AccScience Publishing / JCBP / Online First / DOI: 10.36922/JCBP025340063
ORIGINAL RESEARCH ARTICLE

Sensory processing sensitivity, alexithymia, and eating disorder risk in adolescents in alternative care: A multi-informant network study

Vincenzo Maria Romeo1,2,3*
Show Less
1 Department of Culture and Society, University of Palermo, Palermo, Italy
2 School of Specialization in Psychoanalytic and Group-analytic Psychotherapy (SPPG), Reggio Calabria, Italy
3 Neurosinc, Catania, Italy
Received: 18 August 2025 | Revised: 29 September 2025 | Accepted: 11 October 2025 | Published online: 4 December 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Adolescents in alternative care show elevated eating disorder risk, yet mechanistic bridges between sensory reactivity and emotion-processing deficits remain underexplored. This study mapped the interplay among sensory processing sensitivity (SPS), alexithymia, and eating-related risk and tested moderation by trauma burden using a multi-informant design. Approximately 200 youths (12–18 years) were recruited from foster and residential services. Measures included self-report SPS (highly sensitive child facets), alexithymia (Toronto alexithymia scale-20: Difficulties identifying feelings [DIF], difficulties describing feelings [DDF], externally oriented thinking), eating-risk (eating attitudes test-26 subscales; binge eating scale), internalizing symptoms (patient health questionnaire for adolescents; screen for child anxiety related emotional disorders), and trauma (childhood trauma questionnaire–short form), along with covariates (age, sex, care type, body mass index z-score, pubertal status). Teachers/caregivers provided parallel SPS ratings. Primary analyses estimated a regularized partial-correlation network (Gaussian graphical model; EBICglasso) on domain-level nodes; accuracy and centrality stability were assessed through bootstrapping. Trauma moderation was evaluated through permutation-based network comparison tests; multi-informant integration was modeled by including teacher-SPS as a node and through informant-specific sensitivity analyses. SPS facets—especially Low Sensory Threshold and Ease of Excitation—bridged to alexithymia (DIF/DDF) and to eating-risk nodes, with stronger global connectivity observed under higher trauma exposure. Teacher-SPS converged with youth reports while adding unique variance. Limitations included the cross-sectional design, self-report bias, and setting selection. Findings delineate actionable psychosomatic targets—sensory-load management and affect labeling/interoceptive skills—for early, low-intensity interventions in foster/residential contexts.

Keywords
Sensory processing sensitivity
Alexithymia
Eating-disorder risk
Out-of-home care
Childhood trauma
Network analysis
Adolescents
Funding
None.
Conflict of interest
Vincenzo Maria Romeo is the Editorial Board Member of this journal but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. The author declared that he has no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Pluess M, Assary E, Lionetti F, et al. Environmental sensitivity in children: Development of the highly sensitive child scale and identification of sensitivity groups. Dev Psychol. 2018;54(1):51-70. doi: 10.1037/dev0000406

 

  1. Aron EN, Aron A. Sensory-processing sensitivity and its relation to introversion and emotionality. J Pers Soc Psychol. 1997;73(2):345-368. doi: 10.1037/0022-3514.73.2.345

 

  1. Kähkönen JE, Lionetti F, Castelli L, Pluess M. Highly sensitive child interview for assessing environmental sensitivity in primary school children. Pers Individ Dif. 2024;222:112592. doi: 10.1016/j.paid.2024.112592

 

  1. Greven CU, Lionetti F, Booth C, et al. Sensory processing sensitivity in the context of environmental sensitivity: A critical review and development of research agenda. Neurosci Biobehav Rev. 2019;98:287-305. doi: 10.1016/j.neubiorev.2019.01.009

 

  1. Liss M, Mailloux J, Erchull MJ. The relationship between sensory processing sensitivity, alexithymia, autism, depression, and anxiety. Pers Individ Dif. 2008;45(3): 255-259. doi: 10.1016/j.paid.2008.02.009

 

