Simulating the blood-brain barrier by using artificial membranes, multicellular culturing systems, and high-tech applications
Background: The blood-brain barrier (BBB) is an intricate structure of the vascular endothelium that regulates trafficking required for cerebral homeostasis via tightly regulated influx and efflux transport mechanisms. It also performs a critical function in mediating communication between the periphery and the central nervous system (CNS). The BBB is designed to maintain a precisely regulated microenvironment conducive to normal neuronal activity. The development of in vitro BBB models has been driven by the need for a fast, reliable, and cost-effective tool to study the complexities of the BBB and to screen potential CNS drugs. Aim: This review provides readers with a concise yet comprehensive introduction to the fundamental histology of the BBB. This background is essential for interpreting model design constraints and limitations in BBB simulation. Following that, we thoroughly examine in vitro models, providing a comprehensive analysis of their applications and the equations used to assess specific BBB parameters. Relevance for patients: From a translational and clinical perspective, in vitro models of the BBB have the potential to provide novel insights into brain pathophysiology under adverse conditions, including brain tumors, traumatic injuries, strokes, and neurodegenerative disorders, and ultimately aid in the discovery of effective treatment strategies.

- Paul SM, Mytelka DS, Dunwiddie CT, et al. How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010;9(3):203-214. doi: 10.1038/nrd3078
- Ridley H. The Anatomy of the Brain; Containing its Mechanism and Physiology, Together with some New Discoveries and Corrections of Ancient and Modern Authors upon that Subject. To which is Annex’d a Particular Account of Animal Functions and Muscular Motion. London: Printed for Sam. Smith and Benj. Walford; 1973.
- Liddelow SA. Fluids and barriers of the CNS: A historical viewpoint. Fluids Barriers CNS. 2011;8(1):2. doi: 10.1186/2045-8118-8-2
- Ehrlich P. Das Sauerstoff-Bedürfniss des Organismus: Eine Farbenanalytische Studie. Berlin: A. Hirschwald; 1885.
- Barichello T, Collodel A, Hasbun R, Morales R. Blood-Brain Barrier. 1st ed. Berlin: Springer; 2019. doi: 10.1007/978-1-4939-8946-1
- Goldmann EE. Die äussere und innere skeretion des gesunden Organismus im Lichte der “Vitalen Färbung”. [The external and internal skeretion of the healthy organism in the light of the “Vital Colouring”]. Beiträge zur klinischen Chirurgie: Mittheilungen aus der chirurgischen Klinik zu Tübingen [Contributions to Clinical Surgery: Reports from the Surgical Clinic in Tübingen]. 1909.
- Reese T, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 1967;34(1):207-217. doi: 10.1083/jcb.34.1.207
- Banks WA, Erickson MA. The blood–brain barrier and immune function and dysfunction. Neurobiol Dis. 2010;37(1):26-32. doi: 10.1016/j.nbd.2009.07.031
- Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. 2015;20:107-126. doi: 10.1177/2211068214561025
- Lalatsa A, Butt AM. Physiology of the blood-brain barrier and mechanisms of transport across the BBB. In: Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors. Amsterdam: Elsevier; 2018. p. 49-74. doi: 10.1016/B978-0-12-812218-1.00003-8
- Stamatovic SM, Johnson AM, Keep RF, Andjelkovic AV. Junctional proteins of the blood-brain barrier: New insights into function and dysfunction. Tissue Barriers. 2016;4:e1154641. doi: 10.1080/21688370.2016.1154641
- Vorbrodt AW, Dobrogowska DH. Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: Electron microscopist’s view. Brain Res Rev. 2003;42:221-242. doi: 10.1016/s0165-0173(03)00177-2
- Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol. 1999;147(6):1351-1363. doi: 10.1083/jcb.147.6.1351
- Bhat AA, Uppada S, Achkar IW, et al. Tight junction proteins and signaling pathways in cancer and inflammation: A functional crosstalk. Front Physiol. 2019;9:1942. doi: 10.3389/fphys.2018.01942
- Cording J, Berg J, Käding N, et al. In tight junctions, claudins regulate the interactions between occludin, tricellulin and marvelD3, which, inversely, modulate claudin oligomerization. J Cell Sci. 2013;126(2):554-564. doi: 10.1242/jcs.114306
- Buschmann MM, Shen L, Rajapakse H, et al. Occludin OCEL-domain interactions are required for maintenance and regulation of the tight junction barrier to macromolecular flux. Mol Biol Cell. 2013;24:3056-3068. doi: 10.1091/mbc.E12-09-0688
- Mariano C, Palmela I, Pereira PF, Fernandes A. Tricellulin expression in brain endothelial and neural cells. Cell Tissue Res. 2012;351:397-407. doi: 10.1007/s00441-012-1529-y
- Abdullahi W, Tripathi D, Ronaldson PT. Blood-brain barrier dysfunction in ischemic stroke: Targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol. 2018;315:C343-C356. doi: 10.1152/ajpcell.00095.2018
- Jia W, Martin TA, Zhang G, Jiang WG. Junctional adhesion molecules in cerebral endothelial tight junction and brain metastasis. Anticancer Res. 2013;33(6):2353-2359.
