Three-dimensional concrete printing for sustainable construction and architecture: A comprehensive review
Three-dimensional concrete printing (3DCP) has emerged as a transformative technology in the construction and architecture industries, offering automation, design flexibility, cost savings, and reduced environmental impact. Over the past decade, research has advanced in material development, structural performance, process optimization, and large-scale applications, such as housing, infrastructure, and disaster relief. Despite this progress, challenges remain, including the absence of standardized mix designs, reinforcement strategies, quality control measures, durability data, and universal regulatory frameworks. This article aims to provide a systematic review of recent developments in three-dimensional printable materials, process parameters, architectural integration, structural performance, and sustainability outcomes. Global case studies and bibliometric insights are synthesized to identify regional leadership, emerging technologies, and existing gaps. Particular emphasis is placed on sustainability through waste-based supplementary cementitious materials, enhanced thermal and mechanical performance, and circular economy approaches. The review highlights key research gaps in material compatibility, large-scale structural validation, and life-cycle assessment, while proposing a roadmap for future adoption. By consolidating current knowledge, this study serves as a reference for researchers, architects, and industry professionals working toward sustainable and scalable applications of 3DCP.
Abueidda, D.W., Bakir, M., Al-Rub, R.K.A., Bergström, JS., Sobh, N.A., & Jasiuk, I. (2017). Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures. Materials and Design, 122:255-267. https://doi.org/10.1016/j.matdes.2017.03.018
Ahmed, G.H. (2023). A review of “3D concrete printing”: Materials and process characterization, economic considerations and environmental sustainability. Journal of Building Engineering, 66:105863. https://doi.org/10.1016/j.jobe.2023.105863
Ahmed, Z.Y., Bos, F.P., Van Brunschot, M.C.A.J., & Salet, T.A. (2020). On-demand additive manufacturing of functionally graded concrete. Virtual and Physical Prototyping, 15(2):194-210. https://doi.org/10.1080/17452759.2019.1709009
Alabbasi, M., Agkathidis, A., & Chen, H. (2023). Robotic 3D printing of concrete building components for residential buildings in Saudi Arabia. Automation in Construction, 148:104751. https://doi.org/10.1016/j.autcon.2023.104751
Anjum, T., Dongre, P., Misbah, F., & Nanyam, V.N. (2017). Purview of 3DP in the Indian built environment sector. Procedia Engineering, 196:228-235. https://doi.org/10.1016/j.proeng.2017.07.194
Armstrong, A., Kabir, S.F., Mathur, K., & Seyam, A.F.M. (2023). 3D printing, a road to sustainable fashion. In: Novel Sustainable Process Alternatives for the Textiles and Fashion Industry. Berlin: Springer, p1-27. https://doi.org/10.1007/978-3-031-35451-9_1
Asensio, J., Josa, I., Monserrat, A., & DE LA Fuente, A. (2023). 3D‐printed concrete footbridges: An approach to assess the sustainability performance. Structural Concrete, 24(6):7705-7725. https://doi.org/10.1002/suco.202201227
Attar, H., Calin, M., Zhang, L.C., Scudino, S., & Eckert, J. (2014). Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Materials Science and Engineering: A, 593:170-177. https://doi.org/10.1016/j.msea.2013.11.038
Attaran, M. (2017). The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons, 60(5):677-688. https://doi.org/10.1016/j.bushor.2017.05.011
