AccScience Publishing / JCAU / Online First / DOI: 10.36922/JCAU025370074
REVIEW ARTICLE

Three-dimensional concrete printing for sustainable construction and architecture: A comprehensive review

Muhammad Adeel1*
Show Less
1 Department of Civil Engineering, School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei, China
Journal of Chinese Architecture and Urbanism, 025370074 https://doi.org/10.36922/JCAU025370074
Received: 9 September 2025 | Revised: 9 October 2025 | Accepted: 14 October 2025 | Published online: 13 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Three-dimensional concrete printing (3DCP) has emerged as a transformative technology in the construction and architecture industries, offering automation, design flexibility, cost savings, and reduced environmental impact. Over the past decade, research has advanced in material development, structural performance, process optimization, and large-scale applications, such as housing, infrastructure, and disaster relief. Despite this progress, challenges remain, including the absence of standardized mix designs, reinforcement strategies, quality control measures, durability data, and universal regulatory frameworks. This article aims to provide a systematic review of recent developments in three-dimensional printable materials, process parameters, architectural integration, structural performance, and sustainability outcomes. Global case studies and bibliometric insights are synthesized to identify regional leadership, emerging technologies, and existing gaps. Particular emphasis is placed on sustainability through waste-based supplementary cementitious materials, enhanced thermal and mechanical performance, and circular economy approaches. The review highlights key research gaps in material compatibility, large-scale structural validation, and life-cycle assessment, while proposing a roadmap for future adoption. By consolidating current knowledge, this study serves as a reference for researchers, architects, and industry professionals working toward sustainable and scalable applications of 3DCP.

Keywords
Three-dimensional concrete printing
Sustainable construction
Additive manufacturing in architecture
Construction materials
Digital fabrication
Smart technologies
Funding
None.
Conflict of interest
The author declares no conflict of interest.
References

Abueidda, D.W., Bakir, M., Al-Rub, R.K.A., Bergström, JS., Sobh, N.A., & Jasiuk, I. (2017). Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures. Materials and Design, 122:255-267. https://doi.org/10.1016/j.matdes.2017.03.018

 

Ahmed, G.H. (2023). A review of “3D concrete printing”: Materials and process characterization, economic considerations and environmental sustainability. Journal of Building Engineering, 66:105863. https://doi.org/10.1016/j.jobe.2023.105863

 

Ahmed, Z.Y., Bos, F.P., Van Brunschot, M.C.A.J., & Salet, T.A. (2020). On-demand additive manufacturing of functionally graded concrete. Virtual and Physical Prototyping, 15(2):194-210. https://doi.org/10.1080/17452759.2019.1709009

 

Alabbasi, M., Agkathidis, A., & Chen, H. (2023). Robotic 3D printing of concrete building components for residential buildings in Saudi Arabia. Automation in Construction, 148:104751. https://doi.org/10.1016/j.autcon.2023.104751

 

Anjum, T., Dongre, P., Misbah, F., & Nanyam, V.N. (2017). Purview of 3DP in the Indian built environment sector. Procedia Engineering, 196:228-235. https://doi.org/10.1016/j.proeng.2017.07.194

 

Armstrong, A., Kabir, S.F., Mathur, K., & Seyam, A.F.M. (2023). 3D printing, a road to sustainable fashion. In: Novel Sustainable Process Alternatives for the Textiles and Fashion Industry. Berlin: Springer, p1-27. https://doi.org/10.1007/978-3-031-35451-9_1

 

Asensio, J., Josa, I., Monserrat, A., & DE LA Fuente, A. (2023). 3D‐printed concrete footbridges: An approach to assess the sustainability performance. Structural Concrete, 24(6):7705-7725. https://doi.org/10.1002/suco.202201227

 

Attar, H., Calin, M., Zhang, L.C., Scudino, S., & Eckert, J. (2014). Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Materials Science and Engineering: A, 593:170-177. https://doi.org/10.1016/j.msea.2013.11.038

 

Attaran, M. (2017). The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons, 60(5):677-688. https://doi.org/10.1016/j.bushor.2017.05.011

 

