AccScience Publishing / JCTR / Online First / DOI: 10.36922/JCTR025420074
ORIGINAL ARTICLE

Decoding the trans-kingdom signaling pathways between human host cells and virome components in cancer progression

Miracle Uwa Livinus1* Mustapha Abdulsalam2 Innocent Ojeba Musa2 Stephen Olaide Aremu3 Sunday Zeal Bala4 Madinat Hassan5,6,7 Shehu Sani8 Katimu Yusuf9
Show Less
1 Department of Biochemistry, Skyline University Nigeria, Kano State, Nigeria
2 Department of Microbiology, Skyline University Nigeria, Kano State, Nigeria
3 Department of Medicine and Surgery, Faculty of General Medicine, Siberian State Medical University, Tomsk, Tomsk Oblast, Russian Federation
4 Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, United States of America
5 Foresight Institute of Research and Translation, Kigali, Rwanda
6 Khayr Cancer Health Initiative, Kaduna, Kaduna State, Nigeria
7 Department of Biological Sciences, Faculty of Sciences, Air Force Institute of Technology (AFIT), Kaduna, Kaduna State, Nigeria
8 Department of Community Health, School of Public Health, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
9 Department of Microbiology, Federal University Gashua, Gashua, Yobe State, Nigeria
Received: 16 October 2025 | Revised: 22 January 2026 | Accepted: 22 January 2026 | Published online: 19 February 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Background: Viral elements, such as human papillomavirus (HPV), Epstein–Barr virus (EBV), endogenous retroviruses (e.g., human endogenous retrovirus K), and bacteriophages, are known to regulate oncogenic signaling. To assess the ability of patient-level virome activity and host-pathway disruption to predict patient survival, we developed a Trans-Kingdom Signaling Index (TKSI). Methods: We examined 320 patients with HPV-positive head and neck squamous cell carcinoma, HPV-positive cervical cancer, and EBV-positive stomach adenocarcinoma. Viral features, including HPV E6/E7, virome modules, phage CpG DNA, phage structural proteins, and viral double-stranded RNA, along with tumor RNA sequencing data, were analyzed using single-sample Gene Set Enrichment Analysis on six host pathways: nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), cGAS–STING, p53, MYC, EMT, and PD-L1. A coupling matrix (K) was constructed to connect viral modules to host pathways, and TKSI was calculated, normalized, and dichotomized into TKSI-high and TKSI-low. Results: TKSI values followed an approximately normal distribution and stratified survival independent of tumor type. Patients with high TKSI exhibited lower overall survival (median overall survival 18.2 vs. 29.4 months) and an adjusted hazard ratio of 1.6 (log-rank p=0.018). TKSI–survival associations were robust, with bootstrapped 95% confidence intervals supporting these findings. Observed virome–host interactions corresponded to known mechanisms, including HPV-mediated suppression of p53, EBV microRNA-mediated PD-L1 expression, human endogenous retrovirus K-mediated activation of MYC, and phage CpG–TLR9–NF-κB. Conclusion: Virome–host interactions significantly influence cancer prognosis and signaling. TKSI integrates viral and host mechanisms to improve risk stratification. Relevance for patients: TKSI-derived virome–human quantification enhances patient stratification and may guide the development of virome-responsive biomarkers for precision oncology.

Keywords
Cyclic GMP–AMP synthase–stimulator of interferon genes
Epstein–Barr virus microRNA
Human papillomavirus E6 and E7 oncoproteins
Immune checkpoint
Systems oncology
Trans-Kingdom Signaling Index
Toll-like receptor 9
Virome
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Liu B, Zhou H, Tan L, Siu KTH, Guan XY. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct Target Ther. 2024;9(1):175. doi: 10.1038/s41392-024-01856-7

 

  1. Hassan M, Adegboyega TT, Bala SZ, et al. The carcinogenic risks of military explosives: Mechanisms, health impacts, and environmental consequences of chemical munitions. In: Toxicology and Environmental Health Sciences. Berlin: Springer Nature; 2025. p. 1-15. doi: 10.1007/s13530-025-00256-w

 

  1. Li X, Hua W, Xu W, Ning N. Oral microbiota: A new insight into cancer progression, diagnosis and treatment. Phenomics. 2023;3(5):535-547. doi: 10.1007/s43657-023-00124-y

 

  1. Faria M, Mónica T, Maria JP, Paulo S. Efficacy of acupuncture on cancer pain: A systematic review and meta-analysis. J Integr Med. 2024;22(3):235-244. doi: 10.1016/j.joim.2024.03.002

