AccScience Publishing / JCBP / Volume 2 / Issue 1 / DOI: 10.36922/jcbp.2288
Cite this article
66
Download
786
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

The endocannabinoid system: A new frontier in addressing psychosomatic challenges

Laura E. Torres-Mondragón1,2 Luisa C. León-Pimentel1 Daniel E. Pérez-Tamayo1 Alberto K. De la Herrán Arita1*
Show Less
1 Department of Neurophysiology, Faculty of Medicine, Autonomous University of Sinaloa, Culiacán, México
2 Department of Molecular Biomedicine, Autonomous University of Sinaloa, Culiacán, México
Submitted: 22 November 2023 | Accepted: 28 December 2023 | Published: 12 January 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Psychosomatic disorders (PSD), alternatively referred to as psychophysiologic disorders, are characterized by hypothalamic-pituitary-adrenal (HPA) axis activation, posing a substantial challenge in clinical practice. These disorders constitute a collection of intricate medical conditions marked by the considerable impact of psychological and emotional factors on the onset, intensification, or persistence of physical symptoms. The endocannabinoid system, a complex regulatory network consisting of endocannabinoids, cannabinoid receptors, and associated enzymes, emerges as a key player in modulating the body’s stress response, emotional regulation, and immune function. This review delves into the bidirectional relationship between the endocannabinoid system and the HPA axis, elucidating the impact of endocannabinoid system modulation on stress responsiveness, immune modulation, and the intricate interplay between emotional well-being and physical symptoms. Through the synthesis of current scientific knowledge, this review aims to provide a comprehensive understanding of the role of the endocannabinoid system in PSD, offering insights that may pave the way for novel therapeutic approaches.

Keywords
Endocannabinoids
Hypothalamic-pituitary-adrenal axis
Immune system
Psychosomatic medicine
Psychophysiologic disorders
Funding
None.
References
  1. Masuda A, Yamanaka T, Hirakawa T, et al., 2007, Intra-and extra-familial adverse childhood experiences and a history of childhood psychosomatic disorders among Japanese university students. BioPsychoSoc Med, 1: 9. https://doi.org/10.1186/1751-0759-1-9

 

  1. Figueiredo-Ferraz H, Gil-Monte PR, Grau-Alberola E, et al., 2021, The mediator role of feelings of guilt in the process of burnout and psychosomatic disorders: A cross-cultural study. Front Psychol, 12: 751211. https://doi.org/10.3389/fpsyg.2021.751211

 

  1. Bransfield RC, Friedman KJ, 2019, Differentiating psychosomatic, somatopsychic, multisystem illnesses, and medical uncertainty. Healthcare (Basel), 7: 114. https://doi.org/10.3390/healthcare7040114

 

  1. Burton C, Fink P, Henningsen P, et al., 2020, Functional somatic disorders: Discussion paper for a new common classification for research and clinical use. BMC Med, 18: 34. https://doi.org/10.1186/s12916-020-1505-4

 

  1. Sharma DS, Paddibhatla I, Raghuwanshi S, et al., 2021, Endocannabinoid system: Role in blood cell development, neuroimmune interactions and associated disorders. J Neuroimmunol, 353: 577501. https://doi.org/10.1016/j.jneuroim.2021.577501

 

  1. Steardo L Jr., Carbone EA, Menculini G, et al., 2021, Endocannabinoid system as therapeutic target of PTSD: A systematic review. Life, 11: 214. https://doi.org/10.3390/life11030214

 

  1. Song C, Kang X, Yang F, et al., 2021, Endocannabinoid system in the neurodevelopment of GABAergic interneurons: Implications for neurological and psychiatric disorders. Rev Neurosci, 32: 803–831. https://doi.org/10.1515/revneuro-2020-0134

 

  1. Amatriain-Fernández S, Budde H, Gronwald T, et al., 2021, The endocannabinoid system as modulator of exercise benefits in mental health. Curr Neuropharmacol, 19: 1304–1322. https://doi.org/10.2174/1570159x19666201218112748

 

  1. Thurner C, Horing B, Zipfel S, et al., 2022, Autonomic changes as reaction to experimental social stress in an inpatient psychosomatic cohort. Front Psychiatry, 13: 817778. https://doi.org/10.3389/fpsyt.2022.817778

 

  1. Rees L, 1959, The role of stress in the aetiology of psychosomatic disorders. Proc R Soc Med, 52: 274–278.

 

  1. Gieler U, Gieler T, Peters EMJ, et al., 2020, Skin and psychosomatics-psychodermatology today. J Dtsch Dermatol Ges= J Ger Soc Dermatol, 18: 1280–1298. https://doi.org/10.1111/ddg.14328

 

  1. American Psychiatric Association, 2022, DSM-5 TM Guidebook the Essential Companion to the Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Washington, DC: American Psychiatric Publishing.

