AccScience Publishing / MI / Online First / DOI: 10.36922/MI025190042
ORIGINAL RESEARCH ARTICLE

A proposal for biologically relevant classification of SARS-CoV-2 variants

Saja Al-Baidhani1 Tarneem Sabra1 Aslam Al-Baidhani1 Mohammed Sallam2,3,4 Malik Sallam1,5*
Show Less
1 Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
2 Department of Pharmacy, Mediclinic Parkview Hospital, Mediclinic Middle East, Dubai, United Arab Emirates
3 Department of Management, Mediclinic Parkview Hospital, Mediclinic Middle East, Dubai, United Arab Emirates
4 College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
5 Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman, Jordan
Received: 10 May 2025 | Revised: 3 June 2025 | Accepted: 4 June 2025 | Published online: 17 June 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The present classification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants plays a central role in shaping public health policies, vaccine strategies, and global risk communication. However, existing designations of variants of concern (VOCs) rely on evolving epidemiological and phenotypic criteria rather than quantitative genetic divergence thresholds. In this study, we evaluated the genetic divergence of SARS-CoV-2 variants relative to human immunodeficiency virus type 1 (HIV-1), hepatitis C virus (HCV), and influenza A virus, and proposed a framework integrating genetic, functional, and epidemiological criteria for variant classification. Comparative phylogenetic analysis assessed the divergence of SARS-CoV-2 (S) relative to HIV-1 (env), HCV (E1), and influenza A virus (HA). Maximum likelihood phylogenies with bootstrap support were constructed using MEGA6, and pairwise genetic distances were calculated through the maximum composite likelihood model. Monte Carlo simulations (n = 1,000) using adjusted SARS-CoV-2 evolutionary rates (0.0006 – 0.003 substitutions/site/year) estimated time to reach divergence thresholds defined by other viruses. SARS-CoV-2 variants showed a maximum divergence of 0.006 substitutions/site – far below thresholds for HIV-1 (0.157), HCV (0.371), and influenza A (1.956). Projections estimate HIV-1-like divergence in 53.7 years, HCV-like in 126.8 years, and influenza A-like in 668.6 years. No present VOC met all proposed functional criteria: transmissibility, immune escape, disease severity, and global dominance. Omicron exhibited partial immune escape but insufficient divergence for lineage reclassification. While present classification supports short-term response, integrating evolutionary benchmarks would enhance their biological relevance as the virus continues to diversify. A new evidence-based framework is needed to reduce public alarm, guide rational policymaking, and prioritize durable countermeasures over variant-specific responses.

Keywords
Phylogeny
Classification
COVID-19
Lineage
Variant
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Gorbalenya AE, Baker SC, Baric RS, et al. The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536-544. doi: 10.1038/s41564-020-0695-z

 

  1. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-574. doi: 10.1016/s0140-6736(20)30251-8

 

  1. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273. doi: 10.1038/s41586-020-2012-7

 

  1. Rosen CJ. Viral variants, vaccinations, and long covid - new insights. N Engl J Med. 2024;391(6):561-562. doi: 10.1056/NEJMe2407575

 

  1. He F, Deng Y, Li W. Coronavirus disease 2019: What we know? J Med Virol. 2020;92(7):719-725. doi: 10.1002/jmv.25766

 

  1. Joseph S, Kutty Narayanan A. Covid 19-the 21st century pandemic: The novel coronavirus outbreak and the treatment strategies. Adv Pharm Bull. 2022;12(1):34-44. doi: 10.34172/apb.2022.005

 

  1. Sah P, Fitzpatrick MC, Zimmer CF, et al. Asymptomatic SARS-CoV-2 infection: A systematic review and meta-analysis. Proc Natl Acad Sci U S A. 2021;118(34):e2109229118. doi: 10.1073/pnas.2109229118

 

  1. Gandhi RT, Lynch JB, Del Rio C. Mild or moderate Covid-19. N Engl J Med. 2020;383(18):1757-1766. doi: 10.1056/NEJMcp2009249

 

  1. Çelik I, Öztürk R. From asymptomatic to critical illness: Decoding various clinical stages of COVID-19. Turk J Med Sci. 2021;51(Si-1):3284-3300. doi: 10.3906/sag-2107-137

 

  1. Nikolich-Zugich J, Knox KS, Rios CT, Natt B, Bhattacharya D, Fain MJ. SARS-CoV-2 and COVID-19 in older adults: What we may expect regarding pathogenesis, immune responses, and outcomes. GeroScience. 2020;42(2):505-514. doi: 10.1007/s11357-020-00186-0

 

  1. Boyton RJ, Altmann DM. The immunology of asymptomatic SARS-CoV-2 infection: What are the key questions? Nat Rev Immunol. 2021;21(12):762-768. doi: 10.1038/s41577-021-00631-x

 

  1. Naqvi AAT, Fatima K, Mohammad T, et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10):165878. doi: 10.1016/j.bbadis.2020.165878

 