- Raleigh DR, Marchiando AM, Zhang Y, et al. Tight junction– associated MARVEL proteins MarvelD3, tricellulin, and occludin have distinct but overlapping functions. Mol Biol Cell. 2010;21:1200-1213. doi: 10.1091/mbc.e09-08-0734
- Steed E, Rodrigues NTL, Balda MS, Matter K. Identification of MarvelD3 as a tight junction-associated transmembrane protein of the occludin family. BMC Cell Biol. 2009;10:95. doi: 10.1186/1471-2121-10-95
- Crosby CV, Fleming PA, Argraves WS, et al. VE-cadherin is not required for the formation of nascent blood vessels but acts to prevent their disassembly. Blood. 2005;105:2771-2776. doi: 10.1182/blood-2004-06-2244
- Tietz S, Engelhardt B. Brain barriers: Crosstalk between complex tight junctions and adherens junctions. J Cell Biol. 2015;209:493-506. doi: 10.1083/jcb.201412147
- Liebner S, Corada M, Bangsow T, et al. Wnt/β-catenin signaling controls development of the blood-brain barrier. J Cell Biol. 2008;183:409-417. doi: 10.1083/jcb.200806024
- Takai Y, Irie K, Shimizu K, Sakisaka T, Ikeda W. Nectins and nectinsels but acts to Roles in cell adhesion, migration, and polarization. Cancer Sci. 2003;94:655-667. doi: 10.1111/j.1349-7006.2003.tb01499.x
- Kandouz M, Batist G. Gap junctions and connexins as therapeutic targets in cancer. Expert Opin Ther Targets. 2010;14:681-692. doi: 10.1517/14728222.2010.487866
- Mathias RT, White TW, Gong X. Lens gap junctions in growth, differentiation, and homeostasis. Physiol Rev. 2010;90:179-206. doi: 10.1152/physrev.00034.2009
- González-Mariscal L, Betanzos A, Ávila-Flores A. MAGUK proteins: Structure and role in the tight junction. Semin Cell Dev Biol. 2000;11:315. doi: 10.1006/scdb.2000.0178
- Yao Y, Chen ZL, Norris EH, Strickland S. Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat Commun. 2014;5(1):3413. doi: 10.1038/ncomms4413
- Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013;19(12):1584. doi: 10.1038/nm.3407
- Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-brain barrier: From physiology to disease and back. Physiol Rev. 2019;99(1):21-78. doi: 10.1152/physrev.00050.2017
- Mancuso MR, Kuhnert F, Kuo CJ. Developmental angiogenesis of the central nervous system. Lymphat Res Biol. 2008;6(3-4):173-180. doi: 10.1089/lrb.2008.1014
- Wang Y, Chang H, Rattner A, Nathans J. Frizzled receptors in development and disease. Curr Top Dev Biol. 2016;117:113-139. doi: 10.1016/bs.ctdb.2015.11.028
- Briscoe J, Thérond PP. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol. 2013;14(7):416-429. doi: 10.1038/nrm3598
- Gozal E, Jagadapillai R, Cai J, Barnes GN. Potential crosstalk between sonic hedgehogment and disease. r. n barrier integrity. the occlations for blood-brain barrier integrity in autism spectrum disorder. J Neurochem. 2021;159(1):15-28. doi: 10.1111/jnc.15081
- Xu L, Nirwane A, Yao Y. Basement membrane and blood– brain barrier. Stroke Vasc Neurol. 2019;4:78-82. doi: 10.1136/svn-2018-000198
- Richter JR, Sanderson RD. The glycocalyx: Pathobiology and repair. Matrix Biol Plus. 2023;17:100128. doi: 10.1016/j.mbplus.2023.100128
- Ando Y, Okada H, Takemura G, et al. Brain-specific ultrastructure of capillary endothelial glycocalyx and its possible contribution for blood brain barrier. Sci Rep. 2018;8(1):17523. doi: 10.1038/s41598-018-35976-2
- Kutuzov N, Flyvbjerg H, Lauritzen M. Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood-brain barrier. Proc Natl Acad Sci U S A. 2018;115(40):E9429-E9438. doi: 10.1073/pnas.1802155115
- Suzuki A, Tomita H, Okada H. Form follows function: The endothelial glycocalyx. Transl Res. 2022;247:158-167. doi: 10.1016/j.trsl.2022.03.014
- Zhao F, Zhong L, Luo Y. Endothelial glycocalyx as an important factor in composition of blood‐brain barrier. CNS Neurosci Ther. 2021;27(1):26-35. doi: 10.1111/cns.13560
- Du F, Shusta EV, Palecek SP. Extracellular matrix proteins in construction and function of in vitro blood-brain barrier models. Front Chem Eng. 2023;5:1130127. doi: 10.3389/fceng.2023.1130127
- Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979;254(19):9933-9937.
- Aumailley M. Chapter 11 - Isolation and analysis of laminins. Methods Cell Biol. 2018;143:187-205. doi: 10.1016/bs.mcb.2017.08.011
- Yao Y. Basement membrane and stroke. J Cereb Blood Flow Metab. 2019;39(1):3-19. doi: 10.1177/0271678X18801467
- Gautam J, Zhang X, Yao Y. The role of pericytic laminin in blood brain barrier integrity maintenance. Sci Rep. 2016;6:36450. doi: 10.1038/srep36450
- Kühn K. Basement membrane (type IV) collagen. Matrix Biol. 1995;14(6):439-445. doi: 10.1016/0945-053X(95)90001-2
- Kalluri R. Basement membranes: Structure, assembly and role in tumour angiogenesis. Nat Rev Cancer. 2003;3:422. doi: 10.1038/nrc1094
- Kangwantas K, Pinteaux E, Penny J. The extracellular matrix protein laminin-10 promotes blood–brain barrier repair after hypoxia and inflammation in vitro. J Neuroinflammation. 2016;13:25. doi: 10.1186/s12974-016-0495-9