Bai, L., Gong, C., Chen, X., Sun, Y., Xin, L., Pu, H., Peng, Y., & Luo, J. (2020). Mechanical properties and energy absorption capabilities of functionally graded lattice structures: Experiments and simulations. International Journal of Mechanical Sciences, 182:105735. https://doi.org/10.1016/j.ijmecsci.2020.105735

 

Bazli, M., Ashrafi, H., Rajabipour, A., & Kutay, C. (2023). 3D printing for remote housing: Benefits and challenges. Automation in Construction, 148:104772. https://doi.org/10.1016/j.autcon.2023.104772

 

Bos, F.P., Ahmed, Z.Y., Jutinov, E.R., & Salet, T.A. (2017). Experimental exploration of metal cable as reinforcement in 3D printed concrete. Materials (Basel), 10(11):1314. https://doi.org/10.3390/ma10111314

 

Bouzidi, K., Chaussy, D., Gandini, A., Bongiovanni, R., & Beneventi, D. (2022). 3D printable fully biomass-based composite using poly (furfuryl alcohol) as binder and cellulose as a filler. Carbohydrate Polymers, 293:119716. https://doi.org/10.1016/j.carbpol.2022.119716

 

Burger, J., Aejmelaeus-Lindström, P., Gürel, S., Niketić, F., Lloret-Fritschi, E., Flatt, R.J., et al. (2023). Eggshell pavilion: A reinforced concrete structure fabricated using robotically 3D printed formwork. Construction Robotics, 7(2):213-233. https://doi.org/10.1007/s41693-023-00090-x

 

Burn, M.B., Ta, A., & Gogola, G.R. (2016). Three-dimensional printing of prosthetic hands for children. The Journal of Hand Surgery, 41(5):e103-e109. https://doi.org/10.1016/j.jhsa.2016.02.008

 

Butt, J. (2020). Exploring the interrelationship between additive manufacturing and Industry 4.0. Designs, 4(2):13. https://doi.org/10.3390/designs4020013

 

Cesaretti, G., Dini, E., De Kestelier, X., Colla, V., & Pambaguian, L. (2014). Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronautica, 93:430-450. https://doi.org/10.1016/j.actaastro.2013.07.034

 

Chen, D., Heyer, S., Ibbotson, S., Salonitis, K., Steingrímsson, J.G., & Thiede, S. (2015). Direct digital manufacturing: Definition, evolution, and sustainability implications. Journal of Cleaner Production, 107:615-625. https://doi.org/10.1016/j.jclepro.2015.05.009

 

Chen, M., Li, L., Zheng, Y., Zhao, P., Lu, L., & Cheng, X. (2018). Rheological and mechanical properties of admixtures modified 3D printing sulphoaluminate cementitious materials. Construction and Building Materials, 189:601-611. https://doi.org/10.1016/j.conbuildmat.2018.09.037

 

Chen, Y., Figueiredo, S.C., Li, Z., Chang, Z., Jansen, K., Çopuroğlu, O., et al. (2020). Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture. Cement and Concrete Research, 132:106040. https://doi.org/10.1016/j.cemconres.2020.106040

 

Choudhuri, B., Uddin, M.F., & Sen, R. (2025). Review on 3D printing technology in automotive industry and electric vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 09544070251337273. https://doi.org/10.1177/09544070251337273

 

Chung, J., Lee, G., & Kim, J.H. (2021). Framework for technical specifications of 3D concrete printers. Automation in Construction, 127:103732. https://doi.org/10.1016/j.autcon.2021.103732

 

Cubo, N., Garcia, M., Del Cañizo, J.F., Velasco, D., & Jorcano, J.L. (2016). 3D bioprinting of functional human skin: Production and in vivo analysis. Biofabrication, 9(1):015006. https://doi.org/10.1088/1758-5090/9/1/015006

 

Dankar, I., Pujolà, M., El Omar, F., Sepulcre, F., & Haddarah, A. (2018). Impact of mechanical and microstructural properties of potato puree-food additive complexes on extrusion-based 3D printing. Food and Bioprocess Technology, 11(11):2021-2031. https://doi.org/10.1007/s11947-018-2159-5

 

