.1146/annurev-physiol-021115-105439
- De Silva A, Bloom SR. Gut hormones and appetite control: A focus on pyy and glp-1 as therapeutic targets in obesity. Gut Liver. 2012;6(1):10-20. doi: 10.5009/gnl.2012.6.1.10
- Xu Y, Jones JE, Kohno D, et al. 5-Ht2crs expressed by pro-opiomelanocortin neurons regulate energy homeostasis. Neuron. 2008;60(4):582-589. doi: 10.1016/j.neuron.2008.09.033
- Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40(1):128-139. doi: 10.1016/j.immuni.2013.12.007
- Bisht N, Garg AP. Isolation, characterization and probiotic value of lactic acid bacteria from milk and milk products. Biotech Today. 2019;9(2):54-63. doi: 10.21786/bbrc/14.1/28
- Medina DA, Pinto F, Ortuzar V, Garrido D. Simulation and modeling of dietary changes in the infant gut microbiome. FEMS Microbiol Ecol. 2018;94(9):1-11. doi: 10.1093/femsec/fiy140
- Arya RK, Tahilramani H, Garg AP. Impact of human colostrum associated population on neonatal health. Int J Med Sci Innova Res. 2018;3(5):86-90.
- Thaiss CA, Zeevi D, Levy M, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014;159(3):514-529. doi: 10.1016/j.cell.2014.09.048
- Jernberg C, Lofmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007;1:56-66. doi: 10.1038/ismej.2007.3
- Scott FI, Horton DB, Mamtani R, et al. Administration of antibiotics to children before age 2 years increases risk for childhood obesity. Gastroenterology. 2016;151:120-129.e5. doi: 10.1053/j.gastro.2016.03.006
- Sarmiento-Andrade Y, Suárez R, Quintero B, Garrochamba K, Chapela SP. Gut microbiota and obesity: New insights. Front Nutr. 2022;9:1018212. doi: 10.3389/fnut.2022.1018212
- Li Z, Gurung M, Rodrigues RR, et al. Microbiota and adipocyte mitochondrial damage in type 2 diabetes are linked by Mmp12+ macrophages. J Exp Med. 2022;219:e20220017. doi: 10.1084/jem.20220017
- Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science. 1993; 259(5091):87-91. doi: 10.1126/science.7678183
- Ley RE. Obesity and the human microbiome. Curr Opin Gastroenterol. 2010;26(1):5-11. doi: 10.1097/MOG.0b013e328333d751
- Cani PD, Bibiloni R, Knau FC, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470-1481. doi: 10.2337/db07-1403
- Cani PD, Neyrinck AM, Fava F, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50(11):2374-2383. doi: 10.1007/s00125-007-0791-0
- Yun Y, Kim HN, Kim SE, et al. Comparative analysis of gut microbiota associated with body mass index in a Large Korean cohort. BMC Microbiol. 2017;17(1):151. doi: 10.1186/s12866-017-1052-0
- Guo S, Nighot M, Al-Sadi R, Alhmoud T, Nighot P, Ma TY. Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by Tlr4 signal transduction pathway activation of fak and Myd88. J Immunol. 2015; 195(10):4999-5010. doi: 10.4049/jimmunol.1402598
- Derrien M, Vaughan EE, Plugge CM, De Vos WM. Akkermansia muciniphila gen. Nov., sp. Nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004;54(Pt 5):1469-1476. doi: 10.1099/ijs.0.02873-0
- Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. The microbiota-gut-brain axis in obesity. Lancet Gastroenterol Hepatol. 2017;2(10):747-756. doi: 10.1016/S2468-1253(17)30147-4
- Neal MD, Leaphart C, Levy R, et al. Enterocyte Tlr4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J Immunol. 2006;176(5):3070-3079. doi: 10.4049/jimmunol.176.5.3070
- Amabebe E, Robert FO, Agbalalah T, Orubu ESF. Microbial dysbiosis-induced obesity: Role of gut microbiota in homoeostasis of energy metabolism. Br J Nutr. 2020;123(10):1127-1137. doi: 10.1017/S0007114520000380
- Kanda H, Tateya S, Tamori Y, et al. Mcp-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116(6):1494-1505. doi: 10.1172/JCI26498
- Lin HV, Frassetto A, Kowalik EJ Jr., et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012;7(4):e35240. doi: 10.1371/journal.pone.0035240
- Macia L, Tan J, Vieira AT, et al. Metabolite-sensing receptors Gpr43 and Gpr109a facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun. 2015;6:6734. doi: 10.1038/ncomms7734
- Mattace Raso G, Simeoli R, Russo R, et al. Effects of sodium butyrate and its synthetic amide derivative on liver inflammation and glucose tolerance in an animal model of steatosis induced by high fat diet. PLoS One. 2013;8(7):e68626. doi: 10.1371/journal.pone.0068626
- Chen G, Ran X, Li B, et al. Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a tnbs-induced inflammatory bowel disease mice model. EBioMedicine. 2018;30:317-325. doi: 10.1016/j.ebiom.2018.03.030
- Gao R, Zhu C, Li H, et al. Dysbiosis signatures of gut microbiota along the sequence from healthy, young patients to those with overweight and obesity. Obesity (Silver Spring). 2018;26(2):351-361. doi: 10.1038/nature12506
- Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541-546. doi: 10.1038/nature12506
- Lindberg AA, Weintraub A, Zähringer U, Rietschel ET. Structure-activity relationships in lipopolysaccharides of Bacteroides fragilis. Rev Infect Dis. 1990;12(Suppl 2):S133-S141. doi: 10.1093/clinids/12.supplement_2.s133
- Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213-223. doi: 10.1016/j.chom.2008.02.015
- Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1:6ra14. doi: 10.1126/scitranslmed.3000322
- Teodoro JS, Varela AT, Rolo AP, Palmeira CM. High-fat and obesogenic diets: Current and future strategies to fight obesity and diabetes. Genes Nutr. 2014;9:406. doi: 10.1007/s12263-014-0406-6
- Ludwig DS, Apovian CM, Aronne LJ, et al. Competing paradigms of obesity pathogenesis: Energy balance versus carbohydrate-insulin models. Eur J Clin Nutr. 2022;76:1209-1221. doi: 10.1038/s41430-022-01179-2
- Hall KD, Farooqi IS, Friedman JM, et al. The energy balance model of obesity: Beyond calories in, calories out. Am J Clin Nutr. 2022;115:1243-1254. doi: 10.1093/ajcn/nqac031
- Monda A, De Stefano MI, Villano I, et al. Ultra-processed food intake and increased risk of obesity: A narrative review. Foods. 2024;13:2627. doi: 10.3390/foods13162627
- Heindel JJ, Lustig RH, Howard S, Corkey BE. Obesogens: A unifying theory for the global rise in obesity. Int J Obes (Lond). 2024;48:449-460. doi: 10.1038/s41366-024-01460-3
- Flier JS. Moderating “the great debate”: The carbohydrate-insulin vs. The energy balance models of obesity. Cell Metab. 2023;35:737-741. doi: 10.1016/j.cmet.2023.03.020
- Poti JM, Braga B, Qin B. Ultra-processed food intake and obesity: What really matters for health-processing or nutrient content? Curr Obes Rep. 2017;6:420-431. doi: 10.1007/s13679-017-0285-4
- Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105-108. doi: 10.1126/science.1208344
- Brinkworth GD, Noakes M, Clifton PM, Bird AR. Comparative effects of very low-carbohydrate, high-fat and highcarbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. Br J Nutr. 2009;101:1493-1502. doi: 10.1017/S0007114508094658
- Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol. 2007;73:1073-1078. doi: 10.1128/AEM.02340-06
- David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559-563. doi: 10.1038/nature12820
- Zimmer J, Lange B, Frick JS, et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr. 2012;66:53-60. doi: 10.1038/ejcn.2011.141
- Sidhu SRK, Kok CW, Kunasegaran T, Ramadas A. Effect of plant-based diets on gut microbiota: A systematic review of interventional studies. Nutrients. 2023;15:1510. doi: 10.3390/nu15061510
- Clemente-Suárez VJ, Beltrán-Velasco AI, Redondo-Flórez L, Martín-Rodríguez A, Tornero-Aguilera JF. Global impacts of western diet and its effects on metabolism and health: A narrative review. Nutrients. 2023;15:2749. doi: 10.3390/nu15122749
- Beam A, Clinger E, Hao L. Effect of diet and dietary components on the composition of the gut microbiota. Nutrients. 2021;13:2795. doi: 10.3390/nu13082795
- Borrego-Ruiz A, Borrego JJ. Human gut microbiome, diet, and mental disorders. Int Microbiol. 2025;28(1):1-15. doi: 10.1007/s10123-024-00518-6
- Nagpal R, Neth BJ, Wang S, Craft S, Yadav H. Modified mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine. 2019;47:529-542. doi: 10.1016/j.ebiom.2019.08.032
- Bamal A, Goley R, Garg AP. Health managements through gut microbiota. Am J Biomed Sci Res. 2025;25(5):700-727. doi: 10.34297/AJBSR.2025.25.003368
- Koh A, Molinaro A, Ståhlman M, et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell. 2018;175:947-961.e17. doi: 10.1016/j.cell.2018.09.055
- Liu Y, Dai M. Trimethylamine N-Oxide generated by the gut microbiota is associated with vascular inflammation: New insights into atherosclerosis. Mediators Inflamm. 2020;2020:4634172. doi: 10.1155/2020/4634172
- Schicho R, Marsche G, Storr M. Cardiovascular complications in inflammatory bowel disease. Curr Drug Targets. 2015;16:181-188. doi: 10.2174/1389450116666150202161500
- Beyaz Coşkun A, Sağdiçoğlu Celep AG. Therapeutic modulation methods of gut microbiota and gut-liver axis. Crit Rev Food Sci Nutr. 2021;62(23):6505-6515. doi: 10.1080/10408398.2021.1902263
- Hu H, Lin A, Kong M, et al. Intestinal microbiome and nafld: Molecular insights and therapeutic perspectives. J Gastroenterol. 2020;55(2):142-158. doi: 10.1007/s00535-019-01649-8
- Bisht N, Garg AP. Role of gut microbiota in human health. Res J Biotech. 2021;16(1):202-212.