- Gautam J, Xu L, Nirwane A, Nguyen B, Yao Y. Loss of mural cell-derived laminin aggravates hemorrhagic brain injury. J Neuroinflammation. 2020;17(1):103. doi: 10.1186/s12974-020-01788-3
- Halder SK, Kant R, Milner R. Chronic mild hypoxia increases expression of laminins 111 and 411 and the laminin receptor α6β1 integrin at the blood-brain barrier. Brain Res. 2018;1700:78-85. doi: 10.1016/j.brainres.2018.07.012
- Jeanne M, Jorgensen J, Gould DB. Molecular and genetic analyses of collagen type IV mutant mouse models of spontaneous intracerebral hemorrhage identify mechanisms for stroke prevention. Circulation. 2015;131(18):1555-1565. doi: 10.1161/CIRCULATIONAHA.114.013395
- Roberts J, Kahle M, Bix G. Perlecan and the blood-brain barrier: Beneficial proteolysis? Mini review. Front Pharmacol. 2012;3:155. doi: 10.3389/fphar.2012.00155
- Huang J, Li J, Feng C, et al. Blood-brain barrier damage as the starting point of leukoaraiosis caused by cerebral chronic hypoperfusion and its involved mechanisms: Effect of agrin and aquaporin-4. Biomed Res Int. 2018;2018:2321797. doi: 10.1155/2018/2321797
- Bader BL, Smyth N, Nedbal S, et al. Compound genetic ablation of nidogen 1 and 2 causes basement membrane defects and perinatal lethality in mice. Mol Cell Biol. 2005;25(15):6846-6856. doi: 10.1128/mcb.25.15.6846-6856.2005
- Kohfeldt E, Sasaki T, Göhring W, Timpl R. Nidogen-2: A new basement membrane protein with diverse binding properties11Edited by I. B. Holland. J Mol Biol. 1998;282(1):99-109. doi: 10.1006/jmbi.1998.2004
- Iozzo RV. Basement membrane proteoglycans: from cellar to ceiling. Nat Rev Mol Cell Biol. 2005;6:646. doi: 10.1038/nrm1702
- Bezakova G, Ruegg MA. New insights into the roles of agrin. Nat Rev Mol Cell Biol. 2003;4(4):295-309. doi: 10.1038/nrm1074
- Rani V, Venkatesan J, Prabhu A. D-limonene-loaded liposomes target malignant glioma cells via the downregulation of angiogenic growth factors. J Drug Deliv Sci Technol. 2023;82:104358. doi: 10.1016/j.jddst.2023.104358
- Leo A, Hansch C, Elkins D. Partition coefficients and their uses. Chem Rev. 1971;71(6):525-616. doi: 10.1021/cr60274a001
- Pardridge WM. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx. 2005;2(1):3-14. doi: 10.1602/neurorx.2.1.3
- Abraham MH, Chadha HS, Mitchell RC. Hydrogen bonding. 33. Factors that influence the distribution of solutes between blood and brain. J Pharm Sci. 1994;83(9):1257-1268. doi: 10.1002/jps.2600830915
- Gratton JA, Abraham MH, Bradbury MW, Chadha HS. Molecular factors influencing drug transfer across the blood‐brain barrier. J Pharm Pharmacol. 1997;49(12):1211-1216. doi: 10.1111/j.2042-7158.1997.tb06072.x
- Kelder J, Grootenhuis PD, Bayada DM, Delbressine LP, Ploemen JP. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res. 1999;16(10):1514-1519. doi: 10.1023/a:1015040217741
- Muehlbacher M, Spitzer GM, Liedl KR, Kornhuber J. Qualitative prediction of blood-brain barrier permeability on a large and refined dataset. J Comput Aided Mol Des. 2011;25(12):1095-1106. doi: 10.1007/s10822-011-9478-1
- Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx. 2005;2(4):541-553. doi: 10.1602/neurorx.2.4.541
- Cecchelli R, Berezowski V, Lundquist S, et al. Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov. 2007;6:650-661. doi: 10.1038/nrd2368
- Warren MS, Zerangue N, Woodford K, et al. Comparative gene expression profiles of ABC transporters in brain microvessel endothelial cells and brain in five species including human. Pharmacol Res. 2009;59:404-413. doi: 10.1016/j.phrs.2009.02.007
- Aliakbari F, Mohammad-Beigi H, Abbasi S, et al. Multiple protective roles of nanoliposome‐incorporated baicalein against alpha‐synuclein aggregates. Adv Funct Mater. 2021;31(7):2007765. doi: 10.1002/adfm.202007765
- Parsafar S, Aliakbari F, Seyedfatemi SS, et al. Insights into the inhibitory mechanism of skullcapflavone II against α-synuclein aggregation and its mediated cytotoxicity. Int J Biol Macromol. 2022;209:426-440. doi: 10.1016/j.ijbiomac.2022.03.092
- Carpenter TS, Kirshner DA, Lau EY, Wong SE, Nilmeier JP, Lightstone FC. A method to predict blood-brain barrier permeability of drug-like compounds using molecular dynamics simulations. Biophys J. 2014;107(3):630-641. doi: 10.1016/j.bpj.2014.06.024
- Appelt-Menzel A, Cubukova A, Günther K, et al. Establishment of a human blood-brain barrier co-culture model mimicking the neurovascular unit using induced pluri-and multipotent stem cells. Stem Cell Rep. 2017;8(4):894-906. doi: 10.1016/j.stemcr.2017.02.021
- Cecchelli R, Dehouck B, Descamps L, et al. In vitro model for evaluating drug transport across the blood-brain barrier. Adv Drug Deliv Rev. 1999;36:165-178. doi: 10.1016/S0169-409X(98)00083-0
- Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32:760-772. doi: 10.1038/nbt.2989
- Campbell SD, Regina KJ, Kharasch ED. Significance of lipid composition in a blood-brain barrier-mimetic PAMPA assay. J Biomol Screen. 2014;19(3):437-444. doi: 10.1177/1087057113497981
- He L, Wang S, Yang G, et al. Progress in cell membrane chromatography. Drug Discov Ther. 2007;1(2):104-107.
