Harnessing brain-computer interfaces for psychosomatic disorders: Mechanisms, outcomes, and ethics

Brain-computer interfaces (BCIs) are advancing from proof-of-concept to early clinical use for psychosomatic disorders, yet a concise synthesis that links mechanisms, therapeutic value, and governance remains limited. This review integrates present knowledge on how BCIs modulate emotion-cognition-autonomic networks, summarizes clinical signals in depression, anxiety/post-traumatic stress disorder, somatoform conditions, and chronic pain, as well as outlines the ethical-regulatory context shaping translation. Peer-reviewed studies and authoritative policy documents were retrieved from scholarly literature and organizational websites. The authors screened and narratively synthesized neural targets, outcomes, adverse events, and governance themes. As the aim was conceptual integration and policy mapping rather than quantitative pooling, no meta-analysis, formal risk-of-bias scoring, or registration of the International Prospective Register of Systematic Reviews was undertaken. Converging evidence indicates that electroencephalogram-based neurofeedback and real-time functional magnetic resonance imaging can reduce distress, enhance emotion regulation, and modulate interoceptive/autonomic markers with generally mild and transient adverse events. Nevertheless, gaps persist in long-term safety monitoring, standardized protocols, and explicit safeguards for brain-data privacy, autonomy, and equity. BCIs thus appear as a mechanistically plausible, moderately effective, and well-tolerated adjunct in psychosomatic care, provided that future multicenter trials embed harmonized methods, extended follow-up, and robust governance aligned with emerging international guidance.
- He B, Yuan H, Meng J, Gao S. Brain-computer interfaces. In: He B, editor. Neural Engineering. 3rd ed. Cham: Springer; 2020. p. 1-32. doi: 10.1007/978-3-030-43395-6_4
- Yao D, Qin Y, Zhang Y. From psychosomatic medicine, brain-computer interface to brain-apparatus communication. Brain Apparatus Commun J Bacomics. 2022;1(1):66-88. doi: 10.1080/27706710.2022.2120775
- Pal D, Palit S, Dey A. Brain computer interface: A review. In: Satpathy SK, Sharma TK, editors. Lecture Notes in Electrical Engineering. Singapore: Springer; 2021. p. 23-38. doi: 10.1007/978-981-16-4035-3_3
- Potter M, Harriss L. Brain-Computer Interfaces. Vol. 614. POSTnote; 2020. p. 1-6. Available from: https:// researchbriefings.files.parliament.uk/documents/post/ pn/0614/post/pn/0614.pdf [Last accessed on 2025 Aug 23].
- Bablani A, Edla DR, Tripathi D, Cheruku R. Survey on brain-computer interface: An emerging computational intelligence paradigm. ACM Comput Surv. 2019;52(4):1-32. doi: 10.1145/3297713
- Bularka S, Gontean A. Brain-computer interface review. In: Proceedings IEEE International Symposium on Electronics Telecommunications. United States: IEEE; 2016. p. 219-222. doi: 10.1109/ISETC.2016.7781096
- U.S. Food and Drug Administration. Implanted Brain Computer Interface Devices-Nonclinical Testing and Clinical Study Design Considerations; 2023. Available from: https:// www.fda.gov/media/159313/download [Last accessed on 2025 Aug 23].