 

  1. Zhang S, Xiao X, Yi Y, et al. Tumor initiation and early tumorigenesis: Molecular mechanisms and interventional targets. Signal Transduct Target Ther. 2024;9(1):1-36. doi: 10.1038/s41392-024-01848-7

 

  1. Fernandes Q, Gupta I, Vranic S, Al Moustafa AE. Human papillomaviruses and Epstein-Barr virus interactions in colorectal cancer: A brief review. Pathogens. 2020;9(4):300. doi: 10.3390/pathogens9040300

 

  1. Liang G, Bushman FD. The human virome: Assembly, composition and host interactions. Nat Rev Microbiol. 2021;19(8):514-527. doi: 10.1038/s41579-021-00536-5

 

  1. Bautista J, Lopez-Cortes A. Oncogenic viruses rewire the epigenome in human cancer. Front Cell Infect Microbiol. 2025;15:1617198. doi: 10.3389/fcimb.2025.1617198

 

  1. Li Z, Gao J, Xiang X, Deng J, Gao D, Sheng X. Viral long non-coding RNA regulates virus life-cycle and pathogenicity. Mol Biol Rep. 2022;49(7):6693-6700. doi: 10.1007/s11033-022-07268-6

 

  1. Sarma A, Suri P, Justice M, Angamuthu R, Pushparaj S. Role of long non-coding RNAs in viral gene expression, pathogenesis, and innate immunity in viral chicken diseases. Noncoding RNA. 2025;11(3):42. doi: 10.3390/ncrna11030042

 

  1. Torres MKS, Pereira Neto GS, Cayres Vallinoto IMV, Reis LO, Vallinoto ACR. Impact of oncogenic viruses on cancer development: A narrative review. Biology (Basel). 2025;14(7):797. doi: 10.3390/biology14070797

 

  1. Samara P, Athanasopoulos M, Mastronikolis S, Kyrodimos E, Athanasopoulos I, Mastronikolis NS. Role of oncogenic viruses in head and neck cancers: Epidemiology, pathogenesis, and detection methods. Microorganisms. 2024;12(7):1482. doi: 10.3390/microorganisms12071482

 

  1. Feitelson MA, Arzumanyan A, Spector I, Medhat A. Hepatitis B X protein as a component of a functional cure for chronic hepatitis B. Biomedicines. 2022;10(9):2210. doi: 10.3390/biomedicines10092210

 

  1. da Silva AL, Guedes BLM, Santos SN, et al. Beyond pathogens: Genetic legacy of endogenous retroviruses in host physiology. Front Cell Infect Microbiol. 2024;14:1379962. doi: 10.3389/fcimb.2024.1379962

 

  1. Russ E, Mikhalkevich N, Iordanskiy S. Expression of HERV-K HML-2 correlates with macrophage immune activation and type I interferon response. Microbiol Spectr. 2023;11(2):e0443822. doi: 10.1128/spectrum.04438-22

 

  1. Logotheti S, Stiewe T, Georgakilas AG. Role of human endogenous retroviruses in cancer immunotherapy post– COVID-19. Cancers (Basel). 2023;15(22):5321. doi: 10.3390/cancers15225321

 

  1. Cherkasova EA, Chen L, Childs RW. Regulation of HERV activation in tumors and implications for oncology. Front Cell Infect Microbiol. 2024;14:1358470. doi: 10.3389/fcimb.2024.1358470

 

  1. Yao L, Rosanna RS, Elena RS, et al. Role of human endogenous retroviruses in melanoma initiation and progression. Biomedicines. 2025;13:1662. doi: 10.3390/biomedicines13071662

 

  1. Alkhalil SS. Role of bacteriophages in shaping bacterial diversity in the human gut. Front Microbiol. 2023;14:1232413. doi: 10.3389/fmicb.2023.1232413

 

  1. Chatterjee A, Duerkop BA. Beyond bacteria: bacteriophage-eukaryotic host interactions. Front Microbiol. 2018;9:1394. doi: 10.3389/fmicb.2018.01394

 

  1. Islam MS, Fan J, Pan F. Power of phages in cancer treatment. Front Oncol. 2023;13:1290296. doi: 10.3389/fonc.2023.1290296

 

  1. Zhao H, Wu L, Yan G, et al. Inflammation and tumor progression: Signaling pathways and interventions. Signal Transduct Target Ther. 2021;6(1):263. doi: 10.1038/s41392-021-00658-5