 

  1. Zefferino R, Di Gioia S, Conese, M, 2020, Molecular links between endocrine, nervous and immune system during chronic stress. Brain Behav, 11: e01960. https://doi.org/10.1002/brb3.1960

 

  1. Mikulska J, Juszczyk G, Gawrońska-Grzywacz M, et al., 2021, HPA axis in the pathomechanism of depression and schizophrenia: New therapeutic strategies based on its participation. Brain Sci, 11: 1298. https://doi.org/10.3390/brainsci11101298

 

  1. Sheng JA, Bales NJ, Myers SA, et al., 2021, The hypothalamic-pituitary-adrenal axis: Development, programming actions of hormones, and maternal-fetal interactions. Front Behav Neurosci, 14: 601939. https://doi.org/10.3389/fnbeh.2020.601939

 

  1. Heck AL, Handa RJ, 2019, Sex differences in the hypothalamic-pituitary-adrenal axis’ response to stress: An important role for gonadal hormones. Neuropsychopharmacology, 44: 45–58. https://doi.org/10.1038/s41386-018-0167-9

 

  1. Tapp ZM, Godbout JP, Kokiko-Cochran ON, 2019, A tilted axis: Maladaptive inflammation and HPA axis dysfunction contribute to consequences of TBI. Front Neurol, 10: 345. https://doi.org/10.3389/fneur.2019.00345

 

  1. Holochwost SJ, Towe-Goodman N, Rehder PD, et al., 2020, Poverty, caregiving, and HPA-axis activity in early childhood. Dev Rev, 56: 100898. https://doi.org/10.1016/j.dr.2020.100898

 

  1. Kinlein SA, Wallace NK, Savenkova MI, et al., 2022, Chronic hypothalamic-pituitary-adrenal axis disruption alters glutamate homeostasis and neural responses to stress in male C57Bl6/N mice. Neurobiol Stress, 19: 100466. https://doi.org/10.1016/j.ynstr.2022.100466

 

  1. Packard AE, Egan AE, Ulrich-Lai YM, 2016, HPA axis interactions with behavioral systems. Compr Physiol, 6: 1897–1934. https://doi.org/10.1002/cphy.c150042

 

  1. Goncharova N, Chigarova O, Rudenko N, et al., 2019, Glucocorticoid negative feedback in regulation of the hypothalamic-pituitary-adrenal axis in rhesus monkeys with various types of adaptive behavior: Individual and age-related differences. Front Endocrinol (Lausanne), 10: 24. https://doi.org/10.3389/fendo.2019.00024

 

  1. Howland MA, Sandman CA, Glynn LM, 2017, Developmental origins of the human hypothalamic-pituitary-adrenal axis. Expert Rev Endocrinol Metab, 12: 321–339. https://doi.org/10.1080/17446651.2017.1356222

 

  1. Sheng JA, Tan SML, Hale TM, et al., 2021, Androgens and their role in regulating sex differences in the hypothalamic/ pituitary/adrenal axis stress response and stress-related behaviors. Androg Clin Res Ther, 2: 261–274. https://doi.org/10.1089/andro.2021.0021

 

  1. Evans BE, van der Ende J, Greaves-Lord K, et al., 2020, Urbanicity, hypothalamic-pituitary-adrenal axis functioning, and behavioral and emotional problems in children: A path analysis. BMC Psychol, 8: 12. https://doi.org/10.1186/s40359-019-0364-2

 

  1. Labad J, Salvat-Pujol N, Armario A, et al., 2020, The role of sleep quality, trait anxiety and hypothalamic-pituitary-adrenal axis measures in cognitive abilities of healthy individuals. Int J Environ Res Public Health, 17: 7600. https://doi.org/10.3390/ijerph17207600

 

  1. Langgartner D, Lowry CA, Reber SO, 2019, Old friends, immunoregulation, and stress resilience. Pflugers Arch Eur J Physiol, 471: 237–269. https://doi.org/10.1007/s00424-018-2228-7

 

  1. Lin TK, Zhong L, Santiago JL, 2017, Association between stress and the HPA axis in the atopic dermatitis. Int J Mol Sci, 18: 2131. https://doi.org/10.3390/ijms18102131

 

  1. Ortega VA, Mercer EM, Giesbrecht GF, et al., 2021, Evolutionary significance of the neuroendocrine stress axis on vertebrate immunity and the influence of the microbiome on early-life stress regulation and health outcomes. Front Microbiol, 12: 634539. https://doi.org/10.3389/fmicb.2021.634539

 

  1. Di Iorio CR, Carey CE, Michalski LJ, et al., 2017, Hypothalamic-pituitary-adrenal axis genetic variation and early stress moderates amygdala function. Psychoneuroendocrinology, 80: 170–178. https://doi.org/10.1016/j.psyneuen.2017.03.016

 

  1. Kinlein SA, Phillips DJ, Keller CR, et al., 2019, Role of corticosterone in altered neurobehavioral responses to acute stress in a model of compromised hypothalamic-pituitary-adrenal axis function. Psychoneuroendocrinology, 102: 248–255. https://doi.org/10.1016/j.psyneuen.2018.12.010

 

  1. Lightman SL, Birnie MT, Conway-Campbell BL, 2020, Dynamics of ACTH and cortisol secretion and implications for disease. Endocr Rev, 41: bnaa002. https://doi.org/10.1210/endrev/bnaa002

 

  1. Nicolaides NC, Vgontzas AN, Kritikou I, et al., 2020, HPA axis and sleep. In: KR Feingold, B Anawalt, A Boyce, (eds.). Endotext. South Dartmouth, MA: MDText.Com, Inc.