- Wulsin LR, Singal BM. Do depressive symptoms increase the risk for the onset of coronary disease? A systematic quantitative review. Psychosom Med. 2003;65(2):201-210. doi: 10.1097/01.PSY.0000058371.50240.E3
- Takahashi T, Murata T, Hamada T, et al. Changes in EEG and autonomic nervous activity during meditation and their association with personality traits. Int J Psychophysiol. 2005;55(2):199-207. doi: 10.1016/j.ijpsycho.2004.07.004
- Feinstein JS, Khalsa SS, Yeh H, et al. Examining interoception and emotion in humans with focal brain damage. Nat Neurosci. 2016;19(1):54-62. doi: 10.1038/nn.4184
- Zhang M, Yang Y, Zhao Y, et al. The application of integrating electroencephalograph-based emotion recognition technology into brain-computer interface systems for the treatment of depression: A narrative review. Adv Technol Neurosci. 2024;1:188-200. doi: 10.4103/atn.atn-d-24-00018
- Grabowski ŁB, Chełstowski M, Hiszpańska M, Łaszewska K, Lewandowska M, Milner R. Abnormalities in the absolute power of delta and alpha rhythms in the frontal lobe of patients suffering from psychosomatic disorders. Psychiatr Pol. 2024;58(2):1-12. doi: 10.12740/PP/OnlineFirst/186755
- Schmidt K, Barac-Dammeyer D, Kowalski A, Teigelack P, Pfeiffer C, Robitzsch A, et al. Implementing biofeedback treatment in a psychosomatic-psychotherapeutic inpatient unit: a cross-sectoral project. Front Psychiatry. 2023;14:1140880. doi: 10.3389/fpsyt.2023.1140880
- Barsky AJ, Silbersweig DA. Toward an integrative understanding of somatoform disorders. Am J Psychiatry. 2008;165(9):1181-1189. doi: 10.1176/appi.ajp.2008.08020214
- Birbaumer N, Ramos-Murguialday A, Cohen LG. Brain-computer interface in paralysis. Curr Opin Neurol. 2008;21:634-638. doi: 10.1097/WCO.0b013e328315ee2d
- Demarest P, Rustamov N, Swift J, Xie T, Adamek M, Cho H, et al. A novel theta-controlled vibrotactile brain–computer interface to treat chronic pain: a pilot study. Sci Rep. 2024;14(1):3433. doi: 10.1038/s41598-024-53261-3
- Khalsa SS, Lapidus RC. Can interoception improve the pragmatic search for biomarkers in psychiatry? Front Psychiatry. 2016;7:121. doi: 10.3389/fpsyt.2016.00121
- Lin F, Xing S, Luo W, et al. Affective BCI in depression: A review. IEEE Trans Neural Syst Rehabil Eng. 2022;30:1-14. doi: 10.1109/TNSRE.2021.3099086
- Sitaram R, Ros T, Stoeckel LE, Haller S, Scharnowski F, Lewis- Peacock JA, et al. Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci. 2017;18(2):86-100. doi: 10.1038/nrn.2016.164
- Ruiz S, Buyukturkoglu K, Rana M, Birbaumer N, Sitaram R. Real-time rt-fMRI BCI for emotion regulation. Appl Psychophysiol Biofeedback. 2014;39(2):69-77. doi: 10.1007/s10484-014-9244-2
- Marzbani H, Marateb HR, Mansourian M. Neurofeedback: a comprehensive review on system design, methodology and clinical applications. Basic Clin Neurosci. 2016;7(2):143-158. doi: 10.15412/J.BCN.03070208
- Young KD, Zotev V, Phillips R, et al. Real-time FMRI neurofeedback training of amygdala activity in patients with major depressive disorder. PLoS One. 2014;9(2):e88785. doi: 10.1371/j2ournal.pone.0088785
- Lieberman JM, Rabellino D, Densmore M, et al. A tale of two targets: Examining the differential effects of posterior cingulate cortex- and amygdala-targeted fMRI-neurofeedback in a PTSD pilot study. Front Neurosci. 2023;17:1229729. doi: 10.3389/fnins.2023.1229729
- DeCharms RC, Maeda F, Glover GH, et al. Control over brain activation and pain learned by using real-time functional MRI. Proc Natl Acad Sci USA. 2005;102(51):18626-18631. doi: 10.1073/pnas.0505210102
- Arnold LE, Lofthouse N, Hersch S, et al. EEG Neurofeedback for ADHD: Double-blind sham-controlled randomized pilot feasibility trial. J Atten Disord. 2013;17:410-419. doi: 10.1177/1087054712446173
- Wu YR, Su WS, Lin KD, Lin IM. Effect of heart rate variability biofeedback on cardiac autonomic activation and diabetes self-care in patients with type II diabetes mellitus. Appl Psychophysiol Biofeedback. 2024;50:315-327. doi: 10.1007/s10484-024-09666-x
- Jenkins S, Cross A, Osman H, et al. Effectiveness of biofeedback on blood pressure in patients with hypertension: Systematic review and meta-analysis. J Hum Hypertens. 2024;38:719-727. doi: 10.1038/s41371-024-00937-y
- Stern MJ, Guiles RAF, Gevirtz R. HRV biofeedback for pediatric irritable bowel syndrome and functional abdominal pain: A clinical replication series. Appl Psychophysiol Biofeedback. 2014;39(34):287-291. doi: 10.1007/s104840149261x
- OECD. Neurotechnology Toolkit to Support the OECD Recommendation on Responsible Innovation in Neurotechnology. Paris: OECD; 2024. Available from: https://www.oecd.org/sti/emerging-tech/neurotechnology-toolkit.htm [Last accessed on 2025 Aug 23].