Bai, L., Gong, C., Chen, X., Sun, Y., Xin, L., Pu, H., Peng, Y., & Luo, J. (2020). Mechanical properties and energy absorption capabilities of functionally graded lattice structures: Experiments and simulations. International Journal of Mechanical Sciences, 182:105735. https://doi.org/10.1016/j.ijmecsci.2020.105735
Bazli, M., Ashrafi, H., Rajabipour, A., & Kutay, C. (2023). 3D printing for remote housing: Benefits and challenges. Automation in Construction, 148:104772. https://doi.org/10.1016/j.autcon.2023.104772
Bos, F.P., Ahmed, Z.Y., Jutinov, E.R., & Salet, T.A. (2017). Experimental exploration of metal cable as reinforcement in 3D printed concrete. Materials (Basel), 10(11):1314. https://doi.org/10.3390/ma10111314
Bouzidi, K., Chaussy, D., Gandini, A., Bongiovanni, R., & Beneventi, D. (2022). 3D printable fully biomass-based composite using poly (furfuryl alcohol) as binder and cellulose as a filler. Carbohydrate Polymers, 293:119716. https://doi.org/10.1016/j.carbpol.2022.119716
Burger, J., Aejmelaeus-Lindström, P., Gürel, S., Niketić, F., Lloret-Fritschi, E., Flatt, R.J., et al. (2023). Eggshell pavilion: A reinforced concrete structure fabricated using robotically 3D printed formwork. Construction Robotics, 7(2):213-233. https://doi.org/10.1007/s41693-023-00090-x
Burn, M.B., Ta, A., & Gogola, G.R. (2016). Three-dimensional printing of prosthetic hands for children. The Journal of Hand Surgery, 41(5):e103-e109. https://doi.org/10.1016/j.jhsa.2016.02.008
Butt, J. (2020). Exploring the interrelationship between additive manufacturing and Industry 4.0. Designs, 4(2):13. https://doi.org/10.3390/designs4020013
Cesaretti, G., Dini, E., De Kestelier, X., Colla, V., & Pambaguian, L. (2014). Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronautica, 93:430-450. https://doi.org/10.1016/j.actaastro.2013.07.034
Chen, D., Heyer, S., Ibbotson, S., Salonitis, K., Steingrímsson, J.G., & Thiede, S. (2015). Direct digital manufacturing: Definition, evolution, and sustainability implications. Journal of Cleaner Production, 107:615-625. https://doi.org/10.1016/j.jclepro.2015.05.009
Chen, M., Li, L., Zheng, Y., Zhao, P., Lu, L., & Cheng, X. (2018). Rheological and mechanical properties of admixtures modified 3D printing sulphoaluminate cementitious materials. Construction and Building Materials, 189:601-611. https://doi.org/10.1016/j.conbuildmat.2018.09.037
Chen, Y., Figueiredo, S.C., Li, Z., Chang, Z., Jansen, K., Çopuroğlu, O., et al. (2020). Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture. Cement and Concrete Research, 132:106040. https://doi.org/10.1016/j.cemconres.2020.106040
Choudhuri, B., Uddin, M.F., & Sen, R. (2025). Review on 3D printing technology in automotive industry and electric vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 09544070251337273. https://doi.org/10.1177/09544070251337273
Chung, J., Lee, G., & Kim, J.H. (2021). Framework for technical specifications of 3D concrete printers. Automation in Construction, 127:103732. https://doi.org/10.1016/j.autcon.2021.103732
Cubo, N., Garcia, M., Del Cañizo, J.F., Velasco, D., & Jorcano, J.L. (2016). 3D bioprinting of functional human skin: Production and in vivo analysis. Biofabrication, 9(1):015006. https://doi.org/10.1088/1758-5090/9/1/015006
Dankar, I., Pujolà, M., El Omar, F., Sepulcre, F., & Haddarah, A. (2018). Impact of mechanical and microstructural properties of potato puree-food additive complexes on extrusion-based 3D printing. Food and Bioprocess Technology, 11(11):2021-2031. https://doi.org/10.1007/s11947-018-2159-5