 

  1. Zajkowska Z, Gullett N, Walsh A, et al., 2022, Cortisol and development of depression in adolescence and young adulthood-a systematic review and meta-analysis. Psychoneuroendocrinology, 136: 105625. https://doi.org/10.1016/j.psyneuen.2021.105625

 

  1. Dunlop BW, Wong A, 2019, The hypothalamic-pituitary-adrenal axis in PTSD: Pathophysiology and treatment interventions. Prog Neuropsychopharmacol Biol Psychiatry, 89: 361–379. https://doi.org/10.1016/j.pnpbp.2018.10.010

 

  1. Kozlowska K, Scher S, Helgeland H, 2020, The HPA axis and functional somatic symptoms. In: Functional Somatic Symptoms in Children and Adolescents. Cham: Palgrave Macmillan. p. 161–173. https://doi.org/10.1007/978-3-030-46184-3_8

 

  1. Juruena MF, Eror F, Cleare AJ, et al., 2020, The role of early life stress in HPA Axis and anxiety. Adv Exp Med Biol, 1191: 141–153. https://doi.org/10.1007/978-981-32-9705-0_9

 

  1. Ishikawa Y, Furuyashiki T, 2022, The impact of stress on immune systems and its relevance to mental illness. Neurosci Res, 175: 16–24. https://doi.org/10.1016/j.neures.2021.09.005

 

  1. Peters KZ, Cheer JF, Tonini R, 2021, Modulating the neuromodulators: Dopamine, serotonin, and the endocannabinoid system. Trends Neurosci, 44: 464–477. https://doi.org/10.1016/j.tins.2021.02.001

 

  1. Laksmidewi AAA, Soejitno A, 2021, Endocannabinoid and dopaminergic system: The pas de deux underlying human motivation and behaviors. J Neural Transm (Vienna), 128: 615–630. https://doi.org/10.1007/s00702-021-02326-y

 

  1. Argenziano M, Tortora C, Bellini G, et al., 2019, The endocannabinoid system in pediatric inflammatory and immune diseases. Int J Mol Sci, 20: 5875. https://doi.org/10.3390/ijms20235875

 

  1. Melmed S, Kaiser UB, Lopes MB, et al., 2022, Clinical biology of the pituitary adenoma. Endocr Rev, 43: 1003–1037. https://doi.org/10.1210/endrev/bnac010

 

  1. Liu Y, Zhao J, Fan X, et al., 2019, Dysfunction in serotonergic and noradrenergic systems and somatic symptoms in psychiatric disorders. Front Psychiatry, 10: 286. https://doi.org/10.3389/fpsyt.2019.00286

 

  1. Pais ML, Martins J, Castelo-Branco M, et al., 2023, Sex differences in tryptophan metabolism: A systematic review focused on neuropsychiatric disorders. Int J Mol Sci, 24: 6010. https://doi.org/10.3390/ijms24066010

 

  1. Téblick A, De Bruyn L, Van Oudenhove T, et al., 2022, Impact of hydrocortisone and of CRH infusion on the hypothalamus-pituitary-adrenocortical axis of septic male mice. Endocrinology, 163: bqab222. https://doi.org/10.1210/endocr/bqab222

 

  1. Rusch JA, Layden BT, Dugas LR, 2023, Signalling cognition: The gut microbiota and hypothalamic-pituitary-adrenal axis. Front Endocrinol (Lausanne), 14: 1130689. https://doi.org/10.3389/fendo.2023.1130689

 

  1. Marino LO, Souza HP, 2020, Dysfunction of the hypothalamic-pituitary-adrenal axis in critical illness: A narrative review for emergency physicians. Eur J Emerg Med, 27: 406–413. https://doi.org/10.1097/MEJ.0000000000000693

 

  1. Barnabei A, Corsello A, Paragliola RM, et al., 2022, Immune checkpoint inhibitors as a threat to the hypothalamus-pituitary axis: A completed puzzle. Cancers (Basel), 14: 1057. https://doi.org/10.3390/cancers14041057

 

  1. Langouche L, Téblick A, Gunst J, et al., 2023, The hypothalamus-pituitary-adrenocortical response to critical illness: A concept in need of revision. Endocr Rev, 44: 1096–1106. https://doi.org/10.1210/endrev/bnad021

 

  1. Van den Berghe G, Téblick A, Langouche L, et al., 2022, The hypothalamus-pituitary-adrenal axis in sepsis- and hyperinflammation-induced critical illness: Gaps in current knowledge and future translational research directions. EBioMedicine, 84: 104284. https://doi.org/10.1016/j.ebiom.2022.104284

 

  1. Karin O, Raz M, Tendler A, et al., 2020, A new model for the HPA axis explains dysregulation of stress hormones on the timescale of weeks. Mol Syst Biol, 16: e9510. https://doi.org/10.15252/msb.20209510

 

  1. Iob E, Kirschbaum C, Steptoe A, 2019, Persistent depressive symptoms, HPA-axis hyperactivity, and inflammation: The role of cognitive-affective and somatic symptoms. Mol Psychiatry, 25: 1130–1140. https://doi.org/10.1038/s41380-019-0501-6

 

  1. Wyns A, Hendrix J, Lahousse A, et al., 2023, The biology of stress intolerance in patients with chronic pain-state of the art and future directions. J Clin Med, 12: 2245. https://doi.org/10.3390/jcm12062245

 

  1. Sjörs Dahlman A, Jonsdottir IH, Hansson C, 2021, The hypothalamo-pituitary-adrenal axis and the autonomic nervous system in burnout. Handb Clin Neurol, 182: 83–94. https://doi.org/10.1016/b978-0-12-819973-2.00006-x

 

