Glia-driven neuroinflammation: Reshaping the neuron-centric model of neurodegenerative disorders
The traditional neuron-centric model of brain disorders has attributed neurodegeneration primarily to intrinsic neuronal pathologies such as protein aggregation and synaptic failure in Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease, and amyotrophic lateral sclerosis, and has often been extended to other CNS conditions such as multiple sclerosis, traumatic brain injury, and autism spectrum disorder. However, accumulating evidence highlights glial cells—microglia, astrocytes, and oligodendrocytes—as central drivers of neuroinflammation and disease progression, fundamentally revising this view. Microglia, the brain’s resident immune cells, rapidly sense pathological signals such as amyloid-β and α-synuclein through pattern-recognition receptors (e.g., TLR4) and inflammasome signaling (e.g., NLRP3). This sensing induces a shift from homeostatic surveillance to disease-associated pro-inflammatory states marked by increased release of cytokines such as tumor necrosis factor-alpha, IL-1β, and IL-6. Activated microglia, in turn, can promote reactive astrocytosis, characterized by elevated GFAP and complement C3, which may impair amyloid clearance, disrupt the blood–brain barrier, and contribute to neurotoxicity through reactive oxygen species and glutamate dysregulation. Sustained crosstalk among glial cells via extracellular vesicles and connexin-mediated signaling can amplify inflammation and counter-regulatory neuronal signals. In AD, early protective microglial phagocytosis gives way to plaque-associated dysfunction, accelerating tau pathology and synaptic loss, whereas in PD, α-synuclein-induced glial activation can promote inflammasome-dependent pyroptosis and dopaminergic neuron degeneration. Similar glia-driven inflammatory cycles contribute to other neurodegenerative disorders and may link disease progression to gut–brain–immune interactions. Therapeutic strategies targeting glial polarization, particularly inhibition of the NLRP3 inflammasome, offer promise by restoring neuroprotective functions without broad immunosuppression. This review emphasizes the dual roles of glia and supports integrated neuro-glial models for precision therapies in brain disorders.

- Yuste R. From the neuron doctrine to neural networks. Nat Rev Neurosci. 2015;16(8):487-497. doi: 10.1038/nrn3962
- Bigbee JW. Cells of the central nervous system: An overview of their structure and function. Adv Neurobiol. 2023;29:41-64. doi: 10.1007/978-3-031-12390-0_2
- La Sala G, Farini D. Glial cells and aging: From the CNS to the cerebellum. Int J Mol Sci. 2025;26(15):7553. doi: 10.3390/ijms26157553
- Vishnumukkala T, Che Mohd Nassir CMN, Hein ZM, et al. Glial cells as emerging therapeutic targets in neurodegenerative diseases: Mechanistic insights and translational perspectives. Cells. 2025;14(19):1497. doi: 10.3390/cells14191497
- Quincozes-Santos A, Santos CL, de Souza Almeida RR, et al. Gliotoxicity and glioprotection: The dual role of glial cells. Mol Neurobiol. 2021;58(12):6577-6592. doi: 10.1007/s12035-021-02574-9
- Hanslik KL, Marino KM, Ulland TK. Modulation of glial function in health, aging, and neurodegenerative disease. Front Cell Neurosci. 2021;15:718324. doi: 10.3389/fncel.2021.718324
- Patil VS, Desai A, Meena H. Glial cells, cytokines, and inflammasomes in neurodegeneration. In: Neuroinflammation and Autophagy in Neurodegeneration. Singapore: Springer Nature; 2025. p. 33-51.
