AccScience Publishing / ITPS / Volume 1 / Issue 1 / DOI: 10.26689/itps.v1i1.416
Cite this article
23
Download
675
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
MINI-REVIEW

Review on Chronic Exposure of Acrylamide Causes a Neurotoxicity Risk

Narendra Maddu1 S. Fareeda Begum1
Show Less
1 Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
INNOSC Theranostics and Pharmacological Sciences 2018, 1(1), 416 https://doi.org/10.26689/itps.v1i1.416
Submitted: 15 October 2018 | Accepted: 19 November 2018 | Published: 11 December 2018
© 2018 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The exposure and inhalation of acrylamide (ACR) are not safe to the human health leading to the potential 
neurotoxicity. ACR is widely used in biochemical techniques and highly occurs in processing foods such as potato chips prepared at high temperatures. ACR is formed from reducing sugars and asparagine through the Maillard reaction. It exerts various harmful and toxic effects such as neurotoxicity both in humans and animal studies. The extensive damage of synaptic proteins, the formation of ACR-DNA adducts, degeneration of motor neurons, neurofilament reduction, are the most common neurological symptoms. The main metabolite of ACR metabolism is glycidamide, and it causes harmful effects as same as ACR. The main purpose of this study is to analyze the neurotoxic effects of ACR on various regions of the brain and its different mechanistic pathways that are involved in ACR neurotoxicity. The consumption of ACR-containing foods and its exposure are reduced by the human, leading to the reduction of toxic effects associated with ACR.

Keywords
Acrylamide
human
animal
neurotoxicity
Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.
References
[1]

Nguyen, V.; Cooper, L.; Lowndes, J.; Melanson, K.; Angelopoulos, T.J.; Rippe, J.M.; Reimers, K. Popcorn is more satiating than potato chips in normal-weight adults. Nutr. J., 2012, 14, 71.

[2]

El-Sayyad, H.I.; Sa, S.; Badawy, G.M.; Afify, H.S. Hazardous effects of potato chips on the development of retina in albino rats. Asian Pac. J. Trop. Biomed., 2011, 1(4), 253-260.

[3]

Friedman, M. Chemistry, biochemistry, and safety of acrylamide. A review. J. Agric. Food Chem., 2003, 51(16), 4504-4526.

[4]

Pennisi, M.; Malaguarnera, G.; Puglisi, V.; Vinciguerra, L.; Vacante, M.; Malaguarnera, M. Neurotoxicity of acrylamide in exposed workers. Int. J. Environ. Res. Public Health, 2013, 10(9), 3843-3854.

[5]

Koklamaz, E.; Palazoglu, T.K.; Kocadagli, T.; Gokmen, V. Effect of combining conventional frying with radiofrequency post drying on acrylamide level and quality attributes of potato chips. J. Sci. Food Agric., 2014, 94(10), 2002-2008.

[6]

Shamla, L.; Nisha, P. Acrylamide in deep-fried snacks of India. Food Addit. Contam. Part B Surveill., 2014, 7(3), 220-225.

[7]

Williams, J.S.E. Influence of variety and processing conditions on acrylamide levels in fried potato crisps. Food Chem., 2005, 52, 875-881.

[8]

Amrein, T.M.; Bachmann, S.; Noti, A.; Biedermann, M.; Barbosa, M.F.; Biedermann-Brem, S.; Grob, K.; Keiser, A.; Realini, P.; Escher, F.; Amado, R. Potential of acrylamide formation, sugars, and free asparagine in potatoes: A comparison of cultivars and farming systems. J. Agric. Food Chem., 2003, 51, 5556-5560.

[9]

Swedish National Food Administration. Acrylamide in Food. Uppsala: Swedish National Food Administration; 2002.

[10]

Wilson, K.M.; Rimm, E.B.; Thompson, K.M.; Mucci, L.A. Dietary acrylamide and cancer risk in humans: A review. J. Verbr.Lebensm., 2006, 1, 19-27.

[11]

Faria, M.; Ziy, T.; Gomez-Canela, C.; Ben-Lulu, S.; Prats, E.; Novoa-Luna, K.A.; Admon, A.; Pina, B.; Tauler, R.; GomezOlivan, L.M.; Raldua, D. Acrylamide acute neurotoxicity in adult zebra fish. Sci. Rep., 2018, 8(1), 7918.