Davoodi, E., Montazerian, H., Mirhakimi, A.S., Zhianmanesh, M., Ibhadode, O., Shahabad, S.I., et al. (2022). Additively manufactured metallic biomaterials. Bioactive Materials, 15:214-249. https://doi.org/10.1016/j.bioactmat.2021.12.027

 

De La Fuente, A., Blanco, A., Galeote, E., & Cavalaro, S. (2022). Structural fibre-reinforced cement-based composite designed for particle bed 3D printing systems. Case study parque de castilla footbridge in madrid. Cement and Concrete Research, 157:106801. https://doi.org/10.1016/j.cemconres.2022.106801

 

Derby, B. (2015). Additive manufacture of ceramics components by inkjet printing. Engineering, 1(1):113-123. https://doi.org/10.15302/J-ENG-2015014

 

Dörfler, K., Hack, N., Sandy, T., Giftthaler, M., Lussi, M., Walzer, A.N., et al. (2019). Mobile robotic fabrication beyond factory conditions: Case study mesh mould wall of the DFAB HOUSE. Construction Robotics, 3(1):53-67. https://doi.org/10.1007/s41693-019-00020-w

 

Duan, B. (2017). State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Annals of Biomedical Engineering, 45(1):195-209. https://doi.org/10.1007/ s10439-016-1607-5

 

Ferreira, R.T.L., Amatte, I.C., Dutra, T.A., & Bürger, D. (2017). Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers. Composites Part B Engineering, 124:88-100. https://doi.org/10.1016/j.compositesb.2017.05.013

 

Foo, C.Y., Lim, H.N., Mahdi, M.A., Wahid, M.H., & Huang, N.M. (2018). Three-dimensional printed electrode and its novel applications in electronic devices. Science of Reports, 8:7399. https://doi.org/10.1038/s41598-018-25861-3

 

Freund, N., Dressler, I., & Lowke, D. (2020). Studying the bond properties of vertical integrated short reinforcement in the shotcrete 3D printing process. In: RILEM International Conference on Concrete and Digital Fabrication. Cham: Springer International Publishing, p. 612-621. https://doi.org/10.1007/978-3-030-49916-7_62

 

Furet, B., Poullain, P., & Garnier, S. (2019). 3D printing for construction based on a complex wall of polymer-foam and concrete. Additive Manufacturing, 28:58-64. https://doi.org/10.1016/j.addma.2019.04.002

 

Gebler, M., Uiterkamp, A.J.S., & Visser, C. (2014). A global sustainability perspective on 3D printing technologies. Energy Policy, 74:158-167. https://doi.org/10.1016/j.enpol.2014.08.033

 

Gomaa, M., Vaculik, J., Soebarto, V., Griffith, M., & Jabi, W. (2021). Feasibility of 3DP cob walls under compression loads in low-rise construction. Construction and Building Materials, 301:124079. https://doi.org/10.1016/j.conbuildmat.2021.124079

 

Grady, J.E., Haller, W.J., Poinsatte, P.E., Halbig, M.C., Schnulo, S.L., Singh, M., et al. (2015). A fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites (No. GRC-E-DAA-TN22162). Available from: https://ntrs.nasa. gov/citations/20150010717 [Last accessed on 2025 May 01].

 

Hager, I., Golonka, A., & Putanowicz, R. (2016). 3D printing of buildings and building components as the future of sustainable construction? Procedia Engineering, 151:292-299. https://doi.org/10.1016/j.proeng.2016.07.357

 

Han, Y., Yang, Z., Ding, T., & Xiao, J. (2021). Environmental and economic assessment on 3D printed buildings with recycled concrete. Journal of Cleaner Production, 278:123884. https://doi.org/10.1016/j.jclepro.2020.123884

 

Harris, J.A., Winter, R.E., & McShane, G.J. (2017). Impact response of additively manufactured metallic hybrid lattice materials. International Journal of Impact Engineering, 104:177-191. https://doi.org/10.1016/j.ijimpeng.2017.02.007

 

Herrmann, M., & Sobek, W. (2017). Functionally graded concrete: Numerical design methods and experimental tests of mass‐optimized structural components. Structural Concrete, 18(1):54-66. https://doi.org/10.1002/suco.201600011

 