  1. Schuurmans AAT, Nijhof KS, Cima M, et al., 2021, Alterations of autonomic Nervous system and HPA axis basal activity and reactivity to acute stress: A comparison of traumatized adolescents and healthy controls. Stress, 24: 876–887. https://doi.org/10.1080/10253890.2021.1900108

 

  1. Baik JH, 2020, Stress and the dopaminergic reward system. Exp Mol Med, 52: 1879–1890. https://doi.org/10.1038/s12276-020-00532-4

 

  1. Burford NG, Webster NA, Cruz-Topete D, 2017, Hypothalamic-pituitary-adrenal axis modulation of glucocorticoids in the cardiovascular system. Int J Mol Sci, 18: 2150. https://doi.org/10.3390/ijms18102150

 

  1. Okuma Y, Aoki T, Miyara SJ, et al., 2021, The evaluation of pituitary damage associated with cardiac arrest: An experimental rodent model. Sci Rep, 11: 629. https://doi.org/10.1038/s41598-020-79780-3

 

  1. Shipston MJ, 2022, Glucocorticoid action in the anterior pituitary gland: Insights from corticotroph physiology. Curr Opin Endocr Metab Res, 25: 100358. https://doi.org/10.1016/j.coemr.2022.100358

 

  1. Wang M, Yang Y, Xu Y, 2023, Brain nuclear receptors and cardiovascular function. Cell Biosci, 13: 14. https://doi.org/10.1186/s13578-023-00962-3

 

  1. Iob E, Steptoe A, 2019, Cardiovascular disease and hair cortisol: A novel biomarker of chronic stress. Curr Cardiol Rep, 21: 116. https://doi.org/10.1007/s11886-019-1208-7

 

  1. Khan MS, Aouad R, 2022, The effects of insomnia and sleep loss on cardiovascular disease. Sleep Med Clin, 17: 193–203. https://doi.org/10.1016/j.jsmc.2022.02.008

 

  1. Liu B, Zhang TN, Knight JK, et al., 2019, The glucocorticoid receptor in cardiovascular health and disease. Cells, 8: 1227. https://doi.org/10.3390/cells8101227

 

  1. Azizi M, 2020, Aldosterone receptor antagonists. Ann Endocrinol (Paris), 82: 179–181. https://doi.org/10.1016/j.ando.2020.03.009

 

  1. Motavalli R, Majidi T, Pourlak T, et al., 2021, The clinical significance of the glucocorticoid receptors: Genetics and epigenetics. J Steroid Biochem Mol Biol, 213: 105952. https://doi.org/10.1016/j.jsbmb.2021.105952

 

  1. De Kloet ER, 2023, Glucocorticoid feedback paradox: A homage to Mary Dallman. Stress, 26: 2247090. https://doi.org/10.1080/10253890.2023.2247090

 

  1. Talarowska M, 2020, Epigenetic mechanisms in the neurodevelopmental theory of depression. Depress Res Treat, 2020: 6357873. https://doi.org/10.1155/2020/6357873

 

  1. Dempster KS, O’Leary DD, MacNeil AJ, et al., 2021, Linking the hemodynamic consequences of adverse childhood experiences to an altered HPA axis and acute stress response. Brain Behav Immun, 93: 254–263. https://doi.org/10.1016/j.bbi.2020.12.018

 

  1. Goldberger JJ, Arora R, Buckley U, et al., 2019, Autonomic nervous system dysfunction: JACC focus seminar. J Am Coll Cardiol, 73: 1189–1206. https://doi.org/10.1016/j.jacc.2018.12.064

 

  1. Wiley JW, Higgins GA, Athey BD, 2016, Stress and glucocorticoid receptor transcriptional programming in time and space: Implications for the brain-gut axis. Neurogastroenterol Motil, 28: 12–25. https://doi.org/10.1111/nmo.12706

 

  1. Cuddihey H, MacNaughton WK, Sharkey KA, 2022, Role of the endocannabinoid system in the regulation of intestinal homeostasis. Cell Mol Gastroenterol Hepatol, 14: 947–963. https://doi.org/10.1016/j.jcmgh.2022.05.015

 

  1. Osafo N, Yeboah OK, Antwi AO, 2021, Endocannabinoid system and its modulation of brain, gut, joint and skin inflammation. Mol Biol Rep, 48: 3665–3680. https://doi.org/10.1007/s11033-021-06366-1

 

  1. Agirman G, Yu KB, Hsiao EY, 2021, Signaling inflammation across the gut-brain axis. Science, 374: 1087–1092. https://doi.org/10.1126/science.abi6087

 

  1. Morreale C, Bresesti I, Bosi A, et al., 2022, Microbiota and pain: Save your gut feeling. Cells, 11: 971. https://doi.org/10.3390/cells11060971

 

  1. Sabo CM, Dumitrascu DL, 2021, Microbiota and the irritable bowel syndrome. Minerva Gastroenterol (Torino), 67: 377–384. https://doi.org/10.23736/s2724-5985.21.02923-5

 

  1. Yan M, Man S, Sun B, et al., 2023, Gut liver brain axis in diseases: The implications for therapeutic interventions. Signal Transduct Target Ther, 8: 443. https://doi.org/10.1038/s41392-023-01673-4

 

  1. Peppas S, Pansieri C, Piovani D, et al., 2021, The brain-gut axis: Psychological functioning and inflammatory bowel diseases. J Clin Med, 10: 377. https://doi.org/10.3390/jcm10030377

 