- Yadav H, Lee JH, Lloyd J, Walter P, Rane SG. Beneficial metabolic effects of a probiotic Via butyrate-induced glp-1 hormone secretion. J Biol Chem. 2013;288(35):25088-25097. doi: 10.1074/jbc.M113.452516
- Rajkumar H, Mahmood N, Kumar M, Varikut SR, Challa HR, Myakala SP. Effect of probiotic (Vsl#3) and omega-3 on lipid profile, insulin sensitivity, inflammatory markers, and gut colonization in overweight adults: A randomized, controlled trial. Mediators Inflamm. 2014;2014:348959. doi: 10.1155/2014/348959
- Rahayu ES, Mariyatun M, Putri Manurung NE, et al. Effect of probiotic Lactobacillus plantarum dad-13 powder consumption on the gut microbiota and intestinal health of overweight adults. World J Gastroenterol. 2021;27(1):107-128. doi: 10.3748/wjg.v27.i1.107
- Dror T, Dickstein Y, Dubourg G, Paul M. Microbiota manipulation for weight change. Microb Pathog. 2017; 106:146-161. doi: 10.1016/j.micpath.2016.01.002
- Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: The international scientific association for probiotics and prebiotics (Isapp) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491-502. doi: 10.1038/nrgastro.2017.75
- Parnell JA, Reimer RA. Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese Jcr: La-cp rats. Br J Nutr. 2012;107(4):601-613. doi: 10.1017/S0007114511003163
- Lim CC, Ferguson LR, Tannock GW. Dietary fibres as “prebiotics”: Implications for colorectal cancer. Mol Nutr Food Res. 2005;49:609-619. doi: 10.1002/mnfr.200500015
- Kolinda S, Gibson GR. Prebiotic capacity of inulin-type fructans. J Nutr. 2007;137:2503S-2506S. doi: 10.1093/jn/137.11.2503S
- Delzenne NM, Cani PD, Daubioul C, Neyrinck AM. Impact of inulin and oligofructose on gastrointestinal peptides. Br J Nutr. 2005;93:S157-S161. doi: 10.1079/bjn20041342
- Nicolucci AC, Hume MP, Martınez I, Mayengbam S, Walter J, Reimer RA. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology. 2017;153(3):711-722. doi: 10.1053/j.gastro.2017.05.055
- Neyrinck AM, Rodriguez J, Zhang Z, et al. Prebiotic dietary fibre intervention improves fecal markers related to inflammation in obese patients: Results from the Food4gut randomized placebo-controlled trial. Eur J Nutr. 2021;60(6):3159-3170. doi: 10.1007/s00394-021-02484-5
- Rafter J, Bennett M, Caderni G, et al. Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am J Clin Nutr. 2007;85:488-496. doi: 10.1093/ajcn/85.2.488
- Beserra BTS, Fernandes R, Do Rosario VA, Mocellin MC, Kuntz MG, Trindade EB. A systematic review and meta-analysis of the prebiotics and synbiotics effects on glycaemia, insulin concentrations and lipid parameters in adult patients with overweight and obesity. Clin Nutr. 2015;34:845-858. doi: 10.1016/j.clnu.2014.10.004
- Milosevic I, Vujovic A, Barac A, et al. Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: A review of the literature. Int J Mol Sci. 2019;20(2):395. doi: 10.3390/ijms20020395
- Lee P, Yacyshyn BR, Yacyshyn MB. Gut microbiota and obesity: An opportunity to alter obesity through faecal microbiota transplant (Fmt). Diabetes Obes Metab. 2019;21(3):479-490. doi: 10.1111/dom.13561
- Bron PA, Kleerebezem M, Brummer RJ, et al. Can probiotics modulate human disease by impacting intestinal barrier function? Br J Nutr. 2017;117(1):93-107. doi: 10.1017/S0007114516004037
- Leong KSW, Jayasinghe TN, Wilson BC, et al. Effects of fecal microbiome transfer in adolescents with obesity: The gut bugs randomized controlled trial. JAMA Netw Open. 2020;3(12):e2030415. doi: 10.1001/jamanetworkopen.2020.30415
- Alang N, Kelly CR. Weight gain after fecal microbiota transplantation. Open Forum Infect Dis. 2015;2:ofv004. doi: 10.1093/ofid/ofv004
- Kasai C, Sugimoto K, Moritani I, et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol. 2015;15:100. doi: 10.1186/s12876-015-0330-2