- Wilhelm I, Nyúl-Tóth Á, Suciu M, Hermenean A, Krizbai IA. Heterogeneity of the blood-brain barrier. Tissue Barriers. 2016;4(1):e1143544. doi: 10.1080/21688370.2016.1143544
- DeStefano JG, Jamieson JJ, Linville RM, Searson PC. Benchmarking in vitro tissue-engineered blood–brain barrier models. Fluids Barriers CNS. 2018;15(1):1-15. doi: 10.1186/s12987-018-0117-2
- Wilhelm I, Krizbai IA. In vitro models of the blood–brain barrier for the study of drug delivery to the brain. Mol Pharm. 2014;11:1949-1963. doi: 10.1021/mp500046f
- Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood‐brain barrier in anaesthetized rats: A developmental study. J Physiol. 1990;429:47-62. doi: 10.1113/jphysiol.1990.sp018243
- Hodgkin AL, Katz B. The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol. 1949;108(1):37. doi: 10.1113/jphysiol.1949.sp004310
- Martin AR. Quantal nature of synaptic transmission. Physiological reviews. 1966;46(1):51-66. doi: 10.1152/PHYSREV.1966.46.1.51
- Crone C, Olesen S. Electrical resistance of brain microvascular endothelium. Brain Res. 1982;241(1):49-55. doi: 10.1016/0006-8993(82)91227-6
- Erickson MA, Wilson ML, Banks WA. In vitro modeling of blood-brain barrier and interface functions in neuroimmune communication. Fluids Barriers CNS. 2020;17(1):26. doi: 10.1186/s12987-020-00187-3
- Ahishali B, Kaya M. Evaluation of blood-brain barrier integrity using vascular permeability markers: Evans blue, sodium fluorescein, albumin-alexa fluor conjugates, and horseradish peroxidase. Methods Mol Biol. 2021;2367:87-103. doi: 10.1007/7651_2020_316
- Hourfar H, Aliakbari F, Aqdam SR, et al. The impact of α-synuclein aggregates on blood-brain barrier integrity in the presence of neurovascular unit cells. Int J Biol Macromol. 2023;229:305-320. doi: 10.1016/j.ijbiomac.2022.12.134
- Betz AL, Firth JA, Goldstein GW. Polarity of the blood-brain barrier: Distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res. 1980;192(1):17-28. doi: 10.1016/0006-8993(80)91004-5
- Santaguida S, Janigro D, Hossain M, Oby E, Rapp E, Cucullo L. Side by side comparison between dynamic versus static models of blood–brain barrier in vitro: A permeability study. Brain Res. 2006;1109(1):1-13. doi: 10.1016/j.brainres.2006.06.027
- Assmann JC, Muller K, Wenzel J, Walther T, Brands J, Thornton P. Isolation and cultivation of primary brain endothelial cells from adult mice. Bio Protoc. 2017;7(10):e2294. doi: 10.21769/BioProtoc.2294
- Mizee MR, Miedema SS, van der Poel M, et al. Isolation of primary microglia from the human post-mortem brain: Effects of ante-and post-mortem variables. Acta Neuropathol Commun. 2017;5(1):16. doi: 10.1186/s40478-017-0418-8
- Aubid NN, Liu Y, Vidal JMP, Hall VJ. Isolation and culture of porcine primary fetal progenitors and neurons from the developing dorsal telencephalon. J Vet Sci. 2019;20(2):e3. doi: 10.4142/jvs.2019.20.e3
- Marroni M, Kight KM, Hossain M, Cucullo L, Desai SY, Janigro D. Dynamic in vitro model of the blood-brain barrier. Blood Brain Barrier. 2003;89:419-434. doi: 10.1385/1-59259-419-0:419
- Cucullo L, Hossain M, Rapp E, Manders T, Marchi N, Janigro D. Development of a humanized in vitro blood-brain barrier model to screen for brain penetration of antiepileptic drugs. Epilepsia. 2007;48(3):505-516. doi: 10.1111/j.1528-1167.2006.00960.x
- Sano Y, Shimizu F, Abe M, et al. Establishment of a new conditionally immortalized human brain microvascular endothelial cell line retaining an in vivo blood-brain barrier function. J Cell Physiol. 2010;225(2):519-528. doi: 10.1002/jcp.22232
- Sivandzade F, Cucullo L. In-vitro blood-brain barrier modeling: A review of modern and fast-advancing technologies. J Cereb Blood Flow Metab. 2018;38:1667-1681. doi: 10.1177/0271678X18788769
- Helms HC, Abbott J, Burek M, et al. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab. 2016;36:862-890. doi: 10.1177/0271678X16630991
- Eigenmann DE, Xue G, Kim KS, Moses AV, Hamburger M, Oufir M. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies. Fluids Barriers CNS. 2013;10:33. doi: 10.1186/2045-8118-10-33
- Gomes MJ, Mendes B, Martins S, Sarmento B. Cell-based in vitro models for studying blood–brain barrier (BBB) permeability. In: Concepts and Models for Drug Permeability Studies. Amsterdam: Elsevier; 2016. p. 169-188. doi: 10.1016/B978-0-08-100094-6.00011-0
- Carter M, Shieh J. Chapter 2-animal behavior. In: Guide to Research Techniques in Neuroscience. 2nd ed. San Diego: Academic Press; 2015. p. 39e71.
- Lippmann ES, Al-Ahmad A, Palecek SP, Shusta EV. Modeling the blood-brain barrier using stem cell sources. Fluids Barriers CNS. 2013;10:2. doi: 10.1186/2045-8118-10-2
- Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): Molecular mechanisms of induction and applications. Signal Transduct Target Ther. 2024;9(1):112. doi: 10.1038/s41392-024-01809-0
- Moy AB, Kamath A, Ternes S, Kamath J. The challenges to advancing induced pluripotent stem cell-dependent cell replacement therapy. Med Res Arch. 2023;11(11):4784. doi: 10.18103/mra.v11i11.4784
- Abbott NJ, Dolman DEM, Drndarski S, Fredriksson SM. An improved in vitro blood-brain barrier model: Rat brain endothelial cells co-cultured with astrocytes. Methods Mol Biol. 2012;814:415-430. doi: 10.1007/978-1-61779-452-0_28
- Thomsen LB, Burkhart A, Moos T. A triple culture model of the blood-brain barrier using porcine brain endothelial cells, astrocytes and pericytes. PLoS One. 2015;10:e0134765. doi: 10.1371/journal.pone.0134765
- Patabendige A, Skinner RA, Abbott NJ. Establishment of a simplified in vitro porcine blood–brain barrier model with high transendothelial electrical resistance. Brain Res. 2013;1521:1-15. doi: 10.1016/j.brainres.2012.06.057
- Yu F, Kumar NDOS, Foo LC, Ng SH, Hunziker W, Choudhury D. A pump‐free tricellular blood–brain barrier on‐a‐chip model to understand barrier property and evaluate drug response. Biotechnol Bioeng. 2020;117(4):1127-1136. doi: 10.1002/bit.27260
- Helms HC, Waagepetersen HS, Nielsen CU, Brodin B. Paracellular tightness and claudin-5 expression is increased in the BCEC/astrocyte blood–brain barrier model by increasing media buffer capacity during growth. AAPS J. 2010;12:759-770. doi: 10.1208/s12248-010-9237-6
- Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV. A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Sci Rep. 2014;4:4160. doi: 10.1038/srep04160