Davoodi, E., Montazerian, H., Mirhakimi, A.S., Zhianmanesh, M., Ibhadode, O., Shahabad, S.I., et al. (2022). Additively manufactured metallic biomaterials. Bioactive Materials, 15:214-249. https://doi.org/10.1016/j.bioactmat.2021.12.027
De La Fuente, A., Blanco, A., Galeote, E., & Cavalaro, S. (2022). Structural fibre-reinforced cement-based composite designed for particle bed 3D printing systems. Case study parque de castilla footbridge in madrid. Cement and Concrete Research, 157:106801. https://doi.org/10.1016/j.cemconres.2022.106801
Derby, B. (2015). Additive manufacture of ceramics components by inkjet printing. Engineering, 1(1):113-123. https://doi.org/10.15302/J-ENG-2015014
Dörfler, K., Hack, N., Sandy, T., Giftthaler, M., Lussi, M., Walzer, A.N., et al. (2019). Mobile robotic fabrication beyond factory conditions: Case study mesh mould wall of the DFAB HOUSE. Construction Robotics, 3(1):53-67. https://doi.org/10.1007/s41693-019-00020-w
Duan, B. (2017). State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Annals of Biomedical Engineering, 45(1):195-209. https://doi.org/10.1007/ s10439-016-1607-5
Ferreira, R.T.L., Amatte, I.C., Dutra, T.A., & Bürger, D. (2017). Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers. Composites Part B Engineering, 124:88-100. https://doi.org/10.1016/j.compositesb.2017.05.013
Foo, C.Y., Lim, H.N., Mahdi, M.A., Wahid, M.H., & Huang, N.M. (2018). Three-dimensional printed electrode and its novel applications in electronic devices. Science of Reports, 8:7399. https://doi.org/10.1038/s41598-018-25861-3
Freund, N., Dressler, I., & Lowke, D. (2020). Studying the bond properties of vertical integrated short reinforcement in the shotcrete 3D printing process. In: RILEM International Conference on Concrete and Digital Fabrication. Cham: Springer International Publishing, p. 612-621. https://doi.org/10.1007/978-3-030-49916-7_62
Furet, B., Poullain, P., & Garnier, S. (2019). 3D printing for construction based on a complex wall of polymer-foam and concrete. Additive Manufacturing, 28:58-64. https://doi.org/10.1016/j.addma.2019.04.002
Gebler, M., Uiterkamp, A.J.S., & Visser, C. (2014). A global sustainability perspective on 3D printing technologies. Energy Policy, 74:158-167. https://doi.org/10.1016/j.enpol.2014.08.033
Gomaa, M., Vaculik, J., Soebarto, V., Griffith, M., & Jabi, W. (2021). Feasibility of 3DP cob walls under compression loads in low-rise construction. Construction and Building Materials, 301:124079. https://doi.org/10.1016/j.conbuildmat.2021.124079
Grady, J.E., Haller, W.J., Poinsatte, P.E., Halbig, M.C., Schnulo, S.L., Singh, M., et al. (2015). A fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites (No. GRC-E-DAA-TN22162). Available from: https://ntrs.nasa. gov/citations/20150010717 [Last accessed on 2025 May 01].
Hager, I., Golonka, A., & Putanowicz, R. (2016). 3D printing of buildings and building components as the future of sustainable construction? Procedia Engineering, 151:292-299. https://doi.org/10.1016/j.proeng.2016.07.357
Han, Y., Yang, Z., Ding, T., & Xiao, J. (2021). Environmental and economic assessment on 3D printed buildings with recycled concrete. Journal of Cleaner Production, 278:123884. https://doi.org/10.1016/j.jclepro.2020.123884
Harris, J.A., Winter, R.E., & McShane, G.J. (2017). Impact response of additively manufactured metallic hybrid lattice materials. International Journal of Impact Engineering, 104:177-191. https://doi.org/10.1016/j.ijimpeng.2017.02.007
Herrmann, M., & Sobek, W. (2017). Functionally graded concrete: Numerical design methods and experimental tests of mass‐optimized structural components. Structural Concrete, 18(1):54-66. https://doi.org/10.1002/suco.201600011