- IEEE Standards Association. IEEE P2731: Standard for a Unified Terminology for Brain-Computer Interfaces. IEEE; 2022. Available from: https://sagroups.ieee.org/2731 [Last accessed on 2025 Aug 23].
- Chile. Constitutional Amendment No. 21.383 Establishing Neurorights. Santiago, Chile: Government of Chile; 2021. Available from: https://www.bcn.cl/leychile/ navegar?idnorma=1167604 [Last accessed on 2025 Aug 23].
- European Parliamentary Research Service. The Protection of Neurodata in the EU: Legal and Policy Options. Brussels: European Parliament; 2024. Available from: https:// www.europarl.europa.eu/thinktank/en/document/eprs_ stu(2024)757807 [Last accessed on 2025 Aug 23].
- NIH BRAIN Initiative Neuroethics Working Group. Meeting Summaries. Bethesda, MD: National Institutes of Health; 2024. Available from: https://braininitiative.nih.gov [Last accessed on 2025 Aug 23].
- Livanis E, Voultsos P, Vadikolias K, Pantazakos P, Tsaroucha A. Understanding the ethical issues of brain-computer interfaces (BCIs): a blessing or the beginning of a dystopian future? Cureus. 2024;16(4):e58243. doi: 10.7759/cureus.58243
- Steinert S, Friedrich O. Wired emotions: Ethical issues of affective brain-computer interfaces. Sci Eng Ethics. 2020;26:351-367. doi: 10.1007/s11948-019-00087-2
- UNESCO. Towards an International Instrument: Recommendation on the Ethics of Neurotechnology. Paris, France: UNESCO; 2025. Available from: https:// www.unesco.org/en/ethics-neurotech [Last accessed on 2025 Aug 23].
- Carey G, Malbon E, Carey N, Joyce A, Crammond B, Carey A. Systems science and systems thinking for public health: a systematic review of the field. BMJ Open. 2015;5(12):e009002. doi: 10.1136/bmjopen-2015-009002
- Whitfield-Gabrieli S, Ford JM. Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol. 2012;8:49-76. doi: 10.1146/annurev-clinpsy-032511-143049
- Menon V. Large-scale brain networks and psychopathology. JAMA Psychiatry. 2011;70(7):695-698. doi: 10.1001/jamapsychiatry.2013.4097
- Guger C, Allison B, Editors K, Gan W, Miller K. Brain- Computer Interface Research: A State-of-the-Art Summary 8. In: Brain-Computer Interface Research. Berlin: Springer; 2020. doi: 10.1007/978-3-030-49583-1
- Enriquez-Geppert S, Huster RJ, Herrmann CS. EEG-neurofeedback as a tool to modulate cognition and behavior: A review tutorial. Front Hum Neurosci. 2017;11:51. doi: 10.3389/fnhum.2017.00051
- Simmons WK, Avery JA, Barcalow JC, Bodurka J, Drevets WC, Bellgowan P. Keeping the body in mind: Insula functional organization and functional connectivity integrate interoceptive, exteroceptive, and emotional awareness. Hum Brain Mapp. 2013;34(11):2944-2958. doi: 10.1002/hbm.22110
- Sitaram R, Ros T, Stoeckel L, et al. Closed-loop brain training: The science of neurofeedback. Nat Rev Neurosci. 2017;18(2):86-100. doi: 10.1038/nrn.2016.164
- Fernández-Álvarez J, Grassi M, Colombo D, Botella C, Cipresso P, Perna G, et al. Efficacy of bio- and neurofeedback for depression: a meta-analysis. Psychol Med. 2022;52(2):201-216. doi: 10.1017/S0033291721004396
- Klimesch W. α-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci. 2012;16(12):606-617. doi: 10.1016/j.tics.2012.10.007
- Reiter K, Andersen SB, Carlsson J. Neurofeedback in PTSD. Traumatology. 2016;22(4):256-260. doi: 10.1037/trm0000062
- Gruzelier JH. EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants. Neurosci Biobehav Rev. 2014;44:124-141. doi: 10.1016/j.neubiorev.2013.09.015
- Alexander WH, Brown JW. Hierarchical error representation: A computational model of anterior cingulate and dorsolateral prefrontal cortex. Neural Comput. 2015;27:2354-2410. doi: 10.1162/NECO_a_00779