  1. Brindle K, Moulding R, Bakker K, Nedeljkovic M. Is the relationship between sensory-processing sensitivity and negative affect mediated by emotional regulation? Aust J Psychol. 2015;67(4):214-221. doi: 10.1111/ajpy.12084

 

  1. Lionetti F, Pastore M, Moscardino U, et al. Sensory processing sensitivity and its association with personality and affect: A meta-analysis. J Res Pers. 2019;81:138-152. doi: 10.1016/j.jrp.2019.05.013

 

  1. McQuarrie AM, Smith SD, Jakobson LS. Alexithymia and sensory processing sensitivity uniquely predict empathy. Front Psychol. 2023;14:1072783. doi: 10.3389/fpsyg.2023.1072783

 

  1. Dubois-Comtois K, Bussières EL, Cyr C, et al. Meta-analysis of mental health in foster care. Child Youth Serv Rev. 2021;127:106100. doi: 10.1016/j.childyouth.2021.106100

 

  1. Herd T, Palmer L, Font S. Diagnoses before and during foster care: A population-based study. J Dev Behav Pediatr. 2023;44(4):e269-e276. doi: 10.1097/dbp.0000000000001191

 

  1. Snuggs S, Cowan P, Galloway E. Eating behaviors in out of home care: A scoping review. Adoption Q. 2024:1-19. doi: 10.1080/10926755.2024.2390914

 

  1. Snuggs S, Cowan P, Jethwa B, Galloway E. Eating behaviours in care-experienced children: A mixed-methods UK comparative cohort study to examine mealtime challenges. Appetite. 2025;208:107946. doi: 10.1016/j.appet.2025.107946

 

  1. Markert J, Herke M, Bartels A, et al. Food practices and nutrition of children and adolescents in residential care: A scoping review. Appetite. 2021;167:105640. doi: 10.1016/j.appet.2021.105640

 

  1. Bernstein DP, Stein JA, Newcomb MD, et al. Development and validation of a brief screening version of the childhood trauma questionnaire. Child Abuse Negl. 2003;27(2): 169-190. doi: 10.1016/S0145-2134(02)00506-0

 

  1. Caslini M, Bartoli F, Crocamo C, et al. Disentangling the association between child abuse and eating disorders: A meta-analysis. Psychol Med. 2016;46(4):757-770. doi: 10.1017/s0033291715002746

 

  1. Molendijk ML, Hoek HW, Brewerton TD, Elzinga BM. Childhood maltreatment and eating disorder pathology: A systematic review and dose-response meta-analysis. PLoS One. 2017;12(10):e0186295. doi: 10.1371/journal.pone.0186295

 

  1. Stice E, Marti CN, Durant S. Risk factors for onset of eating disorders: Evidence of multiple risk pathways in an 8-year prospective study. Behav Res Ther. 2011;49(10):622-627. doi: 10.1016/j.brat.2011.06.009

 

  1. Treasure J, Duarte TA, Schmidt U. Eating disorders. Lancet. 2020;395(10227):899-911. doi: 10.1016/S0140-6736(20)30059-3

 

  1. Achenbach TM, McConaughy SH, Howell CT. Child/ adolescent behavioral and emotional problems: Implications of cross-informant correlations for situational specificity. Psychol Bull. 1987;101(2):213-232. doi: 10.1037/0033-2909.101.2.213

 

  1. De Los Reyes A, Augenstein TM, Wang M, et al. The validity of the multi-informant approach to assessing child and adolescent mental health. Psychol Bull. 2015;141(4):858-900. doi: 10.1037/a0038498

 

  1. Rescorla LA, Ginzburg S, Achenbach TM, et al. Cross-informant agreement between parent-reported and adolescent self-reported problems in 25 societies. J Clin Child Adolesc Psychol. 2013;42(2):262-273. doi: 10.1080/15374416.2012.717870.

