AccScience Publishing / ITPS / Volume 5 / Issue 1 / DOI: 10.36922/itps.298
Cite this article
31
Download
1020
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Highly Sensitive Hepatitis B Virus Identification by Antibody-Aptamer Sandwich Enzyme-Linked Immunosorbent Assay

Huijuan Geng1,2 Subash C.B. Gopinath3,4,5 Wenyan Niu1*
Show Less
1 School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
2 Department of Laboratory Medicine, Baoding People’s Hospital, Baoding 071000, Hebei Province, China
3 Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
4 Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
5 Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis, Malaysia
INNOSC Theranostics and Pharmacological Sciences 2022, 5(1), 7–14; https://doi.org/10.36922/itps.298
Submitted: 14 December 2022 | Accepted: 30 January 2023 | Published: 13 February 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Hepatitis B virus (HBV) infection is considered a major global health problem, causing various health issues, including cirrhosis, hepatitis, and liver cancer. The risk of developing such complications increases when the viral load is above 105 copies/mL. Early identification of HBV infection is imperative to preventing the spread of infection to other parts of the body. Although various sensing methods have been developed to identify HBV, researchers are still working toward developing cheap, easy, and sensitive detection methods. We developed a highly sensitive and rapid HBV detection method using nanomaterials on enzyme-linked immunosorbent assay (ELISA). Aptamer-antibody was utilized as the detection probe and immobilized on a zeolite-modified ELISA plate to detect the HBV biomarker hepatitis B surface antigen (HBsAg). To enhance the detection of HBsAg, aptamer and antibody were attached to gold nanoparticle through electrostatic interaction and immobilized on the zeolite-modified ELISA plate through amine linker. This probe-modified ELISA plate detected low levels of HBsAg, with a detection limit of 0.1 ng/mL. Furthermore, serum spiked experiments showed increment of absorbance with increasing HBsAg concentration, but control trials with other biomolecules showed no increment of absorbance, showing the specific and selective detection of HBsAg. This nanomaterial-modified ELISA plate can detect low levels of HBsAg and help in the diagnosis of HBV infection in its early stages.

Keywords
Enzyme-linked immunosorbent assay
Hepatitis B surface antigen
Hepatitis B virus
Nanomaterial
Zeolite
Funding
None.
References
[1]

Du, H.; Li, Z.; Wang, Y.; Yang, Q.; Wu, W. Nanomaterial-Based Optical Biosensors for the Detection of Foodborne Bacteria. Food Rev. Int., 2022, 38, 655–84.

[2]

Shao, B.; Xiao, Z. Recent Achievements in Exosomal Biomarkers Detection by Nanomaterials-Based Optical Biosensors-A Review. Anal. Chim. Acta, 2020, 1114, 74–84.

[3]

Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Biosensors Applications in Medical Field: A Brief Review. Sens. Int., 2021, 2, 100100.

[4]

Takaloo, S.; Zand, MM. Wearable Electrochemical Flexible Biosensors: With the Focus on Affinity Biosensors. Sens. Biosensing Res., 2021, 32, 100403.

[5]

Choi, J.R. Development of Point-of-care Biosensors for COVID-19. Front. Chem., 2020, 8, 517. 

[6]

Vashist, S.K.; Schneider, E.M.; Lam, E.; Hrapovic, S.; Luong, J.H.T. One-Step Antibody Immobilization-Based Rapid and Highly-Sensitive Sandwich ELISA Procedure for Potential in Vitro Diagnostics. Sci. Rep., 2014, 4, 4407.

[7]

Yaqoob, A.A.; Parveen, T.; Umar, K.; Ibrahim, M.N.M. Role of Nanomaterials in the Treatment of Wastewater: A Review. Water, 2020, 12, 495.

[8]

Challagulla, N.V.; Rohatgi, V.; Sharma, D.; Kumar, R. Recent Developments of Nanomaterial Applications in Additive Manufacturing: A Brief Review. Curr. Opin. Chem. Eng., 2020, 28, 75–82.

[9]

Jampilek, J.; Kos, J.; Kralova, K. Potential of Nanomaterial Applications in Dietary Supplements and Foods for Special Medical Purposes. Nanomaterials (Basel), 2019, 9, 296.

[10]

Sheikhzadeh, E.; Beni, V.; Zourob, M. Nanomaterial Application in Bio/Sensors for the Detection of Infectious Diseases. Talanta, 2021, 230, 122026.

[11]

Ramanathan, S.; Gopinath, S.C.B.; Arshad, M.K.M.; Poopalan, P. Multidimensional (0D-3D) Nanostructures for Lung Cancer Biomarker Analysis: Comprehensive Assessment on Current Diagnostics. Biosens. Bioelectron., 2019, 141, 111434.

[12]

Soldatkina, O.V.; Kucherenko, I.S.; Soldatkin, O.O.; Pyeshkova, V.M.; Dudchenko, O.Y.; Kurç, B.A.; Dzyadevych, S.V. Development of Electrochemical Biosensors with Various Types of Zeolites. Appl. Nanosci., 2019, 9(5), 737–47.

[13]

Soldatkin, O.O.; Shelyakina, M.K.; Arkhypova, V.N.; Soy, E.; Kirdeciler, S.K.; Kasap, B.O.; Lagarde, F.; Jaffrezic-Renault, N.; Kurç, B.A.; Soldatkin, A.P.; Dzyadevych, S.V. Nano-and Microsized Zeolites as a Perspective Material for Potentiometric Biosensors Creation. Nanoscale Res. Lett., 2015, 10(1), 59.