  1. Rahimi A, Mirzazadeh A, Tavakolpour S. Genetics and genomics of SARS-CoV-2: A review of the literature with the special focus on genetic diversity and SARS-CoV-2 genome detection. Genomics. 2021;113(1 Pt 2):1221-1232. doi: 10.1016/j.ygeno.2020.09.059

 

  1. Alwine JC, Casadevall A, Enquist LW, Goodrum FD, Imperiale MJ. A critical analysis of the evidence for the SARS-CoV-2 origin hypotheses. mSphere. 2023;8(2):e0011923. doi: 10.1128/msphere.00119-23

 

  1. Hao YJ, Wang YL, Wang MY, et al. The origins of COVID-19 pandemic: A brief overview. Transbound Emerg Dis. 2022;69(6):3181-3197. doi: 10.1111/tbed.14732

 

  1. Boni MF, Lemey P, Jiang X, et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat Microbiol. 2020;5(11):1408-1417. doi: 10.1038/s41564-020-0771-4

 

  1. Pereson MJ, Mojsiejczuk L, Martínez AP, Flichman DM, Garcia GH, Di Lello FA. Phylogenetic analysis of SARS-CoV-2 in the first few months since its emergence. J Med Virol. 2021;93(3):1722-1731. doi: 10.1002/jmv.26545

 

  1. Canuti M, Bianchi S, Kolbl O, et al. Waiting for the truth: is reluctance in accepting an early origin hypothesis for SARS-CoV-2 delaying our understanding of viral emergence? BMJ Glob Health. 2022;7(3):e008386. doi: 10.1136/bmjgh-2021-008386

 

  1. Pekar JE, Magee A, Parker E, et al. The molecular epidemiology of multiple zoonotic origins of SARS-CoV-2. Science. 2022;377(6609):960-966. doi: 10.1126/science.abp8337

 

  1. Bukin YS, Bondaryuk AN, Kulakova NV, Balakhonov SV, Dzhioev YP, Zlobin VI. Phylogenetic reconstruction of the initial stages of the spread of the SARS-CoV-2 virus in the Eurasian and American continents by analyzing genomic data. Virus Res. 2021;305:198551. doi: 10.1016/j.virusres.2021.198551

 

  1. Domingo JL. What we know and what we need to know about the origin of SARS-CoV-2. Environ Res. 2021;200:111785. doi: 10.1016/j.envres.2021.111785

 

  1. Latinne A, Hu B, Olival KJ, et al. Origin and cross-species transmission of bat coronaviruses in China. Nat Commun. 2024;15(1):10705. doi: 10.1038/s41467-024-55384-7

 

  1. Voskarides K. SARS-CoV-2: Tracing the origin, tracking the evolution. BMC Med Genomics. 2022;15(1):62. doi: 10.1186/s12920-022-01208-w

 

  1. Lopes LR, de Mattos Cardillo G, Paiva PB. Molecular evolution and phylogenetic analysis of SARS-CoV-2 and hosts ACE2 protein suggest Malayan pangolin as intermediary host. Braz J Microbiol. 2020;51(4):1593-1599. doi: 10.1007/s42770-020-00321-1

 

  1. Samson S, Lord É, Makarenkov V. Assessing the emergence time of SARS-CoV-2 zoonotic spillover. PLoS One. 2024;19(4):e0301195. doi: 10.1371/journal.pone.0301195

 

  1. Ruiz-Aravena M, McKee C, Gamble A, et al. Ecology, evolution and spillover of coronaviruses from bats. Nat Rev Microbiol. 2022;20(5):299-314. doi: 10.1038/s41579-021-00652-2

 

  1. Holmes EC, Goldstein SA, Rasmussen AL, et al. The origins of SARS-CoV-2: A critical review. Cell. 2021;184(19):4848-4856. doi: 10.1016/j.cell.2021.08.017

 

  1. Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol. 2020;30(7):1346-1351.e2. doi: 10.1016/j.cub.2020.03.022

 

  1. Tang X, Ying R, Yao X, et al. Evolutionary analysis and lineage designation of SARS-CoV-2 genomes. Sci Bull. 2021;66(22):2297-2311. doi: 10.1016/j.scib.2021.02.012

 

  1. Rambaut A, Holmes EC, O’Toole Á, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol. 2020;5(11):1403-1407. doi: 10.1038/s41564-020-0770-5

 

  1. Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci U S A. 2020;117(17):9241-9243. doi: 10.1073/pnas.2004999117

 

  1. Lemey P, Hong SL, Hill V, et al. Accommodating individual travel history and unsampled diversity in Bayesian phylogeographic inference of SARS-CoV-2. Nat Commun. 2020;11(1):5110. doi: 10.1038/s41467-020-18877-9

 

  1. Worobey M, Pekar J, Larsen BB, et al. The emergence of SARS-CoV-2 in Europe and North America. Science. 2020;370(6516):564-570. doi: 10.1126/science.abc8169

 

  1. Hill V, Du Plessis L, Peacock TP, et al. The origins and molecular evolution of SARS-CoV-2 lineage B.1.1.7 in the UK. Virus Evol. 2022;8(2):veac080. doi: 10.1093/ve/veac080

 

  1. World Health Organization. Tracking SARS-CoV-2 Variants; 2025. Available from: https://www.who.int/activities/tracking- SARS-CoV-2-variants [Last accessed on 2025 May 09].