- Zhao Z, Yao S, Li K, et al. Real-time functional connectivity-informed neurofeedback of amygdala-frontal pathways reduces anxiety. Psychother Psychosom. 2019;88(1):5-15. doi: 10.1007/978-3-642-36083-1
- Herwig U, Jäncke L, Scherpiet S, et al. Training emotion regulation through real-time fMRI neurofeedback of amygdala activity. Neuroimage. 2019;184:687-696. doi: 10.1016/j.neuroimage.2018.09.068
- Van Den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: A review on resting-State fMRI connectivity. Eur Neuropsychopharmacol. 2010;20(8):519-534. doi: 10.1016/j.euroneuro.2010.03.008
- Deco G, Corbetta M. The dynamical balance of the brain. Trends Neurosci. 2011;34(12):596-605. doi: 10.1016/j.tins.2011.08.003
- Jensen MP, Hakimian S, Sherlin LH, Fregni F. New insights into neuromodulatory approaches for the treatment of pain. J Pain. 2008;9(3):193-199. doi: 10.1016/j.jpain.2007.11.003
- Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: A primer with examples. Hum Brain Mapp. 2002;15(1):1-25. doi: 10.1002/hbm.1058
- ISO/IEC JTC 1/SC 43. Brain-Computer-Interface- Fundamental Terminology, Interoperability and Data- Security Requirements. Draft International Standard (DIS 2278). Geneva, Switzerland: International Organization for Standardization; 2025. Available from: https://www.iso.org/ standard/92774.html [Last accessed on 2025 Aug 23].
- Soldado-Magraner J, Antonietti A, French J, et al. Applying the IEEE BRAIN neuroethics framework to intra-cortical brain-computer interfaces. J Neural Eng. 2024;21(2):022001. doi: 10.1088/1741-2552/ad3852
- IEEE Brain. 2024 IEEE Brain Discovery and Neurotechnology Workshop-Program and Materials. Chicago, IL: IEEE; 2024. Available from: https://brain.ieee.org/2024/ieee-brain-discovery-neurotechnology-workshop [Last accessed on 2025 Aug 23].
- Richards D, Richardson T. Computer-based psychological treatments for depression: A systematic review and meta-analysis. Clin Psychol Rev. 2012;32(4):329-342. doi: 10.1016/j.cpr.2012.02.004
- Millán JR, Rupp R, Müller-Putz GR, et al. Combining brain-computer interfaces and assistive technologies: State-of-the-art and challenges. Front Neurosci. 2010;4:161. doi: 10.3389/fnins.2010.00161
- Royal Society. Digital Healthcare in Functional Neurological Disorder: Policy Briefing; 2025. Available from: https:// royalsociety.org/topicspolicy [Last accessed on 2025 Aug 23].
- Schoenberg PLA, David AS. Biofeedback for psychiatric disorders: A systematic review. Appl Psychophysiol Biofeedback. 2014;39(2):109-135. doi: 10.1007/s10484-014-9246-5
- Dudarev V, Barral O, Radaeva M, Davis G, Enns JT. Night time heart rate predicts next-day pain in fibromyalgia and primary back pain. Pain Rep. 2024;9(2):e1119. doi: 10.1097/PR9.0000000000001119
- European Union. Regulation (EU) 2025/327 of the European Parliament and of the Council of 11 February 2025 on the European Health Data Space and amending Directive 2011/24/EU and Regulation (EU) 2024/2847; 2025. Available from: https://eur-lex.europa.eu/eli/reg/2025/327/oj/eng [Last accessed on 2025 Aug 23].
- U.S. Government Accountability Office. Technology Assessment: Brain-Computer Interfaces: Applications, Challenges, and Policy Options. GAO-25-106952. Washington, DC: U.S. Government Accountability Office; 2024. Available from: https://www.gao.gov/assets/gao-25- 106952.pdf [Last accessed on 2025 Aug 23].
- Global Privacy Assembly. Resolution on Neurotechnology, Human Rights, Data Protection and Privacy. 46th Closed Session of the Global Privacy Assembly (GPA); Bermuda; 2024. Available from: https://globalprivacyassembly.org/wp/content/uploads/2024/11/ resolution/ on/neurotechnologies. pdf [Last accessed on 2025 Aug 23].