Huang, S., Xu, W., & Li, Y. (2022). The impacts of fabrication systems on 3D concrete printing building forms. Frontiers of Architectural Research, 11(4):653-669. https://doi.org/10.1016/j.foar.2022.03.004

 

Imbalzano, G., Tran, P., Ngo, T.D., & Lee, P.V. (2016). A numerical study of auxetic composite panels under blast loadings. Composite Structures, 135:339-352. https://doi.org/10.1016/j.compstruct.2015.09.038

 

Iubin, P., & Zakrevskaya, L. (2018). Soil-concrete for use in the 3D printers in the construction of buildings and structures. MATEC Web of Conferences, 245:03002. https://doi.org/10.1051/matecconf/201824503002

 

Ji, G., Ding, T., Xiao, J., Du, S., Li, J., & Duan, Z. (2019). A 3D printed ready-mixed concrete power distribution substation: Materials and construction technology. Materials (Basel), 12(9):1540. https://doi.org/10.3390/ma12091540

 

Jo, J.H., Jo, B.W., Cho, W., & Kim, J.H. (2020). Development of a 3D printer for concrete structures: laboratory testing of cementitious materials. International Journal of Concrete Structures and Materials, 14(1):14. https://doi.org/10.1186/s40069-019-0388-2

 

Kading, B., & Straub, J. (2015). Utilizing in-situ resources and 3D printing structures for a manned Mars mission. Acta Astronautica, 107:317-326. https://doi.org/10.1016/j.actaastro.2014.11.036

 

Khasreen, M.M., Banfill, P.F., & Menzies, G.F. (2009). Life-cycle assessment and the environmental impact of buildings: A review. Sustainability, 1(3):674-701. https://doi.org/10.3390/su1030674

 

Kumar, S.B., Jeevamalar, J., Ramu, P., Suresh, G., & Senthilnathan, K. (2021). Evaluation in 4D printing-a review. Materials Today Proceedings, 45:1433-1437. https://doi.org/10.1016/j.matpr.2020.07.335

 

Kushwaha, A.K., Rahman, M.H., Slater, E., Patel, R., Evangelista, C., Austin, E., et al. (2022). Tribology of Additively Manufactured Materials. Netherlands: Elsevier.

 

Labeaga-Martínez, N., Sanjurjo-Rivo, M., Díaz-Álvarez, J., & Martínez-Frías, J. (2017). Additive manufacturing for a Moon village. Procedia Manufacturing, 13:794-801. https://doi.org/10.1016/j.promfg.2017.09.186

 

Lee, J., Kim, H.C., Choi, J.W., & Lee, I.H. (2017). A review on 3D printed smart devices for 4D printing. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3):373-383. https://doi.org/10.1007/s40684-017-0042-x

 

Lim, C.W.J., Le, K.Q., Lu, Q., & Wong, C.H. (2016). An overview of 3-D printing in manufacturing, aerospace, and automotive industries. IEEE Potentials, 35(4):18-22. https://doi.org/10.1109/MPOT.2016.2540098

 

Liu, L., Meng, L., Dai, X., Chen, K., & Zhu, Y. (2019). 3D printing complex egg white protein objects: properties and optimization. Food and Bioprocess Technology, 12:267-279. https://doi.org/10.1007/s11947-018-2209-z

 

Liu, Y., Hamid, Q., Snyder, J., Wang, C., & Sun, W. (2016). Evaluating fabrication feasibility and biomedical application potential of in situ 3D printing technology. Rapid Prototyping Journal, 22(6):947-955. https://doi.org/10.1108/RPJ-07-2015-0090

 

Liu, Z., Zhang, M., Bhandari, B., & Wang, Y. (2017). 3D printing: Printing precision and application in food sector. Trends in Food Science and Technology, 69:83-94. https://doi.org/10.1016/j.tifs.2017.08.018

 

Ma, G., Wang, L., & Ju, Y. (2018). State-of-the-art of 3D printing technology of cementitious material-an emerging technique for construction. Science China Technological Sciences, 61(4):475-495. https://doi.org/10.1007/s11431-016-9077-7

 