 

  1. Essabbar A, El Mazouri S, Boumajdi N, et al. Temporal dynamics and genomic landscape of SARS-CoV-2 after four years of evolution. Cureus. 2024;16(2):e53654. doi: 10.7759/cureus.53654

 

  1. Brüssow H. COVID-19: Emergence and mutational diversification of SARS-CoV-2. Microb Biotechnol. 2021;14(3):756-768. doi: 10.1111/1751-7915.13800

 

  1. Korber B, Fischer WM, Gnanakaran S, et al. Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020;182(4):812-827.e19. doi: 10.1016/j.cell.2020.06.043

 

  1. Sallam M, Ababneh NA, Dababseh D, Bakri FG, Mahafzah A. Temporal increase in D614G mutation of SARS-CoV-2 in the Middle East and North Africa. Heliyon. 2021;7(1):e06035. doi: 10.1016/j.heliyon.2021.e06035

 

  1. Earnest R, Uddin R, Matluk N, et al. Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA. Cell Rep Med. 2022;3(4):100583. doi: 10.1016/j.xcrm.2022.100583

 

  1. Sallam M, Mahafzah A. Molecular analysis of SARS-CoV-2 genetic lineages in Jordan: Tracking the introduction and spread of COVID-19 UK variant of concern at a country level. Pathogens. 2021;10(3):302. doi: 10.3390/pathogens10030302

 

  1. Chouikha A, Fares W, Laamari A, et al. Molecular epidemiology of SARS-CoV-2 in Tunisia (North Africa) through several successive waves of COVID-19. Viruses. 2022;14(3):624. doi: 10.3390/v14030624

 

  1. Carabelli AM, Peacock TP, Thorne LG, et al. SARS-CoV-2 variant biology: Immune escape, transmission and fitness. Nat Rev Microbiol. 2023;21(3):162-177. doi: 10.1038/s41579-022-00841-7

 

  1. Pondé RAA. Physicochemical effect of the N501Y, E484K/Q, K417N/T, L452R and T478K mutations on the SARS-CoV-2 spike protein RBD and its influence on agent fitness and on attributes developed by emerging variants of concern. Virology. 2022;572:44-54. doi: 10.1016/j.virol.2022.05.003

 

  1. Perez-Gomez R. The development of SARS-CoV-2 variants: The gene makes the disease. J Dev Biol. 2021;9(4):58. doi: 10.3390/jdb9040058

 

  1. Harris E. WHO launches broad coronavirus surveillance network. JAMA. 2024;331(19):1615. doi: 10.1001/jama.2024.6724

 

  1. Otto SP, Day T, Arino J, et al. The origins and potential future of SARS-CoV-2 variants of concern in the evolving COVID-19 pandemic. Curr Biol. 2021;31(14):R918-R929. doi: 10.1016/j.cub.2021.06.049

 

  1. O’Toole Á, Pybus OG, Abram ME, Kelly EJ, Rambaut A. Pango lineage designation and assignment using SARS-CoV-2 spike gene nucleotide sequences. BMC Genomics. 2022;23(1):121. doi: 10.1186/s12864-022-08358-2

 

  1. Markov PV, Ghafari M, Beer M, et al. The evolution of SARS-CoV-2. Nat Rev Microbiol. 2023;21(6):361-379. doi: 10.1038/s41579-023-00878-2

 

  1. Shahhosseini N, Babuadze GG, Wong G, Kobinger GP. Mutation signatures and in silico docking of novel SARS-CoV-2 variants of concern. Microorganisms. 2021;9(5):926. doi: 10.3390/microorganisms9050926

 

  1. Tao K, Tzou PL, Nouhin J, et al. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat Rev Genet. 2021;22(12):757-773. doi: 10.1038/s41576-021-00408-x

 

  1. Subissi L, Otieno JR, Worp N, et al. An updated framework for SARS-CoV-2 variants reflects the unpredictability of viral evolution. Nat Med. 2024;30(9):2400-2403. doi: 10.1038/s41591-024-02949-0

 

  1. Giovanetti M, Benedetti F, Campisi G, et al. Evolution patterns of SARS-CoV-2: Snapshot on its genome variants. Biochem Biophys Res Commun. 2021;538:88-91. doi: 10.1016/j.bbrc.2020.10.102

 

  1. Hussain B, Wu C. Evolutionary and phylogenetic dynamics of SARS-CoV-2 variants: A genetic comparative study of Taiyuan and Wuhan Cities of China. Viruses. 2024;16(6):907. doi: 10.3390/v16060907

 