- Armulik A, Genové G, Mäe M, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468:557-561. doi: 10.1038/nature09522
- Menon LG, Shi VJ, Carroll RS. Mesenchymal stromal cells as a drug delivery system. In: StemBook. Cambridge: Harvard Stem Cell Institute; 2009. doi: 10.3824/stembook.1.35.1
- Liu L, Eckert MA, Riazifar H, Kang DK, Agalliu D, Zhao W. From blood to the brain: Can systemically transplanted mesenchymal stem cells cross the blood-brain barrier? Stem Cells Int. 2013;2013:435093. doi: 10.1155/2013/435093
- Tian X, Brookes O, Battaglia G. Pericytes from Mesenchymal Stem Cells as a model for the blood-brain barrier. Sci Rep. 2017;7(1):39676. doi: 10.1038/srep39676
- Furihata T, Kawamatsu S, Ito R, et al. Hydrocortisone enhances the barrier properties of HBMEC/ciβ, a brain microvascular endothelial cell line, through mesenchymal-to-endothelial transition-like effects. Fluids Barriers CNS. 2015;12:7. doi: 10.1186/s12987-015-0003-0
- Hoheisel D, Nitz T, Franke H, et al. Hydrocortisone reinforces the blood–brain barrier properties in a serum free cell culture system. Biochem Biophys Res Commun. 1998;244(1):312-316. doi: 10.1006/bbrc.1997.8051
- He Y, Yao Y, Tsirka SE, Cao Y. Cell-culture models of the blood–brain barrier. Stroke. 2014;45:2514-2526. doi: 10.1161/STROKEAHA.114.005427
- Viña D, Seoane N, Vasquez EC, Campos-Toimil M. cAMP compartmentalization in cerebrovascular endothelial cells: New therapeutic opportunities in Alzheimer’s disease. Cells. 2021;10(8):1951. doi: 10.3390/cells10081951
- Vatine GD, Barrile R, Workman MJ, et al. Human iPSC-derived blood-brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell. 2019;24:995-1005.e6. doi: 10.1016/j.stem.2019.05.011
- Kim J, Chung M, Kim S, Jo DH, Kim JH, Jeon NL. Engineering of a biomimetic pericyte-covered 3D microvascular network. PLoS One. 2015;10:e0133880. doi: 10.1371/journal.pone.0133880
- Bang S, Na S, Jang JM, Kim J, Jeon NL. Engineering-aligned 3D neural circuit in microfluidic device. Adv Healthc Mater. 2016;5:159-166. doi: 10.1002/adhm.201500397
- Bang S, Lee SR, Ko J, et al. A low permeability microfluidic blood-brain barrier platform with direct contact between perfusable vascular network and astrocytes. Sci Rep. 2017;7:8083. doi: 10.1038/s41598-017-07416-0
- Marzookian K, Aliakbari F, Hourfar H, Sabouni F, Otzen DE, Morshedi D. The neuroprotective effect of human umbilical cord MSCs-derived secretome against α-synuclein aggregates on the blood-brain barrier. Int J Biol Macromol. 2025;304:140387. doi: 10.1016/j.ijbiomac.2025.140387
- Aliakbari F, Marzookian K, Parsafar S, et al. The impact of hUC MSC-derived exosome-nanoliposome hybrids on α-synuclein fibrillation and neurotoxicity. Sci Adv. 2024;10(14):eadl3406. doi: 10.1126/sciadv.adl3406
- Rohde F, Danz K, Jung N, Wagner S, Windbergs M. Electrospun scaffolds as cell culture substrates for the cultivation of an in vitro blood-brain barrier model using human induced pluripotent stem cells. Pharmaceutics. 2022;14(6):1308. doi: 10.3390/pharmaceutics14061308
- Raeiji M, Morshedi D, Mahmoudifard M. Novel simulation of the blood-brain barrier using the polyacrylonitrile electrospun nanofibrous membrane on 3D-printed Transwell. Polym Adv Technol. 2024;35(4):e6401. doi: 10.1002/pat.6401
- Fazakas C, Wilhelm I, Nagyőszi P, et al. Transmigration of melanoma cells through the blood-brain barrier: Role of endothelial tight junctions and melanoma-released serine proteases. PLoS One. 2011;6:e20758. doi: 10.1371/journal.pone.0020758
- Hatherell K, Couraud PO, Romero IA, Weksler B, Pilkington GJ. Development of a three-dimensional, all-human in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation Transwell models. J Neurosci Methods. 2011;199:223-229. doi: 10.1016/j.jneumeth.2011.05.012
- Cucullo L, Hossain M, Puvenna V, Marchi N, Janigro D. The role of shear stress in Blood-Brain Barrier endothelial physiology. BMC Neurosci. 2011;12:40. doi: 10.1186/1471-2202-12-40
- Gaillard PJ, de Boer AG. Relationship between permeability status of the blood–brain barrier and in vitro permeability coefficient of a drug. Eur J Pharm Sci. 2000;12:95-102. doi: 10.1016/s0928-0987(00)00152-4
- Gastfriend BD, Palecek SP, Shusta EV. Modeling the blood-brain barrier: Beyond the endothelial cells. Curr Opin Biomed Eng. 2018;5:6-12. doi: 10.1016/j.cobme.2017.11.002
- Lindroos B, Aho KL, Kuokkanen H, et al. Differential gene expression in adipose stem cells cultured in allogeneic human serum versus fetal bovine serum. Tissue Eng A. 2010;16:2281-2294. doi: 10.1089/ten.TEA.2009.0621
- Hutamekalin P, Farkas AE, Orbók A, et al. Effect of nicotine and polyaromtic hydrocarbons on cerebral endothelial cells. Cell Biol Int. 2008;32:198-209. doi: 10.1016/j.cellbi.2007.08.026
- Smith M, Omidi Y, Gumbleton M. Primary porcine brain microvascular endothelial cells: Biochemical and functional characterisation as a model for drug transport and targeting. J Drug Target. 2007;15:253-268. doi: 10.1080/10611860701288539
- Rice O, Surian A, Chen Y. Modeling the blood-brain barrier for treatment of central nervous system (CNS) diseases. J Tissue Eng. 2022;13:20417314221095997. doi: 10.1177/20417314221095997
- Berezowski V, Landry C, Lundquist S, et al. Transport screening of drug cocktails through an in vitro blood-brain barrier: Is it a good strategy for increasing the throughput of the discovery pipeline? Pharm Res. 2004;21:756-760. doi: 10.1023/b: pham.0000026424.78528.11
- Naik P, Cucullo L. In vitro blood-brain barrier models: Current and perspective technologies. J Pharm Sci. 2012;101:1337-1354. doi: 10.1002/jps.23022
- Toyoda K, Tanaka K, Nakagawa S, et al. Initial contact of glioblastoma cells with existing normal brain endothelial cells strengthen the barrier function via fibroblast growth factor 2 secretion: A new in vitro blood-brain barrier model. Cell Mol Neurobiol. 2013;33:489-501. doi: 10.1007/s10571-013-9913-z
- Vandenhaute E, Culot M, Gosselet F, et al. Brain pericytes from stress-susceptible pigs increase blood-brain barrier permeability in vitro. Fluids Barriers CNS. 2012;9:11. doi: 10.1186/2045-8118-9-11
- Vandenhaute E, Dehouck L, Boucau MC, et al. Modelling the neurovascular unit and the blood-brain barrier with the unique function of pericytes. Curr Neurovasc Res. 2011;8:258-269. doi: 10.2174/156720211798121016
