AccScience Publishing / ITPS / Volume 1 / Issue 1 / DOI: 10.26689/itps.v1i1.511
Cite this article
15
Download
580
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
MINI-REVIEW

Aptamer: A Versatile Probe in Medical Diagnosis

Thangavel Lakshmipriya1 Subash C. B. Gopinath2,3
Show Less
1 Centre of Innovative Nanostructure and Nanodevices, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
2 Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
3 School of Bioprocess Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
INNOSC Theranostics and Pharmacological Sciences 2018, 1(1), 511 https://doi.org/10.26689/itps.v1i1.511
Submitted: 25 November 2018 | Accepted: 5 December 2018 | Published: 6 December 2018
© 2018 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The aptamer is a single standard nucleic acid, also known as an artificial antibody, has been selected from the 
randomized library of oligonucleotide molecules by the process of “systematic evaluation of ligands by exponential enrichment.”Since the selected aptamers have displayed advantages and rival the antibodies, potentials of aptamer are widely spread to different fields such as medicine, therapeutics, environmental, and biosensor. In particular, aptamers have been focused in the field of medical diagnosis due to its higher sensitivity and specificity against the target molecules. Various kinds of sensors were utilized to diagnose the different kinds of diseases using aptamer as the probe. In this overview, we discussed the detailed applications of aptamers with the field of medical diagnosis.

Keywords
Aptamer
biosensor
medical diagnosis
imaging
drug delivery
References
[1]

Gopinath, S.C.; Hayashi, K.; Kumar, P.K.R. Aptamer that binds to the gd protein of herpes simplex virus 1 and efficiently inhibits viral entry. J. Virol., 2012, 86, 6732-6744.

[2]

Gopinath, S.C.B.; Sakamaki, Y.; Kawasaki, K.; Kumar, P.K.R. An efficient RNA aptamer against human influenza B virus hemagglutinin. J. Biochem., 2006, 139, 837-846.

[3]

Lakshmipriya, T.; Fujimaki, M.; Gopinath, S.C.B.; Awazu, K. Generation of anti-influenza aptamers using the systematic evolution of ligands by exponential enrichment for sensing applications. Langmuir, 2013, 29, 15107-15115.

[4]

Gopinath, S.C.B; “Aptamers” in Encyclopedia of Analytical Chemistry, Eds R.A. Meyers, John Wiley: Available from: 10.1002/9780470027318.a1402.pub3. [Last accessed on Published on 2016 Sep 16].

[5]

Toh, S.Y.; Citartan, M.; Gopinath, S.C.B.; Tang, T.H. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens. Bioelectron., 2015, 64, 392-403.

[6]

Kim, D.; Jeong, Y.Y.; Jon, S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano, 2010, 4, 3689-3696.

[7]

Shima, T.; Fujimaki, M.; Yoshida, A.; Gopinath, S.C.B.; Kuwahara, M.; Ohki, Y.; Awazu, K. Detection of influenza viruses attached to an optical disk. J. Biomater. Nanobiotechnol., 2013, 4(2), 145-150.

[8]

Gopinath, S.C.B.; Tang, T.H.; Chen, Y.; Citartan, M.; Tominaga, J.; Lakshmipriya, T. Sensing strategies for influenza surveillance. Biosens. Bioelectron., 2014, 61, 357-369.

[9]

Gopinath, S.C.B. An efficient RNA aptamer against human influenza B virus hemagglutinin. J. Biochem., 2006, 139(5), 837-846.

[10]

Gopinath, S.C.B.; Awazu, K.; Fujimaki, M.; Shimizu, K. Evaluation of anti-A/Udorn/307/1972 antibody specificity to influenza viruses using wave guide mode sensor. PLoS One, 2013, 8, e81396.

[11]

Gopinath, S.C.B.; Awazu, K.; Tominaga, J.; Kumar, P.K.R. Monitoring biomolecular interactions on a digital versatile disk: A bioDVD platform technology. ACS Nano, 2008, 2(9), 1885-1895.