  1. Zabidi NZ, Liew HL, Farouk IA, et al. Evolution of SARS-CoV-2 variants: Implications on immune escape, vaccination, therapeutic and diagnostic strategies. Viruses. 2023;15(4):944. doi: 10.3390/v15040944

 

  1. Kumar R, Srivastava Y, Muthuramalingam P, et al. Understanding mutations in human SARS-CoV-2 spike glycoprotein: A systematic review & meta-analysis. Viruses. 2023;15(4):856. doi: 10.3390/v15040856

 

  1. Bhattacharya M, Chatterjee S, Lee SS, Dhama K, Chakraborty C. Antibody evasion associated with the RBD significant mutations in several emerging SARS-CoV-2 variants and its subvariants. Drug Resist Updat. 2023;71:101008. doi: 10.1016/j.drup.2023.101008

 

  1. Liu Y, Liu J, Plante KS, et al. The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature. 2022;602(7896):294-299. doi: 10.1038/s41586-021-04245-0

 

  1. Oude Munnink BB, Worp N, Nieuwenhuijse DF, et al. The next phase of SARS-CoV-2 surveillance: Real-time molecular epidemiology. Nat Med. 2021;27(9):1518-1524. doi: 10.1038/s41591-021-01472-w

 

  1. Parums V. Editorial: Revised world health organization (WHO) terminology for variants of concern and variants of interest of SARS-CoV-2. Med Sci Monit. 2021;27:e933622. doi: 10.12659/msm.933622

 

  1. Chen Z, Azman AS, Chen X, et al. Global landscape of SARS-CoV-2 genomic surveillance and data sharing. Nat Genet. 2022;54(4):499-507. doi: 10.1038/s41588-022-01033-y

 

  1. CDC COVID-19 Response Team. SARS-CoV-2 B.1.1.529 (Omicron) variant-United States, December 1-8, 2021. MMWR Morb Mortal Wkly Rep. 2021;70(50):1731-1734. doi: 10.15585/mmwr.mm7050e1

 

  1. Lambrou AS, Shirk P, Steele MK, et al. Genomic surveillance for SARS-CoV-2 variants: predominance of the delta (B.1.617.2) and Omicron (B.1.1.529) variants-United States, June 2021-January 2022. MMWR Morb Mortal Wkly Rep. 2022;71(6):206-211. doi: 10.15585/mmwr.mm7106a4

 

  1. The European Centre for Disease Prevention and Control. ECDC De-escalates BA.2, BA.4 and BA.5 from its List of Variants of Concern; 2025. Available from: https://www. ecdc.europa.eu/en/news-events/ecdc-de-escalates-ba2-ba4- and-ba5-its-list-variants-concern [Last accessed on 2025 May 09].

 

  1. Kanuri S, Chen A, Barnett D, Hsu E. CDC policy changes during the COVID-19 pandemic. Open J Soc Sci. 2024;12:174-200. doi: 10.4236/jss.2024.126009

 

  1. Dolan PT, Whitfield ZJ, Andino R. Mechanisms and concepts in RNA virus population dynamics and evolution. Annu Rev Virol. 2018;5(1):69-92. doi: 10.1146/annurev-virology-101416-041718

 

  1. Woo HJ, Reifman J. Quantitative modeling of virus evolutionary dynamics and adaptation in serial passages using empirically inferred fitness landscapes. J Virol. 2014;88(2):1039-1050. doi: 10.1128/jvi.02958-13

 

  1. Lancaster KZ, Pfeiffer JK. Viral population dynamics and virulence thresholds. Curr Opin Microbiol. 2012;15(4):525-530. doi: 10.1016/j.mib.2012.05.007

 

  1. Jin T, Yin J. Patterns of virus growth across the diversity of life. Integr Biol (Camb). 2021;13(2):44-59. doi: 10.1093/intbio/zyab001

 

  1. Pybus OG, Rambaut A. Evolutionary analysis of the dynamics of viral infectious disease. Nat Rev Genet. 2009;10(8):540-550. doi: 10.1038/nrg2583

 

  1. Lv JX, Liu X, Pei YY, et al. Evolutionary trajectory of diverse SARS-CoV-2 variants at the beginning of COVID-19 outbreak. Virus Evol. 2024;10(1):veae020. doi: 10.1093/ve/veae020

 

  1. Grellet E, L’Hôte I, Goulet A, Imbert I. Replication of the coronavirus genome: A paradox among positive-strand RNA viruses. J Biol Chem. 2022;298(5):101923. doi: 10.1016/j.jbc.2022.101923

 

  1. Gupta S, Gupta D, Bhatnagar S. Analysis of SARS-CoV-2 genome evolutionary patterns. Microbiol Spectr. 2024;12(2):e0265423. doi: 10.1128/spectrum.02654-23

 

  1. Fischer W, Giorgi EE, Chakraborty S, et al. HIV-1 and SARS-CoV-2: Patterns in the evolution of two pandemic pathogens. Cell Host Microbe. 2021;29(7):1093-1110. doi: 10.1016/j.chom.2021.05.012

 