Mallakpour, S., Azadi, E., & Hussain, C.M. (2021). MOF/COF-based materials using 3D printing technology: Applications in water treatment, gas removal, biomedical, and electronic industries. New Journal of Chemistry, 45(30):13247-13257. https://doi.org/10.1039/D1NJ02152D

 

Marchment, T., & Sanjayan, J. (2020). Penetration reinforcing method for 3d concrete printing. In: Bos, F., Lucas, S., Wolfs, R., & Salet, T., edirtors. Second RILEM International Conference on Concrete and Digital Fabrication. DC 2020. RILEM Bookseries, Vol. 28. Cham: Springer. https://doi.org/10.1007/978-3-030-49916-7_68

 

Maurath, J., & Willenbacher, N. (2017). 3D printing of open-porous cellular ceramics with high specific strength. Journal of the European Ceramic Society, 37(15):4833-4842. https://doi.org/10.1016/j.jeurceramsoc.2017.06.001

 

Mechtcherine, V., Grafe, J., Nerella, V.N., Spaniol, E., Hertel, M., & Füssel, U. (2018). 3D-printed steel reinforcement for digital concrete construction-manufacture, mechanical properties and bond behaviour. Construction and Building Materials, 179:125-137. https://doi.org/10.1016/j.conbuildmat.2018.05.202

 

Minas, C., Carnelli, D., Tervoort, E., & Studart, A.R. (2016). 3D printing of emulsions and foams into hierarchical porous ceramics. Advanced Materials, 28(45):9993-9999. https://doi.org/10.1002/adma.201603390

 

Motalebi, A., Khondoker, M.A.H., & Kabir, G. (2024). A systematic review of life cycle assessments of 3D concrete printing. Sustainable Operations and Computers, 5:41-50. https://doi.org/10.1016/j.susoc.2023.08.003

 

Murphy, S.V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology, 32(8):773-785. https://doi.org/10.1038/nbt.2958

 

Nawaz, A., Adeel, M., Ejaz, M.M., Rehman, A., Ahmad, T., & Abubakar, M. (2024). Emerging trends in concrete 3D printing and their real-world impact: Architecture and design. Scientia Technology Science and Society, 1(2):50-61. https://doi.org/10.59324/stss.2024.1(2).05

 

Nayaka, R., Kumar, G.U., Sharif, A., & Zhang, Y.X. (2024). Exploring key aspects and sustainable benefits of 3D concrete printing (3DCP): A selective review. In: International Conference on Additive Manufacturing. Singapore: Springer Nature Singapore, p407-418. https://doi.org/10.1007/978-981-96-3165-0_31

 

Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143:172-196. https://doi.org/10.1016/j.compositesb.2018.02.012

 

Nie, B., Yang, L., Huang, H., Bai, S., Wan, P., & Liu, J. (2015). Femtosecond laser additive manufacturing of iron and tungsten parts. Applied Physics A, 119(3):1075-1080. https://doi.org/10.1007/s00339-015-9070-y

 

Pan, Y., Zhang, Y., Zhang, D., & Song, Y. (2021). 3D printing in construction: State of the art and applications. The International Journal of Advanced Manufacturing Technology, 115(5):1329-1348. https://doi.org/10.1007/s00170-021-07213-0

 

Panda, B., Tay, Y.W.D., Paul, S.C., & Tan, M.J. (2018). Current challenges and future potential of 3D concrete printing: Aktuelle Herausforderungen und Zukunftspotenziale des 3D‐Druckens bei Beton. Materialwissenschaft und Werkstofftechnik, 49(5):666-673. https://doi.org/10.1002/mawe.201700279

 

Panda, B.N., Bahubalendruni, R.M., Biswal, B.B., & Leite, M. (2017). A CAD-based approach for measuring volumetric error in layered manufacturing. Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 231(13):2398-2406. https://doi.org/10.1177/0954406216634746

 

Pasupathy, K., Ramakrishnan, S., & Sanjayan, J. (2023). 3D concrete printing of eco-friendly geopolymer containing brick waste. Cement and Concrete Composites, 138:104943. https://doi.org/10.1016/j.cemconcomp.2023.104943

 