Huang, S., Xu, W., & Li, Y. (2022). The impacts of fabrication systems on 3D concrete printing building forms. Frontiers of Architectural Research, 11(4):653-669. https://doi.org/10.1016/j.foar.2022.03.004
Imbalzano, G., Tran, P., Ngo, T.D., & Lee, P.V. (2016). A numerical study of auxetic composite panels under blast loadings. Composite Structures, 135:339-352. https://doi.org/10.1016/j.compstruct.2015.09.038
Iubin, P., & Zakrevskaya, L. (2018). Soil-concrete for use in the 3D printers in the construction of buildings and structures. MATEC Web of Conferences, 245:03002. https://doi.org/10.1051/matecconf/201824503002
Ji, G., Ding, T., Xiao, J., Du, S., Li, J., & Duan, Z. (2019). A 3D printed ready-mixed concrete power distribution substation: Materials and construction technology. Materials (Basel), 12(9):1540. https://doi.org/10.3390/ma12091540
Jo, J.H., Jo, B.W., Cho, W., & Kim, J.H. (2020). Development of a 3D printer for concrete structures: laboratory testing of cementitious materials. International Journal of Concrete Structures and Materials, 14(1):14. https://doi.org/10.1186/s40069-019-0388-2
Kading, B., & Straub, J. (2015). Utilizing in-situ resources and 3D printing structures for a manned Mars mission. Acta Astronautica, 107:317-326. https://doi.org/10.1016/j.actaastro.2014.11.036
Khasreen, M.M., Banfill, P.F., & Menzies, G.F. (2009). Life-cycle assessment and the environmental impact of buildings: A review. Sustainability, 1(3):674-701. https://doi.org/10.3390/su1030674
Kumar, S.B., Jeevamalar, J., Ramu, P., Suresh, G., & Senthilnathan, K. (2021). Evaluation in 4D printing-a review. Materials Today Proceedings, 45:1433-1437. https://doi.org/10.1016/j.matpr.2020.07.335
Kushwaha, A.K., Rahman, M.H., Slater, E., Patel, R., Evangelista, C., Austin, E., et al. (2022). Tribology of Additively Manufactured Materials. Netherlands: Elsevier.
Labeaga-Martínez, N., Sanjurjo-Rivo, M., Díaz-Álvarez, J., & Martínez-Frías, J. (2017). Additive manufacturing for a Moon village. Procedia Manufacturing, 13:794-801. https://doi.org/10.1016/j.promfg.2017.09.186
Lee, J., Kim, H.C., Choi, J.W., & Lee, I.H. (2017). A review on 3D printed smart devices for 4D printing. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3):373-383. https://doi.org/10.1007/s40684-017-0042-x
Lim, C.W.J., Le, K.Q., Lu, Q., & Wong, C.H. (2016). An overview of 3-D printing in manufacturing, aerospace, and automotive industries. IEEE Potentials, 35(4):18-22. https://doi.org/10.1109/MPOT.2016.2540098
Liu, L., Meng, L., Dai, X., Chen, K., & Zhu, Y. (2019). 3D printing complex egg white protein objects: properties and optimization. Food and Bioprocess Technology, 12:267-279. https://doi.org/10.1007/s11947-018-2209-z
Liu, Y., Hamid, Q., Snyder, J., Wang, C., & Sun, W. (2016). Evaluating fabrication feasibility and biomedical application potential of in situ 3D printing technology. Rapid Prototyping Journal, 22(6):947-955. https://doi.org/10.1108/RPJ-07-2015-0090
Liu, Z., Zhang, M., Bhandari, B., & Wang, Y. (2017). 3D printing: Printing precision and application in food sector. Trends in Food Science and Technology, 69:83-94. https://doi.org/10.1016/j.tifs.2017.08.018
Ma, G., Wang, L., & Ju, Y. (2018). State-of-the-art of 3D printing technology of cementitious material-an emerging technique for construction. Science China Technological Sciences, 61(4):475-495. https://doi.org/10.1007/s11431-016-9077-7