  1. Wang X, Li J, Liu H, Hu X, Lin Z, Xiong N. SARS-CoV-2 versus influenza A virus: Characteristics and co-treatments. Microorganisms. 2023;11(3):580. doi: 10.3390/microorganisms11030580

 

  1. Tahir M. Coronavirus genomic nsp14-ExoN, structure, role, mechanism, and potential application as a drug target. J Med Virol. 2021;93(7):4258-4264. doi: 10.1002/jmv.27009

 

  1. Robson F, Khan KS, Le TK, et al. Coronavirus RNA proofreading: Molecular basis and therapeutic targeting. Mol Cell. 2020;79(5):710-727. doi: 10.1016/j.molcel.2020.07.027

 

  1. Simmonds P. Rampant C→U hypermutation in the genomes of SARS-CoV-2 and other coronaviruses: Causes and consequences for their short- and long-term evolutionary trajectories. mSphere. 2020;5(3):e00408-20. doi: 10.1128/mSphere.00408-20

 

  1. Neher RA. Contributions of adaptation and purifying selection to SARS-CoV-2 evolution. Virus Evol. 2022;8(2):veac113. doi: 10.1093/ve/veac113

 

  1. Liu J, Wu Y, Gao GF. A structural voyage toward the landscape of humoral and cellular immune escapes of SARS-CoV-2. Immunol Rev. 2025;330(1):e70000. doi: 10.1111/imr.70000

 

  1. Tong Y, Lavillette D, Li Q, Zhong J. Role of hepatitis C virus envelope glycoprotein E1 in virus entry and assembly. Front Immunol. 2018;9:1411. doi: 10.3389/fimmu.2018.01411

 

  1. Beretta M, Migraine J, Moreau A, et al. Common evolutionary features of the envelope glycoprotein of HIV-1 in patients belonging to a transmission chain. Sci Rep. 2020;10(1):16744. doi: 10.1038/s41598-020-73975-4

 

  1. Xu C, Zhang N, Yang Y, et al. Immune escape adaptive mutations in hemagglutinin are responsible for the antigenic drift of Eurasian avian-like H1N1 swine influenza viruses. J Virol. 2022;96(16):e0097122. doi: 10.1128/jvi.00971-22

 

  1. Kuiken C, Korber B, Shafer RW. HIV sequence databases. AIDS Rev. 2003;5(1):52-61.

 

  1. Kuiken C, Yusim K, Boykin L, Richardson R. The Los Alamos hepatitis C sequence database. Bioinformatics. 2005;21(3):379-384. doi: 10.1093/bioinformatics/bth485

 

  1. Calhoun VC, Hatcher EL, Yankie L, Nawrocki EP. Influenza sequence validation and annotation using VADR. Database (Oxford). 2024;2024:baae091. doi: 10.1093/database/baae091

 

  1. Brister JR, Ako-Adjei D, Bao Y, Blinkova O. NCBI viral genomes resource. Nucleic Acids Res. 2015;43(Database issue):D571-D577. doi: 10.1093/nar/gku1207

 

  1. Drummond AJ, Ho SY, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4(5):e88. doi: 10.1371/journal.pbio.0040088

 

  1. Abecasis A, Vandamme AM. Origin and distribution of HIV-1 subtypes. In: Hope TJ, Stevenson M, Richman D, editors. Encyclopedia of AIDS. Berlin: Springer New York; 2014. p. 1-16.

 

  1. Hemelaar J, Elangovan R, Yun J, et al. Global and regional molecular epidemiology of HIV-1, 1990-2015: A systematic review, global survey, and trend analysis. Lancet Infect Dis. 2019;19(2):143-155. doi: 10.1016/s1473-3099(18)30647-9

 

  1. Smith DB, Bukh J, Kuiken C, et al. Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: Updated criteria and genotype assignment web resource. Hepatology. 2014;59(1):318-327. doi: 10.1002/hep.26744

 

  1. Petrova VN, Russell CA. The evolution of seasonal influenza viruses. Nat Rev Microbiol. 2018;16(1):47-60. doi: 10.1038/nrmicro.2017.118

 

  1. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30(4):772-780. doi: 10.1093/molbev/mst010

 

  1. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725-2729. doi: 10.1093/molbev/mst197

 

  1. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A. 2004;101(30):11030-11035. doi: 10.1073/pnas.0404206101

 

  1. Ren A, Ishida T, Akiyama Y. Assessing statistical reliability of phylogenetic trees via a speedy double bootstrap method. Mol Phylogenet Evol. 2013;67(2):429-435. doi: 10.1016/j.ympev.2013.02.011

 

  1. Rambaut A, Drummond A. FigTree v1. 3.1 Institute of Evolutionary Biology. Scotland: University of Edinburgh. 2010.

 

  1. Lemoine F, Gascuel O. The Bayesian phylogenetic bootstrap and its application to short trees and branches. Mol Biol Evol. 2024;41(11):msae238. doi: 10.1093/molbev/msae238

 