 

  1. Mao H, Zhao X, Sun SC. NF-κB in inflammation and cancer. Cell Mol Immunol. 2025;22(8):811-839. doi: 10.1038/s41423-025-01310-w

 

  1. Wang Y, Zhu Y, Cao Y, et al. cGAS-STING activation in cancer therapy. Front Immunol. 2025;16:1579832. doi: 10.3389/fimmu.2025.1579832

 

  1. Li Q, Wu P, Du Q, Hanif U, Hu H, Li K. cGAS-STING signaling in disease and therapy. MedComm (2020). 2024;5(4):e511. doi: 10.1002/mco2.511

 

  1. Szpara ML, Van Doorslaer K. Mechanisms of DNA virus evolution. Encycl Virol. 2020;1-5:71-78. doi: 10.1016/B978-0-12-809633-8.20993-X

 

  1. Gaudino M, Nagamine B, Ducatez MF, Meyer G. Understanding mechanisms of viral and bacterial coinfections in bovine respiratory disease: A comprehensive review. Vet Res. 2022;53(1):70. doi: 10.1186/s13567-022-01086-1

 

  1. Rajagopala SV, Bakhoum NG, Pakala SB, et al. Metatranscriptomics to characterize respiratory virome, microbiome, and host response from clinical samples. Cell Rep Methods. 2021;1(6):100091. doi: 10.1016/j.crmeth.2021.100091

 

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17-48. doi: 10.3322/caac.21763

 

  1. Duerkop BA, Hooper LV. Resident viruses and interactions with the immune system. Nat Immunol. 2013;14(7):654-659. doi: 10.1038/ni.2614

 

  1. Notarte KI, Senanayake S, Macaranas I, et al. MicroRNA and other non-coding RNAs in Epstein-Barr virus-associated cancers. Cancers (Basel). 2021;13(15):3909. doi: 10.3390/cancers13153909

 

  1. Moody CA, Laimins LA. Human papillomavirus oncoproteins: Pathways to transformation. Nat Rev Cancer. 2010;10(8):550-560. doi: 10.1038/nrc2886

 

  1. Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell. 2008;132(3):344-362. doi: 10.1016/j.cell.2008.01.020

 

  1. Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet. 2019;20(11):657-674. doi: 10.1038/s41576-019-0151-1

 

  1. Wotherspoon D, Rogerson C, O’Shaughnessy RFL. Controlling epidermal terminal differentiation with transcriptional bursting and RNA bodies. J Dev Biol. 2020;8(4):29. doi: 10.3390/jdb8040029

 

  1. Hänzelmann S, Castelo R, Guinney J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. doi: 10.1186/1471-2105-14-7

 

  1. Cristino AS, Nourse J, West RA, et al. EBV microRNA-BHRF1-2-5p targets immune checkpoint ligands PD-L1 and PD-L2. Blood. 2019;134(25):2261-2270. doi: 10.1182/blood.2019000889

 

  1. Siying L, Hong X, Wei Z, et al. Ubiquitination of HPV oncoprotein E6 is critical for p53 degradation. Front Microbiol. 2019;10:2483. doi: 10.3389/fmicb.2019.02483

 

  1. Zanier K, Mancas F, Paci A, et al. Structure of the E6/E6AP/ p53 complex required for HPV-mediated p53 degradation. Nature. 2016;529(7587):541-545. doi: 10.1038/nature16481

 

  1. Lepej SZ, Matulić M, Gršković P, Pavlica M, Radmanić L, Korać P. miRNAs: EBV immune escape and tumorigenesis mechanisms. Pathogens. 2020;9(5):353. doi: 10.3390/pathogens9050353

 

  1. Li W, He C, Wu J, Yang D, Yi W. Epstein-Barr virus-encoded miRNAs assist host immune escape. J Cancer. 2020;11(8):2091-2100. doi: 10.7150/jca.42498

 

  1. Nakano H, Saito M, Nakajima S, et al. PD-L1 overexpression in EBV-positive gastric cancer via genomic and epigenomic mechanisms. Sci Rep. 2021;11(1):81667. doi: 10.1038/s41598-021-81667-w

 

  1. Lima A, Sousa H, Medeiros R, Nobre A, Machado M. PD-L1 expression in EBV-associated gastric cancer: Systematic review and meta-analysis. Discov Oncol. 2022;13(1):79. doi: 10.1007/s12672-022-00479-0