Mallakpour, S., Azadi, E., & Hussain, C.M. (2021). MOF/COF-based materials using 3D printing technology: Applications in water treatment, gas removal, biomedical, and electronic industries. New Journal of Chemistry, 45(30):13247-13257. https://doi.org/10.1039/D1NJ02152D
Marchment, T., & Sanjayan, J. (2020). Penetration reinforcing method for 3d concrete printing. In: Bos, F., Lucas, S., Wolfs, R., & Salet, T., edirtors. Second RILEM International Conference on Concrete and Digital Fabrication. DC 2020. RILEM Bookseries, Vol. 28. Cham: Springer. https://doi.org/10.1007/978-3-030-49916-7_68
Maurath, J., & Willenbacher, N. (2017). 3D printing of open-porous cellular ceramics with high specific strength. Journal of the European Ceramic Society, 37(15):4833-4842. https://doi.org/10.1016/j.jeurceramsoc.2017.06.001
Mechtcherine, V., Grafe, J., Nerella, V.N., Spaniol, E., Hertel, M., & Füssel, U. (2018). 3D-printed steel reinforcement for digital concrete construction-manufacture, mechanical properties and bond behaviour. Construction and Building Materials, 179:125-137. https://doi.org/10.1016/j.conbuildmat.2018.05.202
Minas, C., Carnelli, D., Tervoort, E., & Studart, A.R. (2016). 3D printing of emulsions and foams into hierarchical porous ceramics. Advanced Materials, 28(45):9993-9999. https://doi.org/10.1002/adma.201603390
Motalebi, A., Khondoker, M.A.H., & Kabir, G. (2024). A systematic review of life cycle assessments of 3D concrete printing. Sustainable Operations and Computers, 5:41-50. https://doi.org/10.1016/j.susoc.2023.08.003
Murphy, S.V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology, 32(8):773-785. https://doi.org/10.1038/nbt.2958
Nawaz, A., Adeel, M., Ejaz, M.M., Rehman, A., Ahmad, T., & Abubakar, M. (2024). Emerging trends in concrete 3D printing and their real-world impact: Architecture and design. Scientia Technology Science and Society, 1(2):50-61. https://doi.org/10.59324/stss.2024.1(2).05
Nayaka, R., Kumar, G.U., Sharif, A., & Zhang, Y.X. (2024). Exploring key aspects and sustainable benefits of 3D concrete printing (3DCP): A selective review. In: International Conference on Additive Manufacturing. Singapore: Springer Nature Singapore, p407-418. https://doi.org/10.1007/978-981-96-3165-0_31
Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143:172-196. https://doi.org/10.1016/j.compositesb.2018.02.012
Nie, B., Yang, L., Huang, H., Bai, S., Wan, P., & Liu, J. (2015). Femtosecond laser additive manufacturing of iron and tungsten parts. Applied Physics A, 119(3):1075-1080. https://doi.org/10.1007/s00339-015-9070-y
Pan, Y., Zhang, Y., Zhang, D., & Song, Y. (2021). 3D printing in construction: State of the art and applications. The International Journal of Advanced Manufacturing Technology, 115(5):1329-1348. https://doi.org/10.1007/s00170-021-07213-0
Panda, B., Tay, Y.W.D., Paul, S.C., & Tan, M.J. (2018). Current challenges and future potential of 3D concrete printing: Aktuelle Herausforderungen und Zukunftspotenziale des 3D‐Druckens bei Beton. Materialwissenschaft und Werkstofftechnik, 49(5):666-673. https://doi.org/10.1002/mawe.201700279
Panda, B.N., Bahubalendruni, R.M., Biswal, B.B., & Leite, M. (2017). A CAD-based approach for measuring volumetric error in layered manufacturing. Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 231(13):2398-2406. https://doi.org/10.1177/0954406216634746
Pasupathy, K., Ramakrishnan, S., & Sanjayan, J. (2023). 3D concrete printing of eco-friendly geopolymer containing brick waste. Cement and Concrete Composites, 138:104943. https://doi.org/10.1016/j.cemconcomp.2023.104943