  1. Candido DS, Claro IM, de Jesus JG, et al. Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science. 2020;369(6508):1255-1260. doi: 10.1126/science.abd2161

 

  1. Tegally H, Wilkinson E, Lessells RJ, et al. Sixteen novel lineages of SARS-CoV-2 in South Africa. Nat Med. 2021;27(3):440-446. doi: 10.1038/s41591-021-01255-3

 

  1. Tegally H, Wilkinson E, Giovanetti M, et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature. 2021;592(7854):438-443. doi: 10.1038/s41586-021-03402-9

 

  1. Day T, Gandon S, Lion S, Otto SP. On the evolutionary epidemiology of SARS-CoV-2. Curr Biol. 2020;30(15):R849-R857. doi: 10.1016/j.cub.2020.06.031

 

  1. Faria NR, Mellan TA, Whittaker C, et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science. 2021;372(6544):815-821. doi: 10.1126/science.abh2644

 

  1. Focosi D, Maggi F. Recombination in coronaviruses, with a focus on SARS-CoV-2. Viruses. 2022;14(6):1239. doi: 10.3390/v14061239

 

  1. Turakhia Y, Thornlow B, Hinrichs A, et al. Pandemic-scale phylogenomics reveals the SARS-CoV-2 recombination landscape. Nature. 2022;609(7929):994-997. doi: 10.1038/s41586-022-05189-9

 

  1. Simon-Loriere E, Holmes EC. Why do RNA viruses recombine? Nat Rev Microbiol. 2011;9(8):617-626. doi: 10.1038/nrmicro2614

 

  1. Xiao Y, Rouzine IM, Bianco S, et al. RNA recombination enhances adaptability and is required for virus spread and virulence. Cell Host Microbe. 2016;19(4):493-503. doi: 10.1016/j.chom.2016.03.009

 

  1. van Dorp L, Richard D, Tan CCS, Shaw LP, Acman M, Balloux F. No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2. Nat Commun. 2020;11(1):5986. doi: 10.1038/s41467-020-19818-2

 

  1. Davies NG, Abbott S, Barnard RC, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science. 2021;372(6538):eabg3055. doi: 10.1126/science.abg3055

 

  1. Gutierrez B, Márquez S, Prado-Vivar B, et al. Genomic epidemiology of SARS-CoV-2 transmission lineages in Ecuador. Virus Evol. 2021;7(2):veab051. doi: 10.1093/ve/veab051

 

  1. Hassan AS, Pybus OG, Sanders EJ, Albert J, Esbjörnsson J. Defining HIV-1 transmission clusters based on sequence data. Aids. 2017;31(9):1211-1222. doi: 10.1097/qad.0000000000001470

 

  1. Hedskog C, Parhy B, Chang S, et al. Identification of 19 novel hepatitis C virus subtypes-further expanding HCV classification. Open Forum Infect Dis. 2019;6(3):ofz076. doi: 10.1093/ofid/ofz076

 

  1. Takeshita M, Nishina N, Moriyama S, et al. Immune evasion and chronological decrease in titer of neutralizing antibody against SARS-CoV-2 and its variants of concerns in COVID-19 patients. Clin Immunol. 2022;238:108999. doi: 10.1016/j.clim.2022.108999

 

  1. Mahilkar S, Agrawal S, Chaudhary S, et al. SARS-CoV-2 variants: Impact on biological and clinical outcome. Front Med (Lausanne). 2022;9:995960. doi: 10.3389/fmed.2022.995960

 

  1. Quintero AM, Eisner M, Sayegh R, et al. Differences in SARS-CoV-2 clinical manifestations and disease severity in children and adolescents by infecting variant. Emerg Infect Dis. 2022;28(11):2270-2280. doi: 10.3201/eid2811.220577

 

  1. Cojocaru C, Cojocaru E, Turcanu AM, Zaharia DC. Clinical challenges of SARS-CoV-2 variants (Review). Exp Ther Med. 2022;23(6):416. doi: 10.3892/etm.2022.11343

 

  1. Parczewski M, Scheibe K, Witak-Jędra M, Pynka M, Aksak- Wąs B, Urbańska A. Infection with HIV-1 subtype D adversely affects the live expectancy independently of antiretroviral drug use. Infect Genet Evol. 2021;90:104754. doi: 10.1016/j.meegid.2021.104754

 

  1. Baeten JM, Chohan B, Lavreys L, et al. HIV-1 subtype D infection is associated with faster disease progression than subtype A in spite of similar plasma HIV-1 loads. J Infect Dis. 2007;195(8):1177-1180. doi: 10.1086/512682

 

  1. Palm AA, Esbjörnsson J, Månsson F, et al. Faster progression to AIDS and AIDS-related death among seroincident individuals infected with recombinant HIV-1 A3/ CRF02_AG compared with sub-subtype A3. J Infect Dis. 2014;209(5):721-728. doi: 10.1093/infdis/jit416

 

  1. Dorp CHV, Goldberg EE, Hengartner N, Ke R, Romero- Severson EO. Estimating the strength of selection for new SARS-CoV-2 variants. Nat Commun. 2021;12(1):7239. doi: 10.1038/s41467-021-27369-3