[12]

He, F.S.; Zhang, S.L.; Wang, H.L.; Li, G.; Zhang, Z.M.; Li, F.L.; Dong, X.M.; Hu, F.R. Neurological and electroneuromyographic assessment of the adverse effects of acrylamide on occupationally exposed workers. Scand. J. Work Environ. Health, 1989, 15(2), 125-129.

[13]

Aras, D.; Cakar, Z.; Ozkavukcu, S.; Can, A.; Cinar, O. In vivo acrylamide exposure may cause severe toxicity to mouse oocytes through its metabolite glycidamide. PLoS One, 2017, 12(2), e0172026.

[14]

Hsu, H.T.; Chen, M.J.; Tseng, T.P.; Cheng, L.H.; Huang, L.J.; Yeh, T.S. Kinetics for the distribution of acrylamide in French fries, fried oil and vapour during frying of potatoes. Food Chem.,2016, 211, 669-678.

[15]

Mojska, H.; Gielecinska, I.; Cendrowski, A. Acrylamide content in cigarette mainstream smoke and estimation of exposure to acrylamide tobacco smoke in Poland. Ann. Agric. Environ. Med.,2016, 23(3), 456-461.

[16]

International Agency for Research on Cancer (IARC). Acrylamide, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Some Industrials Chemicals. Vol. 60. Lyon, France: International Agency for Research on Cancer; 1994. p. 389-433.

[17]

Kopp, E.K.; Dekant, W. Toxicokinetics of acrylamide in rats and humans following single oral administration of low doses. Toxicol. Appl. Pharmacol., 2009, 235(2), 135-142.

[18]

Auld, R.B.; Bedwell, S.F. Peripheral neuropathy with sympathetic overactivity from industrial contact with acrylamide. Can. Med. Assoc. J., 1967, 96, 652-654.

[19]

Boyes, W.K.; Cooper, G.P. Acrylamide neurotoxicity: Effects on far-field somatosensory evoked potentials in rats. Neurobehav. Toxicol. Teratol., 1981, 3(4), 487-490.

[20]

Abou-Donia, M.B.; Ibrahim, S.M.; Corcoran, J.J.; Lack, L.; Friedman, M.A.; Lapadula, D.M. Neurotoxicity of glycidamide, an acrylamide metabolite, following intraperitoneal injections in rats. J. Toxicol. Environ. Health, 1993, 39(4), 447-464.

[21]

Lopachin, R.M.; Lehning, E.J. Acrylamide-induced distal axon degeneration: A proposed mechanism of action. Neurotoxicology,1994, 15(2), 247-259.

[22]

Myers, J.E.; Macun, I. Acrylamide neuropathy in a South African factory: An epidemiologic investigation. Am. J. Ind. Med., 1991, 19(4), 487-493.

[23]

Al Deeb, S.; Al Moutaery, K.; Arshaduddin, M.; Biary, N.; Tariq, M. Attenuation of acrylamide-induced neurotoxicity in diabetic rats. Neurotoxicol. Teratol., 2000, 22(2), 247-253.

[24]

Zhang, B.; Shao, H.; Wang, X.H.; Chen, X.; Li, Z.S.; Cao, P.; Zhu, D.; Yang, Y.G.; Xiao, J.W.; Li, B. Acrylamide induced subacute neurotoxic effects on the cerebral cortex and cerebellum at the synapse level in rats. Biomed. Environ. Sci., 2017, 30(6), 432-443.

[25]

Prats, E.; Gomez-Canela, C.; Ben-Lulu, S.; Ziv, T.; Padros, F.; Tornero, D.; Garcia-Reyero, N.; Tauler, R.; Admon, A.; Raldua, D. Modelling acrylamide acute neurotoxicity in zebrafish larvae. Sci. Rep., 2017, 7(1), 139-152.

[26]

Alemzadeh, I. Biotechnological method for decreasing hazardous compound (acrylamide) formation during phyto food product processing. J. Biotechnol. Phytochem., 2017, 1, 1-2.