  1. Ding M, Lang Y, Shu H, et al., 2021, Microbiota-gut-brain axis and epilepsy: A review on mechanisms and potential therapeutics. Front Immunol, 12: 742449. https://doi.org/10.3389/fimmu.2021.742449

 

  1. Xu Q, Jiang M, Gu S, et al., 2022, Metabolomics changes in brain-gut axis after unpredictable chronic mild stress. Psychopharmacology (Berl), 239: 729–743. https://doi.org/10.1007/s00213-021-05958-w

 

  1. Simpson S, Mclellan R, Wellmeyer E, et al., 2022, Drugs and bugs: The gut-brain axis and substance use disorders. J Neuroimmune Pharmacol, 17: 33–61. https://doi.org/10.1007/s11481-021-10022-7

 

  1. Timmers I, Quaedflieg CWE, Hsu C, et al., 2019, The interaction between stress and chronic pain through the lens of threat learning. Neurosci Biobehav Rev, 107: 641–655. https://doi.org/10.1016/j.neubiorev.2019.10.007

 

  1. Fitzcharles MA, Cohen SP, Clauw DJ, et al., 2021, Nociplastic pain: Towards an understanding of prevalent pain conditions. Lancet, 397: 2098–2110. https://doi.org/10.1016/S0140-6736(21)00392-5

 

  1. Buisseret B, Alhouayek, M., Guillemot-Legris O, et al., 2019, Endocannabinoid and prostanoid crosstalk in pain. Trends Mol Med, 25: 882–896. https://doi.org/10.1016/j.molmed.2019.04.009

 

  1. Diaz MM, Caylor J, Strigo I, et al., 2022, Toward composite pain biomarkers of neuropathic pain-focus on peripheral neuropathic pain. Front Pain Res (Lausanne), 3: 869215. https://doi.org/10.3389/fpain.2022.869215

 

  1. Cohen SP, Fitzcharles MA, Hauser W, 2022, Nociplastic pain is functional pain-authors’ reply. Lancet, 399: 1604. https://doi.org/10.1016/s0140-6736(21)02506-x

 

  1. Song LN, 1991, Stress-induced changes in glucocorticoid receptors: Molecular mechanisms and clinical implications. Mol Cell Endocrinol, 80: C171–C174. https://doi.org/10.1016/0303-7207(91)90133-d

 

  1. Köbler P, Krauss-Köstler EK, Stein B, et al., 2022, Specialized biopsychosocial care in inpatient somatic medicine units-a pilot study. Front Public Health, 10: 844874. https://doi.org/10.3389/fpubh.2022.844874

 

  1. Miranda A, Peek E, Ancoli‐Israel S, et al., 2023, The role of cannabis and the endocannabinoid system in sleep regulation and cognition: A review of human and animal studies. Behav Sleep Med, 3: 1–17. https://doi.org/10.1080/15402002.2023.2232497

 

  1. Simon L, Admon R, 2023, From childhood adversity to latent stress vulnerability in adulthood: The mediating roles of sleep disturbances and HPA axis dysfunction. Neuropsychopharmacology, 48: 1425–1435. https://doi.org/10.1038/s41386-023-01638-9

 

  1. Kinlein SA, Karatsoreos IN, 2020, The hypothalamic-pituitary-adrenal axis as a substrate for stress resilience: Interactions with the circadian clock. Front Neuroendocrinol, 56: 100819. https://doi.org/10.1016/j.yfrne.2019.100819

 

  1. Kesner AJ, Lovinger DM, 2020, Cannabinoids, endocannabinoids and sleep. Front Mol Neurosci, 13: 125. https://doi.org/10.3389/fnmol.2020.00125

 

  1. Murillo-Rodríguez E, Budde H, Veras AB, et al., 2020, The endocannabinoid system may modulate sleep disorders in aging. Curr Neuropharmacol, 18: 97–108. https://doi.org/10.2174/1570159x17666190801155922

 

  1. Musella A, Centonze D, 2023, Electrophysiology of endocannabinoid signaling. Methods Mol Biol, 2576: 461–475. https://doi.org/10.1007/978-1-0716-2728-0_38

 

  1. Katona I, Freund TF, 2012, Multiple functions of endocannabinoid signaling in the brain. Annu Rev Neurosci, 35: 529–558. https://doi.org/10.1146/annurev-neuro-062111-150420

 

  1. Vanini G, Torterolo P, 2021, Sleep-wake neurobiology. Adv Exp Med Biol, 1297: 65–82. https://doi.org/10.1007/978-3-030-61663-2_5

 

  1. Wang Z, Wang Z, Lu T, et al., 2022, The microbiota-gut-brain axis in sleep disorders. Sleep Med Rev, 65: 101691. https://doi.org/10.1016/j.smrv.2022.101691

 

  1. Patke A, Young MW, Axelrod S, 2020, Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol, 21: 67–84. https://doi.org/10.1038/s41580-019-0179-2

 

  1. Crocq MA, 2020, History of cannabis and the endocannabinoid system. Dialogues Clin Neurosci, 22: 223–228. https://doi.org/10.31887/dcns.2020.22.3/mcrocq

 

  1. Wu J, 2019, Cannabis, cannabinoid receptors, and endocannabinoid system: Yesterday, today, and tomorrow. Acta Pharmacol Sin, 40: 297–299. https://doi.org/10.1038/s41401-019-0210-3

 