Rocha, D., Faria, P., & Lucas, S.S. (2023). Additive manufacturing of earth-based materials: A literature review on mortar composition, extrusion, and processing earth. Materials, 17(1):202. https://doi.org/10.3390/ma17010202
Ryan, K.R., Down, M.P., Hurst, N.J., Keefe, E.M., & Banks, C.E. (2022). Additive manufacturing (3D printing) of electrically conductive polymers and polymer nanocomposites and their applications. EScience, 2(4):365-381. https://doi.org/10.1016/j.esci.2022.07.003
Saengchairat, N., Tran, T., & Chua, C.K. (2017). A review: Additive manufacturing for active electronic components. Virtual and Physical Prototyping, 12(1):31-46. https://doi.org/10.1080/17452759.2016.1253181
Sakin, M., & Kiroglu, Y.C. (2017). 3D printing of buildings: Construction of the sustainable houses of the future by BIM. Energy Procedia, 134:702-711. https://doi.org/10.1016/j.egypro.2017.09.562
Salet, T.A., Ahmed, Z.Y., Bos, F.P., & Laagland, H.L. (2018). Design of a 3D printed concrete bridge by testing. Virtual and Physical Prototyping, 13(3):222-236. https://doi.org/10.1080/17452759.2018.1476064
San Fratello, V., & Rael, R. (2020). Innovating materials for large scale additive manufacturing: Salt, soil, cement and chardonnay. Cement and Concrete Research, 134:106097. https://doi.org/10.1016/j.cemconres.2020.106097
Schuldt, S.J., Jagoda, J.A., Hoisington, A.J., & Delorit, J.D. (2021). A systematic review and analysis of the viability of 3D-printed construction in remote environments. Automation in Construction, 125:103642. https://doi.org/10.1016/j.autcon.2021.103642
Sepasgozar, S.M., Shi, A., Yang, L., Shirowzhan, S., & Edwards, D.J. (2020). Additive manufacturing applications for industry 4.0: A systematic critical review. Buildings, 10(12):231. https://doi.org/10.3390/buildings10120231
Shahrubudin, N., Lee, T.C., & Ramlan, R.J.P.M. (2019). An overview on 3D printing technology: Technological, materials, and applications. Procedia Manufacturing, 35:1286-1296. https://doi.org/10.1016/j.promfg.2019.06.089
Sheydaeian, E., & Toyserkani, E. (2018). A new approach for fabrication of titanium-titanium boride periodic composite via additive manufacturing and pressure-less sintering. Composites Part B Engineering, 138:140-148. https://doi.org/10.1016/j.compositesb.2017.11.035
Shuaib, M., Haleem, A., Kumar, S., & Javaid, M. (2021). Impact of 3D printing on the environment: A literature-based study. Sustainable Operations and Computers, 2:57-63. https://doi.org/10.1016/j.susoc.2021.04.001
Stoof, D., & Pickering, K. (2018). Sustainable composite fused deposition modelling filament using recycled pre-consumer polypropylene. Composites Part B: Engineering, 135:110-118. https://doi.org/10.1016/j.compositesb.2017.10.005
Sun, H., Duan, M., Wu, Y., Zeng, Y., Zhao, H., Wu, S., et al. (2024). Designing sustainable built environments for Mars habitation: Integrating innovations in architecture, systems, and human well-being. Nexus, 1:100030. https://doi.org/10.1016/j.ynexs.2024.100030
Sun, J., Xiao, J., Li, Z., & Feng, X. (2021). Experimental study on the thermal performance of a 3D printed concrete prototype building. Energy and Buildings, 241:110965. https://doi.org/10.1016/j.enbuild.2021.110965
Tabassum, T., & Mir, A.A. (2023). A review of 3d printing technology-the future of sustainable construction. Materials Today Proceedings, 93:408-414. https://doi.org/10.1016/j.matpr.2023.08.013
Tahmasebinia, F., Jabbari, A.A., & Skrzypkowski, K. (2023). The application of finite element simulation and 3D printing in structural design within construction industry 4.0. Applied Sciences, 13(6):3929. https://doi.org/10.3390/app13063929