- Nakagawa S, Deli MA, Kawaguchi H, et al. A new blood– brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int. 2009;54:253-263. doi: 10.1016/j.neuint.2008.12.002
- Zysk G, Schneider-Wald BK, Hwang JH, et al. Pneumolysin is the main inducer of cytotoxicity to brain microvascular endothelial cells caused by Streptococcus pneumoniae. Infect Immun. 2001;69:845-852. doi: 10.1128/IAI.69.2.845-852.2001
- Dehouck MP, M9.2.845-852.2001cer of cytotoxicity to brain microvascular endothelial cells cau‐production method to study the blood–brain barrier in vitro. J Neurochem. 1990;54:1798-1801. doi: 10.1111/j.1471-4159.1990.tb01236.x
- Uwamori H, Higuchi T, Arai K, Sudo R. Integration of neurogenesis and angiogenesis models for constructing a neurovascular tissue. Sci Rep. 2017;7:17349. doi: 10.1038/s41598-017-17411-0
- Koo Y, Hawkins BT, Yun Y. Three-dimensional (3D) tetra-culture brain on chip platform for organophosphate toxicity screening. Sci Rep. 2018;8:1-7. doi: 10.1038/s41598-018-20876-2
- Alajangi HK, Kaur M, Sharma A, et al. Blood-brain barrier: Emerging trends on transport models and new-age strategies for therapeutics intervention against neurological disorders. Mol Brain. 2022;15(1):49. doi: 10.1186/s13041-022-00937-4
- Engelhardt S, Patkar S, Ogunshola O. Cellw-age strategie-brain barrier regulation in health and disease: A focus on hypoxia. Br J Pharmacol. 2014;171(5):1210-1230. doi: 10.1111/bph.12489
- Kadry H, Noorani B, Cucullo L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. 2020;17(1):69. doi: 10.1186/s12987-020-00230-3
- Yeon JH, Na D, Choi K, Ryu SW, Choi C, Park JK. Reliable permeability assay system in a microfluidic device mimicking cerebral vasculatures. Biomed Microdevices. 2012;14:1141-1148. doi: 10.1007/s10544-012-9680-5
- Griep LM, Wolbers F, de Wagenaar B, et al. BBB ON CHIP: Microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed Microdevices. 2013;15:145-150. doi: 10.1007/s10544-012-9699-7
- Booth R, Kim H. Permeability analysis of neuroactive drugs through a dynamic microfluidic in vitro blood-brain barrier model. Ann Biomed Eng. 2014;42:2379-2391. doi: 10.1007/s10439-014-1086-5
- Cho H, Seo JH, Wong KHK, et al. Three-dimensional blood-brain barrier model for in vitro studies of neurovascular pathology. Sci Rep. 2015;5:15222. doi: 10.1038/srep15222
- Prabhakarpandian B, Shen MC, Nichols JB, et al. Synthetic tumor networks for screening drug delivery systems. J Controlled Release. 2015;201:49-55. doi: 10.1016/j.jconrel.2015.01.018
- Maoz BM, Herland A, FitzGerald EA, et al. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat Biotechnol. 2018;36:865-874. doi: 10.1038/nbt.4226
- Xu H, Li Z, Yu Y, et al. A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors. Sci Rep. 2016;6:36670. doi: 10.1038/srep36670
- Lim RG, Quan C, Reyes-Ortiz AM, et al. Huntington’s disease iPSC-derived brain microvascular endothelial cells reveal WNT-mediated angiogenic and blood-brain barrier deficits. Cell Rep. 2017;19:1365-1377. doi: 10.1016/j.celrep.2017.04.021
- Wang YI, Abaci HE, Shuler ML. Microfluidic blood–brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioeng. 2017;114:184-194. doi: 10.1002/bit.26045
- Zhang W, Gu Y, Hao Y, et al. Well plate-based perfusion culture device for tissue and tumor microenvironment replication. LChip. 2015;15:2854-2863. doi: 10.1039/c5lc00341e
- Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol. 2011;21:745-754. doi: 10.1016/j.tcb.2011.09.005
- Bonakdar M, Wasson EM, Lee YW, Davalos RV. Electroporation of brain endothelial cells on chip toward permeabilizing the blood-brain barrier. Biophys J. 2016;110:503-513. doi: 10.1016/j.bpj.2015.11.3517
- Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC. The blood-brain barrier: An engineering perspective. Front Neuroeng. 2013;6:7. doi: 10.3389/fneng.2013.00007
- Hartmann C, Zozulya A, Wegener J, Galla HJ. The impact of glia-derived extracellular matrices on the barrier function of cerebral endothelial cells: An in vitro study. Exp Cell Res. 2007;313(7):1318-1325. doi: 10.1016/j.yexcr.2007.01.024
- Zhang Z, McGoron AJ, Crumpler ET, Li CZ. Co-culture based blood-brain barrier in vitro model, a tissue engineering approach using immortalized cell lines for drug transport study. Appl Biochem Biotechnol. 2011;163(2):278-295. doi: 10.1007/s12010-010-9037-6
- Zobel K, Hansen U, Galla HJ. Blood-brain barrier properties in vitro depend on composition and assembly of endogenous extracellular matrices. Cell Tissue Res. 2016;365(2):233-245. doi: 10.1007/s00441-016-2397-7
- Sisak MAA, Louis F, Matsusaki M. In vitro fabrication and application of engineered vascular hydrogels. Polym J. 2020;52(8):871-881. doi: 10.1038/s41428-020-0331-z
- Kleinman HK, Martin GR. Matrigel: Basement membrane matrix with biological activity. Semin Cancer Biol. 2005;15(5):378-386. doi: 10.1016/j.semcancer.2005.05.004
- Hughes CS, Postovit LM, Lajoie GA. Matrigel: A complex protein mixture required for optimal growth of cell culture. Proteomics. 2010;10(9):1886-1890. doi: 10.1002/pmic.200900758
- Benton G, Arnaoutova I, George J, Kleinman HK, Koblinski J. Matrigel: From discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev. 2014;79-80:3-18. doi: 10.1016/j.addr.2014.06.005
- Raia NR, Partlow BP, McGill M, Kimmerling EP, Ghezzi CE, Kaplan DL. Enzymatically crosslinked silk-hyaluronic acid hydrogels. Biomaterials. 2017;131:58-67. doi: 10.1016/j.biomaterials.2017.03.046
- Partyka PP, Godsey GA, Galie JR, et al. Mechanical stress regulates transport in a compliant 3D model of the blood-brain barrier. Biomaterials. 2017;115:30-39. doi: 10.1016/j.biomaterials.2016.11.012
- Terrell-Hall TB, Ammer AG, Griffith JIG, Lockman PR. Permeability across a novel microfluidic blood-tumor barrier model. Fluids Barriers CNS. 2017;14(1):3. doi: 10.1186/s12987-017-0050-9
- Potjewyd G, Moxon S, Wang T, Domingos M, Hooper NM. Tissue engineering 3D neurovascular units: A biomaterials and bioprinting perspective. Trends Biotechnol. 2018;36(4):457-472. doi: 10.1016/j.tibtech.2018.01.003
- Arnaoutova I, George J, Kleinman HK, Benton G. The endothelial cell tube formation assay on basement membrane turns 20: State of the science and the art. Angiogenesis. 2009;12(3):267-274. doi: 10.1007/s10456-009-9146-4
- Uwamori H, Higuchi T, Arai K, Sudo R. Integration of neurogenesis and angiogenesis models for constructing a neurovascular tissue. Sci Rep. 2017;7(1):17349.
