Immune responses in pulmonary tuberculosis: A concise review

Pulmonary tuberculosis (PTB) caused by Mycobacterium tuberculosis (MTB), remains a major global health concern due to its high morbidity and mortality rates, especially in resource-limited settings. The pathophysiology of tuberculosis (TB) is characterized by complex interactions between the human host immune system and the pathogen. Alveolar macrophages are especially vulnerable targets of MTB, triggering a cascade of pro-inflammatory and anti-inflammatory responses that either contain the infection or facilitate progression to active disease. In addition, recent advances in immunopathology have highlighted the roles of cytokine networks, T-cell responses, and immune checkpoints in disease progression. A deeper understanding of TB pathophysiology has significant implications for clinical management and research. It aids in the development of novel diagnostic biomarkers, host-directed therapies, and more effective vaccine strategies. Emerging therapeutic approaches focus on modulating the immune response to enhance MTB clearance while minimizing tissue damage. Moreover, drug-resistant TB strains pose a growing challenge, necessitating research into host-pathogen interactions that could lead to more effective treatment strategies. This review provides a concise examination of the key mechanisms underlying PTB, emphasizing recent scientific advancements and their relevance for clinicians and researchers. By bridging the gap between basic science and clinical application, this work aims to contribute to the ongoing efforts to improve TB control and patient outcomes.
- World Health Organization. Global Tuberculosis Report 2023. Geneva. World Health Organization; 2023.
- Flynn JL, Chan J. Immune cell interactions in tuberculosis. Cell. 2022;185(25):4682-4702. doi: 10.1016/j.cell.2022.10.025
- Knechel NA. Tuberculosis: Pathophysiology, clinical features, and diagnosis. Crit Care Nurse. 2009;29(2):34-43; quiz 44 doi: 10.4037/ccn2009968
- Alderwick LJ, Harrison J, Lloyd GS, Birch HL. The mycobacterial cell wall--peptidoglycan and arabinogalactan. Cold Spring Harb Perspect Med. 2015;5(8):a021113. doi: 10.1101/cshperspect.a021113
- Joe M, Bai Y, Nacario RC, Lowary TL. Synthesis of the docosanasaccharide arabinan domain of mycobacterial arabinogalactan and a proposed octadecasaccharide biosynthetic precursor. J Am Chem Soc. 2007;129(32):9885-9901. doi: 10.1021/ja072892
- Fonseca-Santos J. Tuberculosis in children. Eur J Radiol. 2005;55(2):202-208. doi: 10.1016/j.ejrad.2005.05.001
- Maison DP. Tuberculosis pathophysiology and anti- VEGF intervention. J Clin Tuberc Other Mycobact Dis. 2022;27:100300. doi: 10.1016/j.jctube.2022.100300
- Jensen PA, Lambert LA, Iademarco MF, Centers for disease control and prevention. Guidelines for preventing the transmission of Mycobacterium tuberculosis in health-care settings 2005. MMWR Recomm Rep. 2005;54(RR-17):1-141.
- Nicod LP. Immunology of tuberculosis. Swiss Med Wkly. 2007;137(25-26):357-362. doi: 10.4414/smw.2007.11499
- Dorhoi A, Nouailles G, Jörg S, et al. Activation of the NLRP3 inflammasome by Mycobacterium tuberculosis is uncoupled from susceptibility to active tuberculosis. Eur J Immunol. 2012;42(2):374-384. doi: 10.1002/eji.201141548
- Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20(13):3328. doi: 10.3390/ijms20133328
- Tiwari D, Martineau AR. Inflammation-mediated tissue damage in pulmonary tuberculosis and host-directed therapeutic strategies. Semin Immunol. 2023;65:101672. doi: 10.1016/j.smim.2022.101672
- Rajaram MV, Ni B, Dodd CE, Schlesinger LS. Macrophage immunoregulatory pathways in tuberculosis. Semin Immunol. 2014;26(6):471-485. doi: 10.1016/j.smim.2014.09.010
- Patel A, Nguyen L, Shea C, Singh S, Venketaraman V. The role of mTOR in Mycobacterium tuberculosis infection. Biomedicines. 2024;12(10):2238. doi: 10.3390/biomedicines12102238
- Kim TS, Jin YB, Kim YS, et al. SIRT3 promotes antimycobacterial defenses by coordinating mitochondrial and autophagic functions. Autophagy. 2019;15(8):1356-1375. doi: 10.1080/15548627.2019.1582743
- Griffiths HR, Gao D, Pararasa C. Redox regulation in metabolic programming and inflammation. Redox Biol. 2017;12:50-57. doi: 10.1016/j.redox.2017.01.023
- Newton GL, Fahey RC. Mycothiol biochemistry. Arch Microbiol. 2002;178(6):388-394. doi: 10.1007/s00203-002-0469-4
- Mehta M, Singh A. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis and survival in response to reactive oxygen and nitrogen species. Free Radic Biol Med. 2019;131:50-58. doi: 10.1016/j.freeradbiomed.2018.11.032
- Saini V, Farhana A, Steyn AJC. Mycobacterium tuberculosis WhiB3: A novel iron-sulfur cluster protein that regulates redox homeostasis and virulence. Antioxid Redox Signal. 2012;16:687-697. doi: 10.1089/ars.2011.4341