Tay, Y.W.D., Panda, B., Paul, S.C., Noor Mohamed, N.A., Tan, M.J., & Leong, K.F. (2017). 3D printing trends in building and construction industry: A review. Virtual and Physical Prototyping, 12(3):261-276. https://doi.org/10.1080/17452759.2017.1326724
Tay, Y.W.D., Panda, B., Paul, S.C., Tan, M.J., Qian, S.Z., Leong, K.F., et al. (2016). Processing and properties of construction materials for 3D printing. In: Materials Science Forum. Vol. 861. Switzerland: Trans Tech Publications Ltd., p. 177-181. https://doi.org/10.4028/www.scientific.net/MSF.861.177
Tuli, N.T., Khatun, S., & Rashid, A.B. (2024). Unlocking the future of precision manufacturing: A comprehensive exploration of 3D printing with fiber-reinforced composites in aerospace, automotive, medical, and consumer industries. Heliyon, 10(5):e27328. https://doi.org/10.1016/j.heliyon.2024.e27328
Vanderploeg, A., Lee, S.E., & Mamp, M. (2017). The application of 3D printing technology in the fashion industry. International Journal of Fashion Design Technology and Education, 10(2):170-179. https://doi.org/10.1080/17543266.2016.1223355
Vanegas, J.A., DuBose, J.R., & Pearce, A.R. (1996). Sustainable Technologies for the Building Construction Industry. In: Proceedings, Symposium on Design for the Global Environment, Atlanta, GA, p. 1-16.
Varpe, A., Sayed, M., & Mane, N.S.A. (2025). Comprehensive literature review on advancements and challenges in 3D bioprinting of human organs: Ear, skin, and bone. Annals of Biomedical Engineering, 53:14-33. https://doi.org/10.1007/s10439-024-03580-3
Wang, X., Jiang, M., Zhou, Z., Gou, J., & Hui, D. (2017). 3D printing of polymer matrix composites: A review and prospective. Composites Part B Engineering, 110:442-458. https://doi.org/10.1016/j.compositesb.2016.11.034
Weng, Y., Li, M., Ruan, S., Wong, T.N., Tan, M.J., Yeong, K.L.O., et al. (2020). Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach. Journal of Cleaner Production, 261:121245. https://doi.org/10.1016/j.jclepro.2020.121245
Wu, P., Wang, J., & Wang, X. (2016). A critical review of the use of 3-D printing in the construction industry. Automation in Construction, 68:21-31. https://doi.org/10.1016/j.autcon.2016.04.005
Wu, S., Zeng, T., Liu, Z., Ma, G., Xiong, Z., Zuo, L., et al. (2022). 3D printing technology for smart clothing: A topic review. Materials, 15:7391. https://doi.org/10.3390/ma15207391
Xu, J., Ding, L., & Love, P.E. (2017). Digital reproduction of historical building ornamental components: From 3D scanning to 3D printing. Automation in Construction, 76:85-96. https://doi.org/10.1016/j.autcon.2017.01.010
Yan, C., Hao, L., Hussein, A., & Young, P. (2015). Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 51:61-73. https://doi.org/10.1016/j.jmbbm.2015.06.024
Yan, Q., Dong, H., Su, J., Han, J., Song, B., Wei, Q., et al. (2018). A review of 3D printing technology for medical applications. Engineering, 4(5):729-742. https://doi.org/10.1016/j.eng.2018.07.021
Yazici, S. (2018). Building in extraterrestrial environments: T-brick shell. Journal of Architectural Engineering, 24(1):04017037. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000293
Zareiyan, B., & Khoshnevis, B. (2018). Effects of mixture ingredients on interlayer adhesion of concrete in contour crafting. Rapid Prototyping Journal, 24(3):584-592. https://doi.org/10.1108/RPJ-02-2017-0029
Žujović, M., Obradović, R., Rakonjac, I., & Milošević, J. (2022). 3D printing technologies in architectural design and construction: A systematic literature review. Buildings, 12(9):1319. https://doi.org/10.3390/buildings12091319