- Antoine EE, Vlachos PP, Rylander MN. Review of collagen I hydrogels for bioengineered tissue microenvironments: Characterization of mechanics, structure, and transport. Tissue Eng B Rev. 2014;20(6).683-696. doi: 10.1089/ten.TEB.2014.0086
- Kim D, Eom S, Park SM, Hong H, Kim DS. A collagen gel-coated, aligned nanofiber membrane for enhanced endothelial barrier function. Sci Rep. 2019;9(1):14915. doi: 10.1038/s41598-019-51560-8
- Song L, Yuan X, Jones Z, et al. Assembly of human stem cell-derived cortical spheroids and vascular spheroids to model 3-D brain-like tissues. Sci Rep. 2019;9(1):5977. doi: 10.1038/s41598-019-42439-9
- Van Den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules. 2000;1(1):31-38. doi: 10.1021/bm990017d
- Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials. 2010;31(21):5536-5544. doi: 10.1016/j.biomaterials.2010.03.064
- Heidari H, Taylor H. Multilayered microcasting of agarose-collagen composites for neurovascular modeling. Bioprinting. 2020;17:e00069. doi: 10.1016/j.bprint.2019.e00069
- Barry C, Schmitz MT, Propson NE, et al. Uniform neural tissue models produced on synthetic hydrogels using standard culture techniques. Exp Biol Med. 2017;242(17):1679-1689. doi: 10.1177/1535370217715028
- Galarza S, Crosby AJ, Pak C, Peyton SR. Control of astrocyte quiescence and activation in a synthetic brain hydrogel. Adv Healthc Mater. 2020;9(4):1901419. doi: 10.1002/adhm.201901419
- Ingólfsson HI, Melo MN, Van Eerden FJ, et al. Lipid organization of the plasma membrane. JACS. 2014;136(41):14554-14559. doi: 10.1021/ja507832e
- Takamura H, Kasai H, Arita H, Kito M. Phospholipid molecular species in human umbilical artery and vein endothelial cells. J Lipid Res. 1990;31(4):709-717.
- Siakotos A, Rouser G, Fleischer S. Isolation of highly purified human and bovine brain endothelial cells and nuclei and their phospholipid composition. Lipids. 1969;4(3):234-239. doi: 10.1007/BF02532638
- Tewes B, Galla HJ. Lipid polarity in brain capillary endothelial cells. Endothelium. 2001;8(3):207-220. doi: 10.1080/10623320109051566
- Ribeiro M, Domingues M, Freire J, Santos N, Castanho M. Translocating the blood-brain barrier using electrostatics. Front Cell Neurosci. 2012;6:44. doi: 10.3389/fncel.2012.00044
- Mensch J, Jaroskova L, Sanderson W, et al. Application of PAMPA-models to predict BBB permeability including efflux ratio, plasma protein binding and physicochemical parameters. Int J Pharm. 2010;395(1-2):182-197. doi: 10.1016/j.ijpharm.2010.05.037
- Mensch J, Melis A, Mackie C, Verreck G, Brewster ME, Augustijns P. Evaluation of various PAMPA models to identify the most discriminating method for the prediction of BBB permeability. Eur J Pharm Biopharm. 2010;74(3):495-502. doi: 10.1016/j.ejpb.2010.01.003
- Ruell JA, Tsinman KL, Avdeef A. PAMPA-a drug absorption in vitro model: 5. Unstirred water layer in iso-pH mapping assays and pKaflux-optimized design (pOD-PAMPA). Eur J Pharm Sci. 2003;20(4-5):393-402. doi: 10.1016/j.ejps.2003.08.006
- Tsopelas F, Vallianatou T, Tsantili-Kakoulidou A. Advances in immobilized artificial membrane (IAM) chromatography for novel drug discovery. Expert Opin Drug Discov. 2016;11(5):473-488. doi: 10.1517/17460441.2016.1160886
- Kanno K, Wu MK, Scapa EF, Roderick SL, Cohen DE. Structure and function of phosphatidylcholine transfer protein (PC-TP)/StarD2. Biochim Biophys Acta Mol Cell Biol Lipids. 2007;1771(6):654-662. doi: 10.1016/j.bbalip.2007.04.003
- Chiu S, Vasudevan S, Jakobsson E, Mashl RJ, Scott HL. Structure of sphingomyelin bilayers: A simulation study. Biophys J. 2003;85(6):3624-3635. doi: 10.1016/S0006-3495(03)74780-8
- Ha CE, Bhagavan NV. Essentials of medical biochemistry: with clinical cases. Academic Press, 2011.