[27]

Deng, H.; He, F.; Zhang, S.; Calleman, C.J.; Costa, L.G. Quantitative measurements of vibration threshold in healthy adults and acrylamide workers. Int. Arch. Occup. Environ. Health,1993, 65(1), 53-56.

[28]

Lopachin, R.M. The changing view of acrylamide neurotoxicity. Neurotoxicology, 2004, 25(4), 617-630.

[29]

Beiswanger, C.M.; Mandella, R.D.; Graessle, T.R.; Reuhl, K.R.; Lowndes, H.E. Synergistic neurotoxic effects of styrene oxide and acrylamide: Glutathione-independent necrosis of cerebellar granule cells. Toxicol. Appl. Pharm., 1993, 118, 233-244.

[30]

Allam, A.; El-Ghareeb, A.A.; Abdul-Hamid, M.; Baikry, A.; Sabri, M.I. Prenatal and perinatal acrylamide disrupts the development of cerebellum in rat: Biochemical and morphological studies. Toxicol. Ind. Health, 2011, 27(4), 291-306.

[31]

Seale, S.M.; Feng, Q.; Agarwal, A.K.; El-Alfy, A.T. Neurobehavioral and transcriptional effects of acrylamide in juvenile rats. Pharmacol. Biochem. Behav., 2012, 101(1), 77-84.

[32]

Ho, W.H.; Wang, S.M.; Yin, H.S. Acrylamide disturbs the subcellular distribution of GABAA receptor in brain neurons. J. Cell Biochem., 2002, 85(3), 561-571.

[33]

Nordin-Andersson, M.; Walum, E.; Kjellstrand, P.; Forsby, A. Acrylamide-induced effects on general and neurospecific cellular functions during exposure and recovery. Cell Biol. Toxicol., 2003, 19(1), 43-51.

[34]

Barber, D.S.; Lopachin, R.M. Proteomic analysis of acrylamideprotein adduct formation in rat brain synaptosomes. Toxicol. Appl. Pharmacol., 2004, 201(2), 120-136.

[35]

Erkekoglu, P.; Baydar, T. Acrylamide neurotoxicity. Nutr. Neurosci., 2014, 17(2), 49-57.

[36]

Al-Gholam, M.A.; Nooh, H.Z.; El-Mehi, A.E.; El-BarbaryAel, M.; Fokar, A.Z. Protective effect of rosemary on acrylamide motor neurotoxicity in spinal cord of rat offspring: Postnatal follow-up study. Anat. Cell Biol., 2016, 49(1), 34-49.

[37]

Chen, J.H.; Chou, C.C. Acrylamide inhibits cellular differentiation of human neuroblastoma and glioblastoma cells. Food Chem. Toxicol., 2015, 82, 27-35.

[38]

Zamani, E.; Shokrzadeh, M.; Fallah, M.; Shaki, F. A review of acrylamide toxicity and its mechanism. Pharm. Biomed. Res.,2017, 3(1), 1-7.

[39]

Costa, L.G.; Deng, H.; Gregotti, C.; Manzo, L.; Faustman, E.M.; Bergmark, E.; Calleman, C.J. Comparative studies on the neuroand reproductive toxicity of acrylamide and its epoxide metabolite glycidamide in the rat. Neurotoxicology, 1992, 13(1), 219-224.

[40]

Smith, E.A.; Oehme, F.W. Acrylamide and polyacrylamide:A review of production, use, environmental fate and neurotoxicity. Rev. Environ. Health, 1991, 9, 215-228.

[41]

Ali, S.F.; Hong, J.S.; Wilson, W.E.; Uphouse, L.L.; Bondy, S.C. Effect of acrylamide on neurotransmitter metabolism and neuropeptide levels in several brain regions and upon circulating hormones. Arch. Toxicol., 1983, 52(1), 35-43.

[42]

Hogervorst, J.G.; Schouten, L.J.; Konings, E.J.; Goldbohm, R.A.; van den Brandt, P.A. Dietary acrylamide intake and the risk of renal cell, bladder, and prostate cancer. Am. J. Clin. Nutr., 2008, 87(5), 1428-1438.