[12]

Gopinath, S.C.B.; Awazu, K.; Fujimaki, M. Detection of influenza viruses by a waveguide-mode sensor. Anal. Methods, 2010, 2(12), 1880.

[13]

Gopinath, S.C.B.; Misono, T.S.; Kawasaki, K.; Mizuno, T.; Imai, M.; Odagiri, T.; Kumar, P.K. An RNA aptamer that distinguishes between closely related human influenza viruses and inhibits haemagglutinin-mediated membrane fusion. J. Gen. Virol., 2006, 87(2006), 479-487.

[14]

Gopinath, S.C.B.; Balasundaresan, D.; Akitomi, J.; Mizuno, H. An RNA aptamer that discriminates bovine factor IX from human factor IX. J. Biochem., 2006, 140, 667-676.

[15]

Tombelli, S.; Minunni, M.; Luzi, E.; Mascini, M. Aptamerbased biosensors for the detection of HIV-1 Tat protein. Bioelectrochemistry, 2005, 67, 135-141.

[16]

Toscano-Garibay, J.D.; Benítez-Hess, M.L.; Alvarez-Salas. L.M. Isolation and characterization of an RNA aptamer for the HPV-16 E7 oncoprotein. Arch. Med. Res., 2011, 42(2), 88-96.

[17]

Gao, Y.; Yu, X.; Xue, B.; Zhou, F.; Wang, X.; Yang, D.; Liu, N.; Xu, L.; Fang, X.; Zhu, H. Inhibition of hepatitis C virus infection by dna aptamer against NS2 protein. PLoS One, 2014, 9(2), e90333.

[18]

Radhi, M.S.; Ruslinda, A.R.; Fatin, M.F.; Hashwan, S.S.B.; Arshad, M.K.M.; Hashim, U. HIV-1 Tat Peptide Detection by using RNA Aptamer on MWCNT Modified Electrode. In: IEEE International Conference on Semiconductor Electronics, Proceedings, ICSE; 2016. p. 204-207.

[19]

Yadavalli, T.; Agelidis, A.; Jaishankar, D.; Mangano, K.; Thakkar, N.; Penmetcha, K.; Shukla, D. Targeting herpes simplex virus-1 gD by a DNA aptamer can be an effective new strategy to curb viral infection. Mol. Ther. Nucleic Acids, 2017, 9, 365-378.

[20]

Cheng, C.; Chen, Y.H.; Lennox, K.A.; Behlke, M.A.; Davidson, B L. In vivo SELEX for identification of brainpenetrating aptamers. Mol. Ther. Nucleic Acids, 2013, 2(2012), e67.

[21]

van Bel, N.; Das, A.T.; Berkhout, B. In vivo SELEX of singlestranded domains in the HIV-1 leader RNA. J. Virol., 2013, 88(4), 1870-1880.

[22]

Mi, J.; Ray, P.; Liu, J.; Kuan, C.T.; Xu, J.; Hsu, D.; Sullenger, B.A.; White, R.R.; Clary, B.M. In vivo selection against human colorectal cancer xenografts identifies an aptamer that targets RNA helicase protein DHX9. Mol. Ther. Acids, 2016, 5(4), e315.

[23]

Yang, Z.; Kasprzyk-Hordern, B.; Goggins, S.; Frost, C.G.; Estrela, P. A novel immobilization strategy for electrochemical detection of cancer biomarkers: DNA-directed immobilization of aptamer sensors for sensitive detection of prostate specific antigens. Analyst, 2015, 140(8), 2628-2633.

[24]

Hung, L.; Wang, C.H.; Che, Y.; Fu, C.; Chang, H.; Wang, K.; Lee, G.B. Screening of aptamers specific to colorectal cancer cells and stem cells by utilizing on-chip cell-SELEX. Sci. Rep., 2015, 5, 10326.

[25]

Liu, Z.; Duan, J.H.; Song, Y.M.; Ma, J.; Wang, F.D.; Lu, X.; et al. Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J. Transl. Med., 2012, 10(1), 148.