 

  1. Bordarie J, Della Vecchia R, Mourtialon C. Sensory processing sensitivity, alexithymia, and health anxiety. J Clin Basic Psychosom. 2024;2(3):e2681. doi: 10.36922/jcbp.2681

 

  1. Weyn S, Van Leeuwen K, Pluess M, et al. The highly sensitive child-21 item version: Factor structure and validity. Assessment. 2022;29(4):607-629. doi: 10.1177/1073191120983894

 

  1. Costa-López B, Ferrer-Cascales R, Ruiz-Robledillo N, Albaladejo-Blázquez N, Baryła-Matejczuk M. A comparative study of differences between parents and teachers in the evaluation of environmental sensitivity. Front Psychol. 2023;14:1291041. doi: 10.3389/fpsyg.2023.1291041

 

  1. Lionetti F, Aron A, Aron EN, Klein DN, Pluess M. Observer-rated environmental sensitivity moderates children’s response to parenting quality in early childhood. Dev Psychol. 2019;55(10):2389-2402. doi: 10.1037/dev0000795

 

  1. Bagby RM, Parker JDA, Taylor GJ. The twenty-item toronto alexithymia scale--I. Item selection and cross-validation of the factor structure. J Psychosom Res. 1994;38(1):23-32. doi: 10.1016/0022-3999(94)90005-1

 

  1. Bagby RM, Taylor GJ, Parker JD. The twenty-item Toronto Alexithymia Scale--II. Convergent, discriminant, and concurrent validity. J Psychosom Res. 1994;38(1):33-40. doi: 10.1016/0022-3999(94)90006-X

 

  1. Garner DM, Olmsted MP, Bohr Y, Garfinkel PE. The eating attitudes test: Psychometric features and clinical correlates. Psychol Med. 1982;12(4):871-878. doi: 10.1017/S0033291700049163

 

  1. Gormally J, Black S, Daston S, Rardin D. The binge eating scale: Development, validation, and norms. Addict Behav. 1982;7(1):47-55. doi: 10.1016/0306-4603(82)90024-7

 

  1. Johnson JG, Harris ES, Spitzer RL, Williams JBW. The PHQ-A: Validity of a brief depression severity measure for adolescents. J Adolesc Health. 2002;30(3):196-204. doi: 10.1016/S1054-139X(01)00333-0

 

  1. Richardson LP, McCauley E, Grossman DC, et al. Evaluation of the Patient Health Questionnaire-9 Item for detecting major depression among adolescents. Arch Pediatr Adolesc Med. 2010;164(8):769-776. doi: 10.1001/archpediatrics.2010.129

 

  1. Birmaher B, Khetarpal S, Brent D, et al. The screen for child anxiety related emotional disorders (SCARED): Scale construction and psychometric characteristics. J Am Acad Child Adolesc Psychiatry. 1997;36(4):545-553. doi: 10.1097/00004583-199704000-00018

 

  1. Rappaport BI, Pagliaccio D, Pine DS, Klein DN, Jarcho JM. Discriminant validity, diagnostic utility, and parent-child agreement on the screen for child anxiety related emotional disorders (SCARED) in treatment- and non-treatment-seeking youth. J Anxiety Disord. 2017;51:22-31. doi: 10.1016/j.janxdis.2017.08.006

 

  1. De Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85(9):660-667. doi: 10.2471/blt.07.043497

 

  1. Petersen AC, Crockett L, Richards M, Boxer A. A self-report measure of pubertal status: Reliability, validity, and initial norms. J Youth Adolesc. 1988;17(2):117-133. doi: 10.1007/bf01537962

 

  1. Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity in children and adolescents. Pediatr Obes. 2012;7(4):284-294. doi: 10.1111/j.2047-6310.2012.00064.x

 

  1. Von Elm E, Altman DG, Egger M, et al. The strengthening the reporting of Observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. PLoS Med. 2007;4(10):e296. doi: 10.1371/journal.pmed.0040296

 

  1. Nosek BA, Ebersole CR, DeHaven AC, Mellor DT. The preregistration revolution. Proc Natl Acad Sci U S A. 2018;115(11):2600-2606. doi: 10.1073/pnas.1708274114

 

  1. Munafò MR, Nosek BA, Bishop DVM, et al. A manifesto for reproducible science. Nat Hum Behav. 2017;1:0021. doi: 10.1038/s41562-016-0021

 