[14]

Kasap, B.O.; Marchenko, S.V.; Soldatkin, O.O.; Dzyadevych, S.V.; Kurc, B.A. Biosensors Based on Nano-Gold/Zeolite-Modified Ion Selective Field-Effect Transistors for Creatinine Detection. Nanoscale Res. Lett., 2017, 12(1), 162.

[15]

Lu, D.; Xia, J.; Deng, Z.; Cao, X. Detection of Squamous Cell Carcinoma Antigen in Cervical Cancer by Surface-Enhanced Raman Scattering-based Immunoassay. Anal. Methods, 2019, 11, 2809–18. 

[16]

Székács, A.; Le, H.T.M.; Szurdoki, F.; Hammock, B.D. Optimization and Validation of an Enzyme Immunoassay for the Insect Growth Regulator Fenoxycarb. Anal. Chim. Acta, 2003, 487(1), 15–29. 

[17]

Lakshmipriya, T.; Gopinath, S.C.B.; Citartan, M.; Hashim, U.; Tang, T.H. Gold Nanoparticle-Mediated High-Performance Enzyme-Linked Immunosorbent Assay for Detection of Tuberculosis ESAT-6 Protein. Micro Nanosyst., 2016, 8(2), 92–8.

[18]

Lakshmipriya, T.; Gopinath, S.C.B.; Hashim, U.; Tang, T.H.T. Signal Enhancement in ELISA: Biotin-Streptavidin Technology against Gold Nanoparticles. J. Taibah Univ. Med. Sci., 2016, 11(5), 432–8.

[19]

Cai, G.; Yu, Z.; Ren, R.; Tang, D. Exciton-Plasmon Interaction between AuNPs/Graphene Nanohybrids and CdS Quantum Dots/ TiO2 for Photoelectrochemical Aptasensing of Prostate-Specific Antigen. ACS Sens., 2018, 3(3), 632–9. 

[20]

Iha, K.; Inada, M.; Kawada, N.; Nakaishi, K.; Watabe, S.; Tan, Y.H.; Shen, C.; Ke, L.Y.; Yoshimura, T.; Ito, E. Ultrasensitive ELISA Developed for Diagnosis. Diagnostics (Basel), 2019, 9, 78.

[21]

Correa, V.A.; Rodrigues, T.S.; Portilho, A.I.; de Lima, G.T.; De Gaspari, E. Modified ELISA for Antibody Avidity Evaluation: The Need for Standardization. Biomed. J., 2021, 44, 433–8. 

[22]

Xi, Z.; Huang, R.; Li, Z.; He, N.; Wang, T.; Su, E.; Deng, Y. Selection of HBsAg-Specific DNA Aptamers Based on Carboxylated Magnetic Nanoparticles and Their Application in the Rapid and Simple Detection of Hepatitis B Virus Infection. ACS Appl. Mater. Interfaces, 2015, 7(21), 11215–23. 

[23]

Afsarimanesh, N.; Mukhopadhyay, S.C.; Kruger, M. Biosensors for the Measurement of C-Terminal Telopeptide of Type I Collagen (CTX-I). J. Osteoporos. Phys. Act., 2017, 5(2) 1000199.

[24]

Karege, F.; Perret, G.; Bondolfi, G.; Schwald, M.; Bertschy, G.; Aubry, J.M. Decreased Serum Brain-Derived Neurotrophic Factor Levels in Major Depressed Patients. Psychiatry Res., 2002, 109, 143–8.

[25]

Lakshmipriya, T.; Gopinath, S.C.B.; Citartan, M.; Hashim, U.; Tang, T.H. Gold Nanoparticle-Mediated High-Performance Enzyme-Linked Immunosorbent Assay for Detection of Tuberculosis ESAT-6 Protein. Micro Nanosyst., 2017, 8(2), 92–8.

[26]

Mukama, O.; Wu, W.; Wu, J.; Lu, X.; Liu, Y.; Liu, Y.; Liu, J.; Zeng, L. A Highly Sensitive and Specific Lateral Flow Aptasensor  for the Detection of Human Osteopontin. Talanta, 2020, 210, 120624. 

[27]

Ma, X.; Liu, Y.; Zhou, N.; Duan, N.; Wu, S.; Wang, Z. SERS Aptasensor Detection of: Salmonella Typhimurium Using a Magnetic Gold Nanoparticle and Gold Nanoparticle Based Sandwich Structure. Anal. Methods, 2016, 8(45), 8099–105.

[28]

Ly, S.Y.; Cho, N.S. Diagnosis of Human Hepatitis B Virus in Non- Treated Blood by the Bovine IgG DNA-Linked Carbon Nanotube Biosensor. J. Clin. Virol., 2009, 44 (1), 43–47. 

[29]

Chung, J.W.; Kim, S.D.; Bernhardt, R.; Pyun, J.C. Application of SPR Biosensor for Medical Diagnostics of Human Hepatitis B Virus (HHBV). Sens. Actuat. B Chem., 2005, 111–112, 416–22. 

[30]

Perdikaris, A.; Alexandropoulos, N.; Kintzios, S. Development of a Novel, Ultra-Rapid Biosensor for the Qualitative Detection of Hepatitis B Virus-Associated Antigens and Anti-HBV, Based on “Membrane-Engineered” Fibroblast Cells with Virus-Specific Antibodies and Antigens. Sensors (Basel), 2009, 9(3), 2176–86.

Conflict of interest
Authors have no competing interests in relation to the publication of this article.
Share
Back to top
INNOSC Theranostics and Pharmacological Sciences, Electronic ISSN: 2705-0823 Published by AccScience Publishing