[26]

Gopinath, S.C.B. Anti-coagulant aptamers. Thromb, Res., 2008, 122, 838-847.

[27]

Cheen, O.C.; Gopinath, S.C.B.; Perumal, V.; Arshad, M.K.M.; Lakshmipriya, T.; Chen, Y.; Haarindraprasad, R.; Rao, B.S.; Hashim, U.; Pandian, K. Aptamer-based impedimetric determination of the human blood clotting factor IX in serum using an interdigitated electrode modified with a ZnO nanolayer. Microchim. Acta, 2017, 184(1), 117-125.

[28]

Lakshmipriya, T.; Fujimaki, M.; Gopinath, S.C.B.; Awazu, K.; Horiguchi, Y.; Nagasaki, Y. A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity. Analyst, 2013, 138, 2863-2870.

[29]

Lakshmipriya, T.; Horiguchi, Y.; Nagasaki, Y. Co-immobilized poly(ethylene glycol)-block-polyamines promote sensitivity and restrict biofouling on gold sensor surface for detecting factor IX in human plasma. Analyst, 2014, 139(16), 3977-3985.

[30]

Paborsky, L.R.; McCurdy, S.N.; Griffin, L.C.; Toole, J.J.; Leung, L.L.K. The single-stranded DNA aptamer-binding site of human thrombin. J. Biol. Chem., 1993, 268(28), 20808-20811.

[31]

Cho, M.; Kim, Y.; Han, S.Y.; Min, K.; Rahman, M.A.; Shim, Y.B.; Ban, C. Detection for folding of the thrombin binding aptamer using label-free electrochemical methods. BMB Rep., 2008, 41(2), 126-131.

[32]

Bai, Y.; Feng, F.; Zhao, L.; Wang, C.; Wang, H.; Tian, M.; Qin, J.; Duan, Y.; He, X. Aptamer/thrombin/aptamer-AuNPs sandwich enhanced surface plasmon resonance sensor for the detection of subnanomolar thrombin. Biosens. Bioelectron., 2013, 47, 265-270.

[33]

Yang, H.; Ji, J.; Liu, Y.; Kong, J.; Liu, B. An aptamer-based biosensor for sensitive thrombin detection. Electrochem. Commun., 2009, 11(1), 38-40.

[34]

Edwards, K.A.; Wang, Y.; Baeumner, A.J. Aptamer sandwich assays: Human α-thrombin detection using liposome enhancement. Anal. Bioanal. Chem., 2010, 398(6), 2645-2654.

[35]

Yue, Q.; Shen, T.; Wang, L.; Xu, S.; Li, H.; Xue, Q.; Zhang, Y.; Gu, X.; Zhang, S.; Liu, J. A convenient sandwich assay of thrombin in biological media using nanoparticle-enhanced fluorescence polarization. Biosens. Bioelectron., 2014, 56, 231-236.

[36]

Gopinath, S.C.B.; Lakshmipriya, T.; Awazu, K. Colorimetric detection of controlled assembly and disassembly of aptamers on unmodified gold nanoparticles. Biosens. Bioelectron., 2014, 51, 115-123.

[37]

Peng, Y.; Li, L.; Mu, X.; Guo, L. Aptamer-gold nanoparticlebased colorimetric assay for the sensitive detection of thrombin. Sens. Actuators B Chem., 2013, 177, 818-825.

[38]

Park, J.H.; Cho, Y.S.; Kang, S.; Lee, E.J.; Lee, G.H.; Hah, S.S. A colorimetric sandwich-type assay for sensitive thrombin detection based on enzyme-linked aptamer assay. Anal. Biochem., 2014, 462, 10-12.

Conflict of interest
The authors confirm that this article content has no conflicts of interest.
Share
Back to top
INNOSC Theranostics and Pharmacological Sciences, Electronic ISSN: 2705-0823 Published by AccScience Publishing