  1. Rana T, Behl T, Sehgal A, et al., 2021, Integrating endocannabinoid signalling in depression. J Mol Neurosci, 71: 2022–2034. https://doi.org/10.1007/s12031-020-01774-7

 

  1. Sharafi A, Pakkhesal S, Fakhari A, et al., 2022, Rapid treatments for depression: Endocannabinoid system as a therapeutic target. Neurosci Biobehav Rev, 137: 104635. https://doi.org/10.1016/j.neubiorev.2022.104635

 

  1. Behl T, Makkar R, Sehgal A, et al., 2022, Exploration of multiverse activities of endocannabinoids in biological systems. Int J Mol Sci, 23: 5734. https://doi.org/10.3390/ijms23105734

 

  1. Bright U, Akirav I, 2022, Modulation of endocannabinoid system components in depression: Pre-clinical and clinical evidence. Int J Mol Sci, 23: 5526. https://doi.org/10.3390/ijms23105526

 

  1. Gallego-Landin I, García-Baos A, Castro-Zavala A, et al., 2021, Reviewing the role of the endocannabinoid system in the pathophysiology of depression. Front Pharmacol, 12: 762738. https://doi.org/10.3389/fphar.2021.762738

 

  1. Dong MX, Chen GH, Hu L, 2020, Dopaminergic system alteration in anxiety and compulsive disorders: A systematic review of neuroimaging studies. Front Neurosci, 14: 608520. https://doi.org/10.3389/fnins.2020.608520

 

  1. Forsythe ML, Boileau AJ, 2021, Use of cannabinoids for the treatment of patients with post-traumatic stress disorder. J Basic Clin Physiol Pharmacol, 33: 121–132. https://doi.org/10.1515/jbcpp-2020-0279

 

  1. Stachowicz K, 2023, Deciphering the mechanisms of reciprocal regulation or interdependence at the cannabinoid CB1 receptors and cyclooxygenase-2 level: Effects on mood, cognitive implications, and synaptic signaling. Neurosci Biobehav Rev, 155: 105439. https://doi.org/10.1016/j.neubiorev.2023.105439

 

  1. Lu HC, Mackie K, 2020, Review of the endocannabinoid system. Biol Psychiatry Cogn Neurosci Neuroimaging, 6: 607–615. https://doi.org/10.1016/j.bpsc.2020.07.016

 

  1. Joshi N, Onaivi ES, 2019, Endocannabinoid system components: Overview and tissue distribution. Adv Exp Med Biol, 1162: 1–12. https://doi.org/10.1007/978-3-030-21737-2_1

 

  1. Mueller B, Figueroa A, Robinson-Papp J, 2022, Structural and functional connections between the autonomic nervous system, hypothalamic-pituitary-adrenal axis, and the immune system: A context and time dependent stress response network. Neurol Sci, 43: 951–960. https://doi.org/10.1007/s10072-021-05810-1

 

  1. Bernal-Chico A, Tepavcevic V, Manterola A, et al., 2023, Endocannabinoid signaling in brain diseases: Emerging relevance of glial cells. Glia, 71: 103–126. https://doi.org/10.1002/glia.24172

 

  1. Paloczi J, Varga ZV, Hasko G, et al., 2018, Neuroprotection in oxidative stress-related neurodegenerative diseases: Role of endocannabinoid system modulation. Antioxid Redox Signal, 29: 75–108. https://doi.org/10.1089/ars.2017.7144

 

  1. Kasatkina LA, Rittchen S, Sturm EM, 2021, Neuroprotective and immunomodulatory action of the endocannabinoid system under neuroinflammation. Int J Mol Sci, 22: 5431. https://doi.org/10.3390/ijms22115431

 

  1. Hillard CJ, 2015, The endocannabinoid signaling system in the CNS: A primer. Int Rev Neurobiol, 125: 1–47. https://doi.org/10.1016/bs.irn.2015.10.001

 

  1. Gregus AM, Buczynski MW, 2020, Druggable targets in endocannabinoid signaling. Adv Exp Med Biol, 1274: 177–201. https://doi.org/10.1007/978-3-030-50621-6_8

 

  1. Kilaru A, Chapman KD, 2020, The endocannabinoid system. Essays Biochem, 64: 485–499. https://doi.org/10.1042/ebc20190086

 

  1. Spanagel R, 2020, Cannabinoids and the endocannabinoid system in reward processing and addiction: From mechanisms to interventions. Dialogues Clin Neurosci, 22: 241–250. https://doi.org/10.31887/dcns.2020.22.3/rspanagel

 

  1. Maldonado R, Cabañero D, Martín-García E, 2020, The endocannabinoid system in modulating fear, anxiety, and stress. Dialogues Clin Neurosci, 22: 229–239. https://doi.org/10.31887/DCNS.2020.22.3/rmaldonado

 

  1. Morena M, Patel S, Bains JS, et al., 2016, Neurobiological interactions between stress and the endocannabinoid system. Neuropsychopharmacology, 41: 80–102. https://doi.org/10.1038/npp.2015.166

 

  1. Worley NB, Hill MN, Christianson JP, 2018, Prefrontal endocannabinoids, stress controllability and resilience: A hypothesis. Prog Neuropsychopharmacol Biol Psychiatry, 85: 180–188. https://doi.org/10.1016/j.pnpbp.2017.04.004

 

  1. Brunt TM, Bossong MG, 2022, The neuropharmacology of cannabinoid receptor ligands in central signaling pathways. Eur J Neurosci, 55: 909–921. https://doi.org/10.1111/ejn.14982