 

  1. Tongo M, Harkins GW, Dorfman JR, et al. Unravelling the complicated evolutionary and dissemination history of HIV-1M subtype A lineages. Virus Evol. 2018;4(1):vey003. doi: 10.1093/ve/vey003

 

  1. Bedford T, Riley S, Barr IG, et al. Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature. 2015;523(7559):217-220. doi: 10.1038/nature14460

 

  1. Kwon Y, Park J, An E, Jung S, Kweon K. Impact of omicron-variant SARS-CoV-2 infection on depression and anxiety: A community-based study in Korea. Psychiatry Investig. 2024;21(4):415-421. doi: 10.30773/pi.2023.0323

 

  1. Feng X, Yang C, Yang H, et al. Anxiety, depression, and somatic symptom disorders in health care workers at high altitude during the rapid spread of the SARS-CoV-2 Omicron variant: A prospective cohort study. Front Psychiatry. 2022;13:1018391. doi: 10.3389/fpsyt.2022.1018391

 

  1. Janik E, Niemcewicz M, Podogrocki M, Majsterek I, Bijak M. The emerging concern and interest SARS-CoV-2 variants. Pathogens. 2021;10(6):633. doi: 10.3390/pathogens10060633

 

  1. Hattab D, Amer MFA, Al-Alami ZM, Bakhtiar A. SARS-CoV-2 journey: From alpha variant to omicron and its sub-variants. Infection. 2024;52(3):767-786. doi: 10.1007/s15010-024-02223-y

 

  1. Andre M, Lau LS, Pokharel MD, et al. From alpha to omicron: How different variants of concern of the SARS-Coronavirus-2 impacted the world. Biology (Basel). 2023;12(9):1267. doi: 10.3390/biology12091267

 

  1. Thakur S, Sasi S, Pillai SG, et al. SARS-CoV-2 mutations and their impact on diagnostics, therapeutics and vaccines. Front Med (Lausanne). 2022;9:815389. doi: 10.3389/fmed.2022.815389

 

  1. Hirabara SM, Serdan TDA, Gorjao R, et al. SARS-COV-2 Variants: Differences and potential of immune evasion. Front Cell Infect Microbiol. 2021;11:781429. doi: 10.3389/fcimb.2021.781429

 

  1. Jabeen M, Shoukat S, Shireen H, Bao Y, Khan A, Abbasi AA. Unraveling the genetic variations underlying virulence disparities among SARS-CoV-2 strains across global regions: Insights from Pakistan. Virol J. 2024;21(1):55. doi: 10.1186/s12985-024-02328-8

 

  1. Telenti A, Hodcroft EB, Robertson DL. The evolution and biology of SARS-CoV-2 variants. Cold Spring Harb Perspect Med. 2022;12(5):a041390. doi: 10.1101/cshperspect.a041390

 

  1. Kim H, Webster RG, Webby RJ. Influenza virus: Dealing with a drifting and shifting pathogen. Viral Immunol. 2018;31(2):174-183. doi: 10.1089/vim.2017.0141

 

  1. Burrell CJ, Howard CR, Murphy FA. Chapter 2 - Classification of viruses and phylogenetic relationships. In: Burrell CJ, Howard CR, Murphy FA, editors. Fenner and White’s Medical Virology. 5th ed. United States: Academic Press; 2017. p. 15-25.

 

  1. Moya A, Holmes EC, González-Candelas F. The population genetics and evolutionary epidemiology of RNA viruses. Nat Rev Microbiol. 2004;2(4):279-288. doi: 10.1038/nrmicro863

 

  1. Geretti AM. HIV-1 subtypes: Epidemiology and significance for HIV management. Curr Opin Infect Dis. 2006;19(1):1-7. doi: 10.1097/01.qco.0000200293.45532.68

 

  1. Nastri BM, Pagliano P, Zannella C, et al. HIV and drug-resistant subtypes. Microorganisms. 2023;11(1):221. doi: 10.3390/microorganisms11010221

 

  1. Santoro MM, Perno CF. HIV-1 genetic variability and clinical implications. ISRN Microbiol. 2013;2013:481314. doi: 10.1155/2013/481314

 

  1. Rambaut A, Posada D, Crandall KA, Holmes EC. The causes and consequences of HIV evolution. Nat Rev Genet. 2004;5(1):52-61. doi: 10.1038/nrg1246

 

  1. Echeverría N, Moratorio G, Cristina J, Moreno P. Hepatitis C virus genetic variability and evolution. World J Hepatol. 2015;7(6):831-845. doi: 10.4254/wjh.v7.i6.831

 

  1. Martinez MA, Franco S. Therapy implications of hepatitis C virus genetic diversity. Viruses. 2020;13(1):41. doi: 10.3390/v13010041

 

  1. Sallam M, Khalil R. Contemporary insights into hepatitis C virus: A comprehensive review. Microorganisms. 2024;12(6):1035. doi: 10.3390/microorganisms12061035