- Fox RI, Fox CM, McCoy SS. Emerging treatment for Sjögren’s disease: A review of recent phase II and III trials. Expert Opin Emerg Drugs. 2023;28(2):107-120. doi: 10.1080/14728214.2023.2209720
- Hu C, Wang L, Huang J, et al. Regional brain function study in patients with primary Sjögren’s syndrome. Arthritis Res Ther. 2025;27:93. doi: 10.1186/s13075-025-03554-3
- Fujieda Y, Koga T, Arima K, et al. Right insular-thalamic functional connectivity as a marker for central fatigue in systemic lupus erythematosus and primary Sjögren’s syndrome. Arthritis Rheumatol. 2023;75(S1):0503.
- Patel K, Sivan M, Henshaw J, Jones AKP. Neurofeedback for chronic pain. In: Smart Biofeedback - Perspectives and Applications. London: IntechOpen; 2020. doi: 10.5772/intechopen.93826
- Jensen MP, Gertz KJ, Kupper AE, et al. Steps toward developing an EEG biofeedback treatment for chronic pain. Appl Psychophysiol Biofeedback. 2013;38(2):101-108. doi: 10.1007/s10484-013-9214-9
- Cornejo-Plaza MI, Cippitani R, Pasquino V. Chilean supreme court ruling on the protection of brain activity: Neurorights, personal data protection, and neurodata. Front Psychol. 2024;15:1330439. doi: 10.3389/fpsyg.2024.1330439
- World Health Organization. Intersectoral Global Action Plan on Epilepsy and Other Neurological Disorders 2022-2031. Geneva, Switzerland: WHO; 2025. Available from: https:// www.who.int/publications/i/item/9789240076624 [Last accessed on 2025 Aug 23].
- World Health Organization. Landscape Analysis of the Opportunities for Digital Interventions in Neurology. Geneva, Switzerland: WHO; 2025. Available from: https://www.who. int/publications/i/item/9789240109049 [Last accessed on 2025 Aug 23].
- World Economic Forum. Framework for a Neurotechnology Regulatory Sandbox in Low-Resource Settings. Geneva: World Economic Forum; 2024. Available from: https://www. weforum.org/publications [Last accessed on 2025 Aug 23].
- U.S. Government Accountability Office. Science and Tech Spotlight: Brain-Computer Interfaces (GAO-22-106118). Washington, DC: GAO; 2022. Available from: https:// www.gao.gov/products/gao-22-106118 [Last accessed on 2025 Aug 23].
- Maiseli B, Abdalla AT, Massawe LV, et al. Brain-computer interface: Trend, challenges, and threats. Brain Inform. 2023;10(1):20. doi: 10.1186/s40708-023-00199-3
- Reilly CM. Brain-machine interfaces as commodities: Exchanging mind for matter. Linacre Q. 2020;87(4):387-398. doi: 10.1177/0024363920930882
- Sabio J, Williams NS, McArthur GM, Badcock NA. A scoping review on the use of consumer-grade EEG devices for research. PLoS One. 2024;19(3):e0291186. doi: 10.1371/journal.pone.0291186
- Craik A, González-España JJ, Alamir A, et al. Design and validation of a low-cost mobile eeg-based brain-computer interface. Sensors (Basel). 2023;23(13):5930. doi: 10.3390/s23135930
- EMOTIV. EPOC X-14-Channel Wireless EEG Headset. Available from: https://www.emotiv.com/products/epoc-x [Last accessed on 2025 Aug 23].
- OECD. Emerging Technologies: Support Adoption and Diffusion. Paris, France: OECD; 2025. Available from: https://www.oecd.org/en/topics/emerging/technologies. html [Last accessed on 2025 Aug 23].
- Xia RT, Yang S. Factors influencing the social acceptance of brain-computer interface technology among Chinese general public: An exploratory study. Front Hum Neurosci. 2024;18:1423382. doi: 10.3389/fnhum.2024.1423382.
- Arias López MPA, Ong BA, Borrat Frigola X, et al. Digital literacy as a new determinant of health: A scoping review. PLOS Digit Health. 2023;2(10):e000279. doi: 10.1371/journal.pdig.0000279
- Weber LA, Ethofer T, Ehlis AC. Predictors of neurofeedback training outcome: A systematic review. Neuroimage Clin. 2020;27:102301. doi: 10.1016/j.nicl.2020.102301
- Nijboer F, Birbaumer N, Kubler A. The influence of psychological state and motivation on BCI performance. Clin Neurophysiol. 2010;121(7):1023-1031. doi: 10.1016/j.clinph.2010.03.022
- Pfurtscheller G, Neuper C, Flotzinger D, Pregenzer M. EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol. 1997;103(6):642-651. doi: 10.1016/S0013-4694(97)00080-1