[43]

Edwards, P.M.; Sporel-Ozakat, R.E.; Gispen, W.H. Peripheral pain fiber function is relatively insensitive to the neurotoxic actions of acrylamide in the rat. Toxicol. Appl. Pharmacol., 1991, 111(1), 43-48.

[44]

Tian, S.M.; Ma, Y.X.; Shi, J.; Lou, T.Y.; Liu, S.S.; Li, G.Y. Acrylamide neurotoxicity on the cerebrum of weaning rats. Neural Regen. Res., 2015, 10(6), 938-943.

[45]

Mansour, S.Z.; Moawed, F.S.M.; Elmarkaby, S.M. Protective effect of 5, 7-dihydroxyflavone on brain of rats exposed to acrylamide or γ-radiation. J. Photochem. Photobiol. B, 2017, 175, 149-155.

[46]

Zhu, Y.J.; Zeng, T.; Zhu, Y.B.; Yu, S.F.; Wang, Q.S.; Zhang, L.P.; Guo, X.; Xie, K.Q. Effects of acrylamide on the nervous tissue antioxidant system and sciatic nerve electrophysiology in the rat. Neurochem. Res., 2008, 33, 2310-2317.

[47]

Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74.

[48]

Lopachin, R.M.; Gavin, T. Molecular mechanism of acrylamide neurotoxicity: Lessons learned from organic chemistry. Environ. Health Perspect., 2012, 120(12), 1650-1657.

[49]

Santhanasabapathy, R.; Vasudevan, S.; Anupriya, K.; Pabitha, R.; Sudhandiran, G. Farnesol quells oxidative stress, reactive gliosis and inflammation during acrylamide-induced neurotoxicity: Behavioral and biochemical evidence. Neuroscience, 2015, 308, 212-27.

[50]

Calleman, C.J.; Wu, Y.; He, F.; Tian, G.; Bergmark, E.; Zhang, S.; Deng, H.; Wang, Y.; Crofton, K.M.; Fennell, T.; Nauman, C.; Costa, L. Relationships between biomarkers of exposure and neurological effects in a group of workers exposed to acrylamide. Toxicol. Appl. Pharmacol., 1994, 126(2), 361-371.

[51]

Komoike, Y.; Matsuoka, M. Endoplasmic reticulum stressmediated neuronal apoptosis by acrylamide exposure. Toxicol. Appl. Pharmacol., 2016, 310, 68-77.

[52]

Kopanska, M.; Czech, J.; Zagata, P.; Dobrek, L.; Thor, P.; Formicki, G. Effect of the different doses of acrylamide on acetylocholinoestease activity, thiol groups, malondialdehyde concentrations in hypothalamus and selected muscles of mice. J. Physiol. Pharmacol., 2017, 68(4), 565-571.

[53]

Erdemli, M.E.; ArifAladag, M.; Altinoz, E.; Demirtas, S.; Turkoz, Y.; Yigitcan, B.; Bag, H.G. Acrylamide applied during pregnancy causes the neurotoxic effect by lowering BDNF levels in the fetal brain. Neurotoxicol. Teratol., 2018, 67, 37-43.

[54]

Endo, H.; Kittur, S.; Sabri, M.I. Acrylamide alters neurofilament protein gene expression in rat brain. Neurochem. Res., 1994, 19, 815-820.

[55]

Lopachin, R.M.; Barber, D.S.; He, D.; Das, S. Acrylamide inhibits dopamine uptake in rat striatal synaptic vesicles. Toxicol. Sci.,2006, 89(1), 224-234.

[56]

Lopachin, R.M.; Barber, D.S. Synaptic cysteine sulfhydryl groups as targets of electrophilic neurotoxicants. Toxicol. Sci., 2006, 94(2), 240-55.

[57]

Exon, J.H. A review of the toxicology of acrylamide. J. Toxicol. Environ. Health B Crit. Rev., 2006, 9(5), 397-412.

[58]

Barber, D.S.; Stevens. S.; Lopachin, R.M. Proteomic analysis of rat striatal synaptosomes during acrylamide intoxication at a low dose rate. Toxicol. Sci., 2007, 100(1), 156-167.

[59]

Dorman, D.C. An integrative approach to neurotoxicology. Toxicol. Pathol., 2000, 28(1), 37-42.