 

  1. Chadwick VL, Rohleder C, Koethe D, et al., 2020, Cannabinoids and the endocannabinoid system in anxiety, depression, and dysregulation of emotion in humans. Curr Opin Psychiatry, 33: 20–42. https://doi.org/10.1097/yco.0000000000000562

 

  1. Mayo LM, Rabinak CA, Hill MN, et al., 2021, Targeting the endocannabinoid system in the treatment of posttraumatic stress disorder: A promising case of preclinical-clinical translation? Biol Psychiatry, 91: 262–272. https://doi.org/10.1016/j.biopsych.2021.07.019

 

  1. Kasatkina LA, Rittchen S, Sturm EM, 2021, Neuroprotective and immunomodulatory action of the endocannabinoid system under neuroinflammation. Int J Mol Sci, 22: 5431–5431. https://doi.org/10.3390/ijms22115431

 

  1. Almogi-Hazan O, Or R, 2020, Cannabis, the endocannabinoid system and immunity-the journey from the bedside to the bench and back. Int J Mol Sci, 21: 4448. https://doi.org/10.3390/ijms21124448

 

  1. Aziz A, Nguyen LC, Oumeslakht L, et al., 2022, Cannabinoids as immune system modulators: Cannabidiol potential therapeutic approaches and limitations. Cannabis Cannabinoid Res, 8: 254–269. https://doi.org/10.1089/can.2022.0133

 

  1. Yue Y, Li L, Li R, et al., 2023, The dynamic changes of psychosomatic symptoms in three waves of COVID-19 outbreak and fatigue caused by enduring pandemic in China. J Affect Disord, 331: 17–24. https://doi.org/10.1016/j.jad.2023.03.032

 

  1. Braile M, Marcella S, Marone G, et al., 2021, The interplay between the immune and the endocannabinoid systems in cancer. Cells, 10: 1282. https://doi.org/10.3390/cells10061282

 

  1. Durieux LJ, Gilissen SR, Arckens L, 2021, Endocannabinoids and cortical plasticity: CB1R as a possible regulator of the excitation/inhibition balance in health and disease. Eur J Neurosci, 55: 971–988. https://doi.org/10.1111/ejn.15110

 

  1. Cohen L, Neuman MG, 2020, Cannabis and the gastrointestinal tract. J Pharm Pharm Sci, 23: 301–313. https://doi.org/10.18433/jpps31242

 

  1. Dasram MH, Walker RB, Khamanga SM, 2022, Recent advances in endocannabinoid system targeting for improved specificity: Strategic approaches to targeted drug delivery. Int J Mol Sci, 23: 13223. https://doi.org/10.3390/ijms232113223

 

  1. Finn DP, Haroutounian S, Hohmann AG, et al., 2021, Cannabinoids, the endocannabinoid system, and pain: A review of preclinical studies. Pain, 162: S5–S25. https://doi.org/10.1097/j.pain.0000000000002268

 

  1. Ahmed I, Rehman SU, Shahmohamadnejad S, et al., 2021, Therapeutic attributes of endocannabinoid system against neuro-inflammatory autoimmune disorders. Molecules, 26: 3389. https://doi.org/10.3390/molecules26113389

 

  1. Deroon-Cassini TA, Stollenwerk TM, Beatka M, et al., 2020, Meet your stress management professionals: The endocannabinoids. Trends Mol Med, 26: 953–968. https://doi.org/10.1016/j.molmed.2020.07.002

 

  1. Kienzl M, Kargl J, Schicho R, 2020, The immune endocannabinoid system of the tumor microenvironment. Int J Mol Sci, 21: 8929. https://doi.org/10.3390/ijms21238929

 

  1. Charytoniuk T, Zywno H, Konstantynowicz- Nowicka K, et al., 2020, Can physical activity support the endocannabinoid system in the preventive and therapeutic approach to neurological disorders? Int J Mol Sci, 21: 4221. https://doi.org/10.3390/ijms21124221

 

  1. Navarro D, Gasparyan A, Navarrete F, et al., 2022, Molecular alterations of the endocannabinoid system in psychiatric disorders. Int J Mol Sci, 23: 4764. https://doi.org/10.3390/ijms23094764

 

  1. Rakotoarivelo V, Sihag J, Flamand N, 2021, Role of the endocannabinoid system in the adipose tissue with focus on energy metabolism. Cells, 10: 1279. https://doi.org/10.3390/cells10061279

 

  1. Summers T, Hanten B, Peterson W, et al., 2017, Endocannabinoids have opposing effects on behavioral responses to nociceptive and non-nociceptive stimuli. Sci Rep, 7: 5793. https://doi.org/10.1038/s41598-017-06114-1

 

  1. Moreno-García Á, Bernal-Chico A, Colomer T, et al., 2020, Gene expression analysis of astrocyte and microglia endocannabinoid signaling during autoimmune demyelination. Biomolecules, 10: 1228. https://doi.org/10.3390/biom10091228

 

  1. Maccarrone M, Bab I, Bíró T, et al., 2015, Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol Sci, 36: 277–296. https://doi.org/10.1016/j.tips.2015.02.008

 

  1. Rezende B, Alencar AKN, de Bem GF, et al., 2023, Endocannabinoid system: chemical characteristics and biological activity. Pharmaceuticals (Basel), 16: 148. https://doi.org/10.3390/ph16020148