Rocha, D., Faria, P., & Lucas, S.S. (2023). Additive manufacturing of earth-based materials: A literature review on mortar composition, extrusion, and processing earth. Materials, 17(1):202. https://doi.org/10.3390/ma17010202

 

Ryan, K.R., Down, M.P., Hurst, N.J., Keefe, E.M., & Banks, C.E. (2022). Additive manufacturing (3D printing) of electrically conductive polymers and polymer nanocomposites and their applications. EScience, 2(4):365-381. https://doi.org/10.1016/j.esci.2022.07.003

 

Saengchairat, N., Tran, T., & Chua, C.K. (2017). A review: Additive manufacturing for active electronic components. Virtual and Physical Prototyping, 12(1):31-46. https://doi.org/10.1080/17452759.2016.1253181

 

Sakin, M., & Kiroglu, Y.C. (2017). 3D printing of buildings: Construction of the sustainable houses of the future by BIM. Energy Procedia, 134:702-711. https://doi.org/10.1016/j.egypro.2017.09.562

 

Salet, T.A., Ahmed, Z.Y., Bos, F.P., & Laagland, H.L. (2018). Design of a 3D printed concrete bridge by testing. Virtual and Physical Prototyping, 13(3):222-236. https://doi.org/10.1080/17452759.2018.1476064

 

San Fratello, V., & Rael, R. (2020). Innovating materials for large scale additive manufacturing: Salt, soil, cement and chardonnay. Cement and Concrete Research, 134:106097. https://doi.org/10.1016/j.cemconres.2020.106097

 

Schuldt, S.J., Jagoda, J.A., Hoisington, A.J., & Delorit, J.D. (2021). A systematic review and analysis of the viability of 3D-printed construction in remote environments. Automation in Construction, 125:103642. https://doi.org/10.1016/j.autcon.2021.103642

 

Sepasgozar, S.M., Shi, A., Yang, L., Shirowzhan, S., & Edwards, D.J. (2020). Additive manufacturing applications for industry 4.0: A systematic critical review. Buildings, 10(12):231. https://doi.org/10.3390/buildings10120231

 

Shahrubudin, N., Lee, T.C., & Ramlan, R.J.P.M. (2019). An overview on 3D printing technology: Technological, materials, and applications. Procedia Manufacturing, 35:1286-1296. https://doi.org/10.1016/j.promfg.2019.06.089

 

Sheydaeian, E., & Toyserkani, E. (2018). A new approach for fabrication of titanium-titanium boride periodic composite via additive manufacturing and pressure-less sintering. Composites Part B Engineering, 138:140-148. https://doi.org/10.1016/j.compositesb.2017.11.035

 

Shuaib, M., Haleem, A., Kumar, S., & Javaid, M. (2021). Impact of 3D printing on the environment: A literature-based study. Sustainable Operations and Computers, 2:57-63. https://doi.org/10.1016/j.susoc.2021.04.001

 

Stoof, D., & Pickering, K. (2018). Sustainable composite fused deposition modelling filament using recycled pre-consumer polypropylene. Composites Part B: Engineering, 135:110-118. https://doi.org/10.1016/j.compositesb.2017.10.005

 

Sun, H., Duan, M., Wu, Y., Zeng, Y., Zhao, H., Wu, S., et al. (2024). Designing sustainable built environments for Mars habitation: Integrating innovations in architecture, systems, and human well-being. Nexus, 1:100030. https://doi.org/10.1016/j.ynexs.2024.100030

 

Sun, J., Xiao, J., Li, Z., & Feng, X. (2021). Experimental study on the thermal performance of a 3D printed concrete prototype building. Energy and Buildings, 241:110965. https://doi.org/10.1016/j.enbuild.2021.110965

 

Tabassum, T., & Mir, A.A. (2023). A review of 3d printing technology-the future of sustainable construction. Materials Today Proceedings, 93:408-414. https://doi.org/10.1016/j.matpr.2023.08.013

 

Tahmasebinia, F., Jabbari, A.A., & Skrzypkowski, K. (2023). The application of finite element simulation and 3D printing in structural design within construction industry 4.0. Applied Sciences, 13(6):3929. https://doi.org/10.3390/app13063929

 