[60]

Bowyer, J.F.; Latendresse, J.R.; Delongchamp, R.R.; Warbritton, A.R.; Thomas, M.; Divine, B.; Doerge, D.R. The mRNA expression and histological integrity in rat forebrain motor and sensory regions are minimally affected by acrylamide exposure through drinking water. Toxicol. Appl. Pharmacol., 2009, 240(3), 401-411.

[61]

Mojska, H.; Gielecinska, I.; Szponar, L.; Ołtarzewski, M. Estimation of the dietary acrylamide exposure of the Polish population. Food Chem. Toxicol., 2010, 48, 2090-2096.

[62]

Lee, H.R.; Cho, S.J.; Park, H.J.; Kim, K.H.; Rhee, D.K.; Pyo, S. The inhibitory effect of acrylamide on NCAM expression in human neuroblastoma cells: Involvementof CK2/Ikaros signaling pathway. Toxicol. In Vitro, 2010, 24(7), 1946-1952.

[63]

Semla, M.; Goc, Z.; Martiniaková, M.; Omelka, R.; Formicki, G. Acrylamide: A common food toxin related to physiological functions and health. Physiol. Res., 2017, 66(2), 205-217.

[64]

Johnson, K.A.; Gorzinski, S.J.; Bodner, K.M.; Campbell, R.A.; Wolf, C.H.; Friedman, M.A.; Mast, R.W. Chronic toxicity and oncogenicity study on acrylamide incorporated in the drinking water of fischer 344 rats. Toxicol. Appl. Pharmacol., 1986, 85(2), 154-168.

[65]

Collins, J.J.; Swaen, G.M.; Marsh, G.M.; Utidjian, H.M.; Caporossi, J.C.; Lucas, L.J. Mortality patterns among workers exposed to acrylamide. J. Occup. Med., 1989, 31, 614-617.

[66]

Fuhr, U.; Boettcher, M.I.; Kinzig-Schippers, M.; Weyer, A.; Jetter, A.; Lazar, A.; Taubert, D.; Tomalik-Scharte, D.; Pournara, P.; Jakob, V.; Harlfinger, S.; Klaassen, T.; Berkessel, A.; Angerer, J.; Sorgel, F.; Schomig, E. Toxicokinetics of acrylamide in humans after ingestion of a defined dose in a test meal to improve risk assessment for acrylamide carcinogenicity. Cancer Epidemiol. Biomark. Prev., 2006, 15(2), 266-271.

[67]

Deng, H.; Jiao, X.; He, F. A study on neurotoxicity of acrylamide and glycidamide. Zhonghua Yu Fang Yi Xue Za Zhi, 1997, 31(4), 202-205.

[68]

Barber, D.; Hunt, J.R.; Ehrich, M.; Lehning, E.J.; Lopachin, R.M. Metabolism, toxicokinetics and hemoglobin adduct formation in rats following subacute and subchronic acrylamide dosing. NeuroToxicology, 2001, 22, 341-353.

[69]

Besaratinia, A.; Pfeifer, G.P. Genotoxicity of acrylamide and glycidamide. J. Natl. Cancer Inst., 2004, 96(13), 1023-1029.

[70]

Adewale, O.O.; Brimson, J.M.; Odunola, O.A.; Gbadegesin, M A.; Owumi, S.E.; Isidoro, C.; Tencomnao, T. The potential for plant derivatives against acrylamide neurotoxicity. Phytother. Res.,2015, 29(7), 978-985.

[71]

Kowalska, M.; Zbikowska, A.; Onacik-Gur, S.; Kowalska, D. Acrylamide in food products-eating habits and consumer awareness among medical school students. Ann. Agric. Environ. Med., 2017, 24(4), 570-574.

[72]

Specer, P.S.; Schaumburg, H.H. A review of acrylamide neurotoxicity. In part II experimental animal neurotoxicity and pathologic mechanisms. Can. J. Neurol. Sci., 1974, 1, 152-169.

Conflict of interest
The authors report no conflicts of interest.
Share
Back to top
INNOSC Theranostics and Pharmacological Sciences, Electronic ISSN: 2705-0823 Published by AccScience Publishing