  1. Ioannidis JPA. Why most published research findings are false. PLoS Med. 2005;2(8):e124. doi: 10.1371/journal.pmed.0020124

 

  1. Van Buuren S, Groothuis-Oudshoorn K. Mice: Multivariate imputation by chained equations in R. J Stat Softw. 2011;45(3):1-67. doi: 10.18637/jss.v045.i03

 

  1. Rubin DB. Multiple Imputation for Nonresponse in Surveys. New York: Wiley; 1987. doi: 10.1002/9780470316696

 

  1. Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls. BMJ. 2009;338:b2393. doi: 10.1136/bmj.b2393

 

  1. Van Ginkel JR, Linting M, Rippe RCA, Van der Voort A. Rebutting existing misconceptions about multiple imputation as a method for handling missing data. Adv Data Anal Classif. 2020;14:625-645. doi: 10.1007/s11634-019-00350-5

 

  1. Epskamp S, Borsboom D, Fried EI. Estimating psychological networks and their accuracy: A tutorial paper. Behav Res Methods. 2018;50(1):195-212. doi: 10.3758/s13428-017-0862-1

 

  1. Epskamp S, Cramer AOJ, Waldorp LJ, Schmittmann VD, Borsboom D. Qgraph: Network visualizations of relationships in psychometric data. J Stat Softw. 2012;48(4):1-18. doi: 10.18637/jss.v048.i04

 

  1. Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics. 2008;9(3):432-441. doi: 10.1093/biostatistics/kxm045

 

  1. Chen J, Chen Z. Extended Bayesian information criteria for model selection with large model spaces. Biometrika. 2008;95(3):759-771. doi: 10.1093/biomet/asn034

 

  1. Haslbeck JMB, Waldorp LJ. How well do network models predict observations? On the importance of predictability in network models. Behav Res Methods. 2018;50(2):853-861. doi: 10.3758/s13428-017-0910-x

 

  1. Williams DR, Rast P. Back to the basics: Rethinking partial correlation networks. Br J Math Stat Psychol. 2020;73(2): 187-212. doi: 10.1111/bmsp.12173

 

  1. Van Borkulo CD, Van Bork R, Boschloo L, et al. Comparing network structures on three aspects: A permutation test. Psychol Methods. 2023;28(6):1273-1285. doi: 10.1037/met0000476

 

  1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol. 1995;57(1):289-300. doi: 10.1111/j.2517-6161.1995.tb02031.x

 

  1. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155-163. doi: 10.1016/j.jcm.2016.02.012

 

  1. McGraw KO, Wong SP. Forming inferences about some intraclass correlation coefficients. Psychol Methods. 1996;1(1):30-46. doi: 10.1037/1082-989X.1.1.30

 

  1. World Medical Association. World medical association declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191-2194. doi: 10.1001/jama.2013.281053

 

  1. Borsboom D. A network theory of mental disorders. World Psychiatry. 2017;16(1):5-13. doi: 10.1002/wps.20375

 

  1. Bringmann LF, Eronen MI. Don’t blame the model: Reconsidering the network approach to psychopathology. Psychol Rev. 2018;125(4):606-615. doi: 10.1037/rev0000108

 

  1. Robinaugh DJ, Millner AJ, McNally RJ. Identifying highly influential nodes in the complicated grief network. J Abnorm Psychol. 2016;125(6):747-757. doi: 10.1037/abn0000181

 

  1. Bringmann LF, Elmer T, Epskamp S, et al. What do centrality measures measure in psychological networks? J Abnorm Psychol. 2019;128(8):892-903. doi: 10.1037/abn0000446

 

  1. Robinaugh DJ, Hoekstra RHA, Toner ER, Borsboom D. The network approach to psychopathology: A review of the 2008-2018 literature. Psychol Med. 2020;50(3):353-366. doi: 10.1017/S0033291719003404

 

  1. Belsky J, Pluess M. Beyond diathesis stress: Differential susceptibility to environmental influences. Psychol Bull. 2009;135(6):885-908. doi: 10.1037/a0017376

 