Tay, Y.W.D., Panda, B., Paul, S.C., Noor Mohamed, N.A., Tan, M.J., & Leong, K.F. (2017). 3D printing trends in building and construction industry: A review. Virtual and Physical Prototyping, 12(3):261-276. https://doi.org/10.1080/17452759.2017.1326724

 

Tay, Y.W.D., Panda, B., Paul, S.C., Tan, M.J., Qian, S.Z., Leong, K.F., et al. (2016). Processing and properties of construction materials for 3D printing. In: Materials Science Forum. Vol. 861. Switzerland: Trans Tech Publications Ltd., p. 177-181. https://doi.org/10.4028/www.scientific.net/MSF.861.177

 

Tuli, N.T., Khatun, S., & Rashid, A.B. (2024). Unlocking the future of precision manufacturing: A comprehensive exploration of 3D printing with fiber-reinforced composites in aerospace, automotive, medical, and consumer industries. Heliyon, 10(5):e27328. https://doi.org/10.1016/j.heliyon.2024.e27328

 

Vanderploeg, A., Lee, S.E., & Mamp, M. (2017). The application of 3D printing technology in the fashion industry. International Journal of Fashion Design Technology and Education, 10(2):170-179. https://doi.org/10.1080/17543266.2016.1223355

 

Vanegas, J.A., DuBose, J.R., & Pearce, A.R. (1996). Sustainable Technologies for the Building Construction Industry. In: Proceedings, Symposium on Design for the Global Environment, Atlanta, GA, p. 1-16.

 

Varpe, A., Sayed, M., & Mane, N.S.A. (2025). Comprehensive literature review on advancements and challenges in 3D bioprinting of human organs: Ear, skin, and bone. Annals of Biomedical Engineering, 53:14-33. https://doi.org/10.1007/s10439-024-03580-3

 

Wang, X., Jiang, M., Zhou, Z., Gou, J., & Hui, D. (2017). 3D printing of polymer matrix composites: A review and prospective. Composites Part B Engineering, 110:442-458. https://doi.org/10.1016/j.compositesb.2016.11.034

 

Weng, Y., Li, M., Ruan, S., Wong, T.N., Tan, M.J., Yeong, K.L.O., et al. (2020). Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach. Journal of Cleaner Production, 261:121245. https://doi.org/10.1016/j.jclepro.2020.121245

 

Wu, P., Wang, J., & Wang, X. (2016). A critical review of the use of 3-D printing in the construction industry. Automation in Construction, 68:21-31. https://doi.org/10.1016/j.autcon.2016.04.005

 

Wu, S., Zeng, T., Liu, Z., Ma, G., Xiong, Z., Zuo, L., et al. (2022). 3D printing technology for smart clothing: A topic review. Materials, 15:7391. https://doi.org/10.3390/ma15207391

 

Xu, J., Ding, L., & Love, P.E. (2017). Digital reproduction of historical building ornamental components: From 3D scanning to 3D printing. Automation in Construction, 76:85-96. https://doi.org/10.1016/j.autcon.2017.01.010

 

Yan, C., Hao, L., Hussein, A., & Young, P. (2015). Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 51:61-73. https://doi.org/10.1016/j.jmbbm.2015.06.024

 

Yan, Q., Dong, H., Su, J., Han, J., Song, B., Wei, Q., et al. (2018). A review of 3D printing technology for medical applications. Engineering, 4(5):729-742. https://doi.org/10.1016/j.eng.2018.07.021

 

Yazici, S. (2018). Building in extraterrestrial environments: T-brick shell. Journal of Architectural Engineering, 24(1):04017037. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000293

 

Zareiyan, B., & Khoshnevis, B. (2018). Effects of mixture ingredients on interlayer adhesion of concrete in contour crafting. Rapid Prototyping Journal, 24(3):584-592. https://doi.org/10.1108/RPJ-02-2017-0029

 

Žujović, M., Obradović, R., Rakonjac, I., & Milošević, J. (2022). 3D printing technologies in architectural design and construction: A systematic literature review. Buildings, 12(9):1319. https://doi.org/10.3390/buildings12091319

Share
Back to top
Journal of Chinese Architecture and Urbanism, Electronic ISSN: 2717-5626 Published by AccScience Publishing