 

  1. Wonglhow J, Tantipisit J, Wetwittayakhlang P, et al. EBV infection and PD-L1 expression in gastric cancer. Cancers (Basel). 2025;17(9):1492. doi: 10.3390/cancers17091492

 

  1. Miliotis CN, Slack FJ. Multi-layered control of PD-L1 expression in EBV-associated gastric cancer. J Cancer Metastasis Treat. 2020;6:12. doi: 10.20517/2394-4722.2020.12

 

  1. Ding L, Zhang R, Du W, Wang Q, Pei D. Role of the cGAS-STING signaling pathway in ferroptosis. J Adv Res. 2024;58:1-15. doi: 10.1016/j.jare.2024.12.028

 

  1. Wang Q, Yu Y, Zhuang J, Liu R, Sun C. Precision regulation of the cGAS-STING pathway in the tumor immune microenvironment. Mol Cancer. 2025;24(1):80. doi: 10.1186/s12943-025-02380-0

 

  1. Broecker F, Moelling K. Roles of the virome in cancer. Microorganisms. 2021;9(12):2538. doi: 10.3390/microorganisms9122538

 

  1. Santiago-Rodriguez TM, Hollister EB. Human virome and disease: Phage-bacteria dysbiosis in the human gut. Viruses. 2019;11(7):656. doi: 10.3390/v11070656

 

  1. Junli L, Fu L, Wang G, Subbian S, Qin C, Zhao A. Unmethylated CpG DNA from BCG promotes macrophage activation via TLR9. Innate Immun. 2020;26(3):183-203. doi: 10.1177/1753425919879997

 

  1. Li H, Liu S, Hu J, et al. Epstein-Barr virus lytic reactivation and carcinogenesis. Int J Biol Sci. 2016;12(11):1309-1318. doi: 10.7150/ijbs.16564

 

  1. Iempridee T, Das S, Xu I, Mertz JE. TGF-β-induced EBV reactivation via Smad-binding elements of BZLF1. J Virol. 2011;85(15):7838-7853. doi: 10.1128/JVI.01197-10

 

  1. Adamson AL, Darr D, Holley-Guthrie E, et al. EBV BZLF1 and BRLF1 activate ATF2 via p38 and JNK. J Virol. 2000;74(3):1224-1233. doi: 10.1128/JVI.74.3.1224-1233.2000

 

  1. Germini D, Sall FB, Shmakova A, et al. Oncogenic properties of the EBV ZEBRA protein. Cancers (Basel). 2020;12(6):1479. doi: 10.3390/cancers12061479

 

  1. Yu X, Wang Z, Mertz JE. ZEB1 regulates the latent-lytic switch in Epstein-Barr virus infection. PLoS Pathog. 2007;3(12):e194. doi: 10.1371/journal.ppat.0030194

 

  1. Lopes de Sousa HM, Costa Ribeiro JP, Timóteo MB. Epstein- Barr Virus-Associated Gastric Cancer: Old Entity with New Relevance. London: IntechOpen; 2021. doi: 10.5772/intechopen.93649

 

  1. Mansouri S, Pan Q, Blencowe BJ, Claycomb JM, Frappier L. EBNA1 regulates EBV latency via let-7 microRNA and dicer. J Virol. 2014;88(19):11166-11177. doi: 10.1128/JVI.01785-14

 

  1. Damania B, Kenney SC, Raab-Traub N. Epstein-Barr virus: Biology and clinical disease. Cell. 2022;185(20):3652-3670. doi: 10.1016/j.cell.2022.08.026

 

  1. Salavatiha Z, Soleimani-Jelodar R, Jalilvand S. Role of endogenous retrovirus-K in human cancer. Rev Med Virol. 2020;30(6):e2142. doi: 10.1002/rmv.2142

 

  1. Lindsay AR, Himel M, An MW, Daniel JS, Mandrekar SJ. Clinical trial designs incorporating predictive biomarkers. Cancer Treat Rev. 2016;43:74-82. doi: 10.1016/j.ctrv.2015.12.008

 

  1. Chew V, Chuang CH, Hsu C. Translational research on drug development and biomarker discovery for hepatocellular carcinoma. J Biomed Sci. 2024;31(1):22. doi: 10.1186/s12929-024-01011-y
Share
Back to top
Journal of Clinical and Translational Research, Electronic ISSN: 2424-810X Print ISSN: 2382-6533, Published by AccScience Publishing