  1. Pluess M, Belsky J. Vantage sensitivity: Individual differences in response to positive experiences. Psychol Bull. 2013;139(4):901-916. doi: 10.1037/a0030196

 

  1. Jenkinson PM, Taylor L, Laws KR. Self-reported interoceptive deficits in eating disorders: A meta-analysis of studies using the eating disorder inventory. Psychol Med. 2018;48(13):2280-2291. doi: 10.1017/S0033291717003340

 

  1. Westwood H, Kerr-Gaffney J, Stahl D, Tchanturia K. Alexithymia in eating disorders: Systematic review and meta-analyses of studies using the Toronto Alexithymia Scale. Psychol Med. 2017;47(4):519-532. doi: 10.1017/S0033291716002401

 

  1. Leehr EJ, Krohmer K, Schag K, et al. Emotion regulation model in binge eating disorder and obesity--a systematic review. Neurosci Biobehav Rev. 2015;49:125-134. doi: 10.1016/j.neubiorev.2014.12.008

 

  1. Fairburn CG, Cooper Z, Shafran R. Cognitive behaviour therapy for eating disorders: A “transdiagnostic” theory and treatment. Behav Res Ther. 2003;41(5):509-528. doi: 10.1016/S0005-7967(02)00088-8

 

  1. Stice E. A prospective test of the dual-pathway model of bulimic pathology: Mediating effects of dieting and negative affect. J Abnorm Psychol. 2001;110(1):124-135. doi: 10.1037/0021-843X.110.1.124

 

  1. Rossouw TI, Fonagy P. Mentalization-based treatment for self-harm in adolescents: A randomized controlled trial. J Am Acad Child Adolesc Psychiatry. 2012;51(12): 1304-1313.e3. doi: 10.1016/j.jaac.2012.09.018

 

  1. Lieberman MD, Eisenberger NI, Crockett MJ, et al. Putting feelings into words: Affect labeling disrupts amygdala activity in response to affective stimuli. Psychol Sci. 2007;18(5): 421-428. doi: 10.1111/j.1467-9280.2007.01916.x

 

  1. Zoogman S, Goldberg SB, Hoyt WT, Miller L. Mindfulness interventions with youth: A meta-analysis. Mindfulness (N Y). 2015;6:290-302. doi: 10.1007/s12671-013-0260-4

 

  1. Stice E, Shaw H, Burton E, Wade E. Dissonance and healthy weight eating disorder prevention programs: A randomized efficacy trial. J Consult Clin Psychol. 2006;74(2):263-275. doi: 10.1037/0022-006X.74.2.263

 

  1. Forbes MK, Wright AGC, Markon KE, Krueger RF. Evidence that psychopathology symptom networks have limited replicability. J Abnorm Psychol. 2017;126(6):774-786. doi: 10.1037/abn0000276

 

  1. Jones PJ, Ma R, McNally RJ. Bridge centrality: A network approach to understanding comorbidity. Multivariate Behav Res. 2021;56(2):353-367. doi: 10.1080/00273171.2019.1614898

 

  1. De Los Reyes A, Youngstrom EA, Swan AJ, et al. The transition from evidence to practice for informant discrepancies in clinical assessment: Clinical implications. Annu Rev Clin Psychol. 2015;11:123-149. doi: 10.1146/annurev-clinpsy-032814-112800

 

  1. Dorado JS, Martinez M, McArthur LE, Leibovitz T. Healthy environments and response to trauma in schools (HEARTS): A whole-school, multi-level, prevention and intervention program for creating trauma-informed, safe and supportive schools. Sch Ment Health. 2016;8:163-176. doi: 10.1007/s12310-016-9177-0

 

  1. Stice E, Rohde P, Gau J, Shaw H. An effectiveness trial of a dissonance-based eating disorder prevention program for high-risk adolescent girls. J Consult Clin Psychol. 2009;77(5):825-834. doi: 10.1037/a0016132
Share
Back to top
Journal of Clinical and Basic Psychosomatics, Electronic ISSN: 2972-4414 Print ISSN: 3060-8562, Published by AccScience Publishing