- Lin K, O’Brien KM, Trujillo C, et al. Mycobacterium tuberculosis thioredoxin reductase is essential for thiol redox homeostasis but plays a minor role in antioxidant defense. PLoS Pathog. 2016;12(6):e1005675. doi: 10.1371/journal.ppat.1005675
- Roberts DM, Liao RP, Wisedchaisri G, Hol WG, Sherman DR. Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis. J Biol Chem. 2004;279(22):23082-23087. doi: 10.1074/jbc.M401230200
- Shiloh MU, Manzanillo P, Cox JS. Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection. Cell Host Microbe. 2008;3(5):323-330. doi: 10.1016/j.chom.2008.03.007
- Evalkar RR, Glasgow JN, Pettinati M, et al. Mycobacterium tuberculosis DosS binds H2S through its Fe3+ heme iron to regulate the DosR dormancy regulon. Redox Biol. 2022;52:102316. doi: 10.1016/j.redox.2022.102316
- Bretl DJ, Demetriadou C, Zahrt TC. Adaptation to environmental stimuli within the host: Two-component signal transduction systems of Mycobacterium tuberculosis. Microbiol Mol Biol Rev. 2011;75(4):566-582. doi: 10.1128/MMBR.05004-11
- Rickman L, Saldanha JW, Hunt DM, et al. A two-component signal transduction system with a PAS domain-containing sensor is required for virulence of Mycobacterium tuberculosis in mice. Biochem Biophys Res Commun. 2004;314(1):259-267. doi: 10.1016/j.bbrc.2003.12.082
- Ma C, Wu X, Zhang X, Liu X, Deng G. Heme oxygenase-1 modulates ferroptosis by fine-tuning levels of intracellular iron and reactive oxygen species of macrophages in response to Bacillus Calmette-Guerin infection. Front Cell Infect Microbiol. 2022;12:1004148. doi: 10.3389/fcimb.2022.1004148
- Vanden Driessche K, Persson A, Marais BJ, Fink PJ, Urdahl KB. Immune vulnerability of infants to tuberculosis. Clin Dev Immunol. 2013;2013:781320. doi: 10.1155/2013/781320
- Donald PR, Marias BJ, Barry CE 3rd. Age and the epidemiology and pathogenesis of tuberculosis. Lancet. 2010;375(9729):1852-1854. doi: 10.1016/S0140-6736(10)60580-6
- Domingo-Gonzalez R, Prince O, Cooper A, Khader SA. Cytokines and chemokines in Mycobacterium tuberculosis infection. Microbiol Spectr. 2016;4(5):1-37. doi: 10.1128/microbiolspec.TBTB2-0018-2016
- Reid PT, Innes JA. Infections of the upper respiratory tract. In: Colledge NR, Walker BR, Ralston SH. Davidson’s Principles and Practice of Medicine. Edinburgh, UK: Elsevier Churchill Livingstone; 2010. p. 688-696.
- Dheda K, Booth H, Huggett JF, Johnson MA, Zumla A, Rook GA. Lung remodeling in pulmonary tuberculosis. J Infect Dis. 2005;192(7):1201-1210. doi: 10.1086/444545
- Meng C, Chen G, Wen D, et al. The expression of Nramp1 modulates the uptake of Mycobacterium tuberculosis by macrophages through alternating inflammatory responses. Tuberculosis (Edinb). 2023;143:102414. doi: 10.1016/j.tube.2023.102414
- Ravimohan S, Kornfeld H, Weismann D, Bisson GP. Tuberculosis and lung damage: From epidemiology to pathophysiology. Eur Respir Rev. 2018;27(147):170077. doi: 10.1183/16000617.0077-2017
- Kiazyk S, Ball TB. Latent tuberculosis infection: An overview. Can Commun Dis Rep. 2017;43(3-4):62-66. doi: 10.14745/ccdr.v43i34a01
- Hur GY, Kang YA, Jang SH, et al. Adjunctive biomarkers for improving diagnosis of tuberculosis and monitoring therapeutic effects. J Infect. 2015;70(4):346-355. doi: 10.1016/j.jinf.2014.10.019
- Trivedi A, Reed HO. The lymphatic vasculature in lung function and respiratory disease. Front Med (Lausanne). 2023;10:1118583. doi: 10.3389/fmed.2023.1118583
- Lyon SM, Rossman MD. Pulmonary tuberculosis. Microbiol Spectr. 2017;5(1):10. doi: 10.1128/microbiolspec.tnmi7-0032-2016
- Cruz AT, Starke JR. Clinical manifestations of tuberculosis in children. Paediatr Respir Rev. 2007;8(2):107-117. doi: 10.1016/j.prrv.2007.04.008
- Brändli O. The clinical presentation of tuberculosis. Respiration. 1998;65(2):97-105. doi: 10.1159/000029238
- MacMicking JD, Nathan C, Hom G, et al. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell. 1995;81(4):641-650. doi: 10.1016/0092-8674(95)90085-3
- Scanga CA, Mohan VP, Joseph H, Yu K, Chan J, Flynn JL. Reactivation of latent tuberculosis: Variations on the Cornell murine model. Infect Immun. 1999;67(9):4531-4538. doi: 10.1128/IAI.67.9.4531-4538.1999
- Malherbe ST, Shenai S, Ronacher K, et al. Persisting positron emission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure. Nat Med. 2016;22(10):1094-1100. doi: 10.1038/nm.4177
- Harbut MB, Vilchèze C, Luo X, et al. Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis. Proc Natl Acad Sci USA. 2015;112(14):4453-4458. doi: 10.1073/pnas.1504022112
- World Health Organization. Consolidated Guidelines on Tuberculosis. Module 4: Treatment and Care. Geneva: World Health Organization; 2025.