- Maulik P, Shipley G. N-palmitoyl sphingomyelin bilayers: Structure and interactions with cholesterol and dipalmitoylphosphatidylcholine. Biochemistry. 1996;35(24):8025-8034. doi: 10.1021/bi9528356
- Li XM, Smaby JM, Momsen MM, Brockman HL, Brown RE. Sphingomyelin interfacial behavior: The impact of changing acyl chain composition. Biophys J. 2000;78(4):1921-1931. doi: 10.1016/S0006-3495(00)76740-3
- Kuikka M, Ramstedt B, Ohvo-Rekilä H, Tuuf J, Slotte JP. Membrane properties of D-erythro-N-acyl sphingomyelins and their corresponding dihydro species. Biophys J. 2001;80(5):2327-2337. doi: 10.1016/S0006-3495(01)76203-0
- Slotte PJ. Molecular properties of various structurally defined sphingomyelins-correlation of structure with function. Prog Lipid Res. 2013;52(2):206-219. doi: 10.1016/j.plipres.2012.12.001
- Zhai X, Boldyrev IA, Mizuno NK, et al. Nanoscale packing differences in sphingomyelin and phosphatidylcholine revealed by BODIPY fluorescence in monolayers: Physiological implications. Langmuir. 2014;30(11):3154- 3164. doi: 10.1021/la4047098
- Galinis‐Luciani D, Nguyen L, Yazdanian M. Is PAMPA a useful tool for discovery? J Pharm Sci. 2007;96(11).2886- 2892. doi: 10.1002/jps.21071
- Grumetto L, Russo G, Barbato F. Immobilized artificial membrane HPLC derived parameters vs PAMPA-BBB data in estimating in situ measured blood–brain barrier permeation of drugs. Mol Pharm. 2016;13(8):2808-2816. doi: 10.1021/acs.molpharmaceut.6b00397
- Kansy M, Senner F, Gubernator K. Physicochemical high throughput screening: Parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem. 1998;41(7):1007-1010. doi: 10.1021/jm970530e
- Di L, Kerns EH, Fan K, McConnell OJ, Carter GT. High throughput artificial membrane permeability assay for blood–brain barrier. Eur J Med Chem. 2003;38(3):223-232. doi: 10.1016/s0223-5234(03)00012-6
- Sugano K, Nabuchi Y, Machida M, Aso Y. Prediction of human intestinal permeability using artificial membrane permeability. Int J Pharm. 2003;257(1-2):245-251. doi: 10.1016/s0378-5173(03)00161-3
- Wohnsland F, Faller B. High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes. J Med Chem. 2001;44(6):923-930. doi: 10.1021/jm001020e
- Huque FT, Box K, Platts JA, Comer J. Permeability through DOPC/dodecane membranes: Measurement and LFER modelling. Eur J Pharm Sci. 2004;23(3):223-232. doi: 10.1016/j.ejps.2004.07.009
- Dobričić V, Marković B, Nikolic K, Savić V, Vladimirov S, Čudina O. 17β-carboxamide steroids-in vitro prediction of human skin permeability and retention using PAMPA technique. Eur J Pharm Sci. 2014;52:95-108. doi: 10.1016/j.ejps.2013.10.017
- Fortuna A, Alves G, Soares-Da-Silva P, Falcão A. Optimization of a parallel artificial membrane permeability assay for the fast and simultaneous prediction of human intestinal absorption and plasma protein binding of drug candidates: Application to dibenz [b, f] azepine-5- carboxamide derivatives. J Pharm Sci. 2012;101(2):530-540. doi: 10.1002/jps.22796
- Jhala D, Chettiar S, Singh J. Optimization and validation of an in vitro blood brain barrier permeability assay using artificial lipid membrane. J Bioequiv Bioavailable. 2012;14: 1-5. doi: 10.4172/jbb.S14-009
- Köllmer M, Mossahebi P, Sacharow E, et al. Investigation of the compatibility of the skin PAMPA model with topical formulation and acceptor media additives using different assay setups. AAPS PharmSciTech. 2019;20(2):89. doi: 10.1208/s12249-019-1305-3
- Kato R, Zeng W, Siramshetty VB, et al. Development and validation of PAMPA-BBB QSAR model to predict brain penetration potential of novel drug candidates. Front Pharmacol. 2023;14:1291246. doi: 10.3389/fphar.2023.1291246
- Barbato F, Cappello B, Miro A, La Rotonda M, Quaglia F. Chromatographic indexes on immobilized artificial membranes for the prediction of transdermal transport of drugs. Farmaco. 1998;53(10-11):655-661. doi: 10.1016/S0014-827X(98)00082-2
- Pidgeon C, Venkataram U. Immobilized artificial membrane chromatography: Supports composed of membrane lipids. Anal Biochem. 1989;176(1):36-47. doi: 10.1016/0003-2697(89)90269-8
- Pidgeon C, Marcus C, Alvarez F. Immobilized artificial membrane chromatography: Surface chemistry and applications. In: Applications of Enzyme Biotechnology. Berlin: Springer; 1991. p. 201-220. doi: 10.1007/978-1-4757-9235-5_16
- De Vrieze M, Verzele D, Szucs R, Sandra P, Lynen F. Evaluation of sphingomyelin, cholester, and phosphatidylcholine-based immobilized artificial membrane liquid chromatography to predict drug penetration across the blood-brain barrier. Anal Bioanal Chem. 2014;406(25):6179-6188. doi: 10.1007/s00216-014-8054-7
- Grant N, Machado Reyes D, Yang Z, Wan L, Wang C, Yan P. Blood brain barrier permeability prediction with artificial intelligence and machine learning: A meta-review and future directions. Discov Artif Intell. 2025;5(1):254. doi: 10.1007/s44163-025-00494-4
- Nabi AE, Pouladvand P, Liu L, Hua Y, Ayubcha C. Machine learning in drug development for neurological diseases: A review of blood brain barrier permeability prediction models. Mol Inform. 2025;44(3):e202400325. doi: 10.1002/minf.202400325
- Roux GL, Jarray R, Guyot AC, et al. Proof-of-concept study of drug brain permeability between in vivo human brain and an in vitro iPSCs-human blood-brain barrier model. Sci Rep. 2019;9(1):16310. doi: 10.1038/s41598-019-52213-6