 

  1. Le Guillou-Guillemette H, Vallet S, Gaudy-Graffin C, et al. Genetic diversity of the hepatitis C virus: Impact and issues in the antiviral therapy. World J Gastroenterol. 2007;13(17):2416-2426. doi: 10.3748/wjg.v13.i17.2416

 

  1. Wu NC, Wilson IA. Influenza hemagglutinin structures and antibody recognition. Cold Spring Harb Perspect Med. 2020;10(8):a038778. doi: 10.1101/cshperspect.a038778

 

  1. Wu NC, Wilson IA. A perspective on the structural and functional constraints for immune evasion: Insights from influenza virus. J Mol Biol. 2017;429(17):2694-2709. doi: 10.1016/j.jmb.2017.06.015

 

  1. Faraji N, Zeinali T, Joukar F, et al. Mutational dynamics of SARS-CoV-2: Impact on future COVID-19 vaccine strategies. Heliyon. 2024;10(9):e30208. doi: 10.1016/j.heliyon.2024.e30208

 

  1. Ma KC, Shirk P, Lambrou AS, et al. Genomic surveillance for SARS-CoV-2 variants: circulation of omicron lineages - United States, January 2022-May 2023. MMWR Morb Mortal Wkly Rep. 2023;72(24):651-656. doi: 10.15585/mmwr.mm7224a2

 

  1. Ma KC, Castro J, Lambrou AS, et al. Genomic surveillance for SARS-CoV-2 variants: Circulation of omicron XBB and JN.1 lineages - United States, May 2023-September 2024. MMWR Morb Mortal Wkly Rep. 2024;73(42):938-945. doi: 10.15585/mmwr.mm7342a1

 

  1. Grabowski F, Preibisch G, Giziński S, Kochańczyk M, Lipniacki T. SARS-CoV-2 variant of concern 202012/01 has about twofold replicative advantage and acquires concerning mutations. Viruses. 2021;13(3):392. doi: 10.3390/v13030392

 

  1. Havasi A, Visan S, Cainap C, Cainap SS, Mihaila AA, Pop LA. Influenza A, influenza B, and SARS-CoV-2 similarities and differences - a focus on diagnosis. Front Microbiol. 2022;13:908525. doi: 10.3389/fmicb.2022.908525

 

  1. Gruell H, Vanshylla K, Korenkov M, et al. SARS-CoV-2 Omicron sublineages exhibit distinct antibody escape patterns. Cell Host Microbe. 2022;30(9):1231-1241.e6. doi: 10.1016/j.chom.2022.07.002

 

  1. Stefic K, Bouvin-Pley M, Braibant M, Barin F. Impact of HIV-1 diversity on its sensitivity to neutralization. Vaccines (Basel). 2019;7(3):74. doi: 10.3390/vaccines7030074

 

  1. van de Sandt CE, Kreijtz JH, Rimmelzwaan GF. Evasion of influenza A viruses from innate and adaptive immune responses. Viruses. 2012;4(9):1438-1476. doi: 10.3390/v4091438

 

  1. Nuwarda RF, Alharbi AA, Kayser V. An overview of influenza viruses and vaccines. Vaccines (Basel). 2021;9(9):1032. doi: 10.3390/vaccines9091032

 

  1. Santiago GA, Volkman HR, Flores B, et al. SARS-CoV-2 omicron replacement of delta as predominant variant, Puerto Rico. Emerg Infect Dis. 2023;29(4):855-857. doi: 10.3201/eid2904.221700

 

  1. Zhao H, Han K, Gao C, et al. VOC-alarm: Mutation-based prediction of SARS-CoV-2 variants of concern. Bioinformatics. 2022;38(14):3549-3556. doi: 10.1093/bioinformatics/btac370

 

  1. Salehi-Vaziri M, Fazlalipour M, Seyed Khorrami SM, et al. The ins and outs of SARS-CoV-2 variants of concern (VOCs). Arch Virol. 2022;167(2):327-344. doi: 10.1007/s00705-022-05365-2

 

  1. Tegally H, Wilkinson E, Tsui JL, et al. Dispersal patterns and influence of air travel during the global expansion of SARS-CoV-2 variants of concern. Cell. 2023;186(15):3277-3290.e16. doi: 10.1016/j.cell.2023.06.001

 

  1. Chen S, Guo L, Xie Y, et al. Government responses to the COVID-19 pandemic of the Gulf Cooperation Council countries: Good practices and lessons for future preparedness. Glob Health Res Policy. 2024;9(1):10. doi: 10.1186/s41256-024-00349-y

 

  1. Kisa S, Kisa A. A comprehensive analysis of COVID-19 misinformation, public health impacts, and communication strategies: Scoping review. J Med Intern Res. 2024;26:e56931. doi: 10.2196/56931

 

Share
Back to top
Microbes & Immunity, Electronic ISSN: 3029-2883 Print ISSN: 3041-0886, Published by AccScience Publishing