 

  1. Henson JD, Vitetta L, Quezada M, et al., 2021, Enhancing endocannabinoid control of stress with cannabidiol. J Clin Med, 10: 5852. https://doi.org/10.3390/jcm10245852

 

  1. Migliaro M, Ruiz-Contreras AE, Herrera-Solís A, et al., 2023, Endocannabinoid system and aggression across animal species. Neurosci Biobehav Rev, 153: 105375. https://doi.org/10.1016/j.neubiorev.2023.105375

 

  1. Gunduz-Cinar O, 2021, The endocannabinoid system in the amygdala and modulation of fear. Prog Neuropsychopharmacol Biol Psychiatry, 105: 110116. https://doi.org/10.1016/j.pnpbp.2020.110116

 

  1. Garani R, Watts JJ, Mizrahi R, 2021, Endocannabinoid system in psychotic and mood disorders, a review of human studies. Prog Neuropsychopharmacol Biol Psychiatry, 106: 110096. https://doi.org/10.1016/j.pnpbp.2020.110096

 

  1. Bielawski T, Albrechet-Souza L, Frydecka D, 2021, Endocannabinoid system in trauma and psychosis: Distant guardian of mental stability. Rev Neurosci, 32: 707–722. https://doi.org/10.1515/revneuro-2020-0102

 

  1. Meah F, Lundholm M, Emanuele N, et al., 2021, The effects of cannabis and cannabinoids on the endocrine system. Rev Endocr Metab Disord, 23: 401–420. https://doi.org/10.1007/s11154-021-09682-w

 

  1. McEwen BS, Akil H, 2020, Revisiting the stress concept: Implications for affective disorders. J Neurosci, 40: 12–21. https://doi.org/10.1523/jneurosci.0733-19.2019

 

  1. Zieglgänsberger W, Brenneisen R, Berthele, A, et al., 2022, Chronic pain and the endocannabinoid system: Smart lipids-a novel therapeutic option? Med Cannabis Cannabinoids, 5: 61–75. https://doi.org/10.1159/000522432

 

  1. Bourke SL, Schlag AK, O’Sullivan SE, et al., 2022, Cannabinoids and the endocannabinoid system in fibromyalgia: A review of preclinical and clinical research. Pharmacol Ther, 240: 108216. https://doi.org/10.1016/j.pharmthera.2022.108216

 

  1. Milligan AL, Szabo-Pardi TA, Burton MD, 2019, Cannabinoid receptor type 1 and its role as an analgesic: An opioid alternative? J Dual Diagn, 16: 106–119. https://doi.org/10.1080/15504263.2019.1668100

 

  1. Wolf J, Urits I, Orhurhu V, et al., 2020, The role of the cannabinoid system in pain control: Basic and clinical implications. Curr Pain Headache Rep, 24: 35. https://doi.org/10.1007/s11916-020-00873-9

 

  1. Mlost J, Wąsik A, Starowicz K, 2019, Role of endocannabinoid system in dopamine signalling within the reward circuits affected by chronic pain. Pharmacol Res, 143: 40–47. https://doi.org/10.1016/j.phrs.2019.02.029

 

  1. Lowe H, Toyang N, Steele B, et al., 2021, The endocannabinoid system: A potential target for the treatment of various diseases. Int J Mol Sci, 22: 9472. https://doi.org/10.3390/ijms22179472

 

  1. Meccariello R, Santoro A, D’Angelo S, et al., 2020, The epigenetics of the endocannabinoid system. Int J Mol Sci, 21: 1113. https://doi.org/10.3390/ijms21031113

 

  1. Ahmed M, Boileau I, Le Foll B, et al., 2021, The endocannabinoid system in social anxiety disorder: From pathophysiology to novel therapeutics. Braz J Psychiatry, 44: 81–93. https://doi.org/10.1590/1516-4446-2021-1926

 

  1. Atalay S, Jarocka-Karpowicz I, Skrzydlewska E, 2019, Antioxidative and anti-inflammatory properties of cannabidiol. Antioxidants (Basel), 9: 21. https://doi.org/10.3390/antiox9010021

 

  1. Botsford C, Brellenthin AG, Cisler JM, et al., 2023, Circulating endocannabinoids and psychological outcomes in women with PTSD. J Anxiety Disord, 93: 102656. https://doi.org/10.1016/j.janxdis.2022.102656

 

  1. Rahman SMK, Uyama T, Hussain Z, et al., 2021, Roles of endocannabinoids and endocannabinoid-like molecules in energy homeostasis and metabolic regulation: A nutritional perspective. Annu Rev Nutr, 41: 177–202. https://doi.org/10.1146/annurev-nutr-043020-090216

 

  1. Camberos-Barraza J, Osuna-Ramos JF, Rábago-Monzón ÁR, et al., 2023, Scientific facts improve cannabis perception and public opinion: Results from Sinaloa, México. Sci Rep, 13: 17318. https://doi.org/10.1038/s41598-023-44185-5

 

  1. Baral P, Udit S, Chiu IM, 2019, Pain and immunity: Implications for host defence. Nat Rev Immunol, 19: 433–447. https://doi.org/10.1038/s41577-019-0147-2
Conflict of interest
The authors declare no conflicts of interest associated with the completion and submission of this review.
Share
Back to top
Journal of Clinical and Basic Psychosomatics, Electronic ISSN: 2972-4414 Published by AccScience Publishing