- Mohammad ZB, Yudin SCY, Goldberg BJ, Serra KL, Klegeris A. Exploring neuroglial signaling: Diversity of molecules implicated in microglia-to-astrocyte neuroimmune communication. Rev Neurosci. 2024; 36(1):91-117. doi: 10.1515/revneuro-2024-0081
- Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther. 2023;8(1):267. doi: 10.1038/s41392-023-01486-5
- Bennett ML, Viaene AN. What are activated and reactive glia and what is their role in neurodegeneration? Neurobiol Dis. 2021;148:105172. doi: 10.1016/j.nbd.2020.105172
- Magni G, Riboldi B, Ceruti S. Human glial cells as innovative targets for the therapy of central nervous system pathologies. Cells. 2024;13(7):606. doi: 10.3390/cells13070606
- Liu YC, Eyo UB, Lu TY. Dynamic glia in the living brain: Insights into glial physiology and function from in vivo imaging. J Neurophysiol. 2026;135(1):11-27. doi: 10.1152/jn.00292.2025
- Sadeghdoust M, Das A, Kaushik DK. Fueling neurodegeneration: Metabolic insights into microglia functions. J Neuroinflammation. 2024;21(1):300. doi: 10.1186/s12974-024-03296-0
- Carraro C, Montgomery JV, Klimmt J, Paquet D, Schultze JL, Beyer MD. Tackling neurodegeneration in vitro with omics: A path towards new targets and drugs. Front Mol Neurosci. 2024;17:1414886. doi: 10.3389/fnmol.2024.1414886
- Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481-487. doi: 10.1038/nature21029
- Singh D. Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer’s disease. J Neuroinflammation. 2022;19(1):206. doi: 10.1186/s12974-022-02565-0
- Jamet M, Dupuis L, Gonzalez De Aguilar JL. Oligodendrocytes in amyotrophic lateral sclerosis and frontotemporal dementia: The new players on stage. Front Mol Neurosci. 2024;17:1375330. doi: 10.3389/fnmol.2024.1375330
- Pogoda-Wesołowska A, Dziedzic A, Maciak K, Stȩpień A, Dziaduch M, Saluk J. Neurodegeneration and its potential markers in the diagnosing of secondary progressive multiple sclerosis: A review. Front Mol Neurosci. 2023;16:1210091. doi: 10.3389/fnmol.2023.1210091
- Woo MS, Therriault J, Hosseini SA, et al. Glia inflammation and cell death pathways drive disease progression in preclinical and early Alzheimer’s disease. Mol Med. 2025;17(11):3064-3079. doi: 10.1038/s44321-025-00316-1
- Wilson DM 3rd, Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM, Dewachter I. Hallmarks of neurodegenerative diseases. Cell. 2023;186(4):693-714. doi: 10.1016/j.cell.2022.12.032
- Urrestizala-Arenaza N, Cerchio S, Cavaliere F, Magliaro C. Limitations of human brain organoids to study neurodegenerative diseases: A manual to survive. Front Cell Neurosci. 2024;18:1419526. doi: 10.3389/fncel.2024.1419526
- Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct Target Ther. 2023;8(1):359. doi: 10.1038/s41392-023-01588-0
- Stevenson R, Samokhina E, Rossetti I, Morley JW, Buskila Y. Neuromodulation of glial function during neurodegeneration. Front Cell Neurosci. 2020;14:278. doi: 10.3389/fncel.2020.00278
- McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology. 1988;38(8):1285-1291. doi: 10.1212/WNL.38.8.1285
- Cheng YH, Ho MS. Disease-associated microglia in neurodegenerative diseases: Friend or foe? PLoS Biol. 2025;23(10):e3003426. doi: 10.1371/journal.pbio.3003426
- Oksanen M, Lehtonen S, Jaronen M, Goldsteins G, Hämäläinen RH, Koistinaho J. Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cell Mol Life Sci. 2019;76(14):2739-2760. doi: 10.1007/s00018-019-03111-7
- Peteri UK, Niukkanen M, Castrén ML. Astrocytes in neuropathologies affecting the frontal cortex. Front Cell Neurosci. 2019;13:44. doi: 10.3389/fncel.2019.00044
- Demmings MD, da Silva Chagas L, Traetta ME, et al. Rebuilding the nervous system: A review of neuron-glia interactions from development to disease. J Neurochem. 2025;169(1):e16258. doi: 10.1111/jnc.16258
- Ferraiuolo L, Meyer K, Sherwood TW, et al. Oligodendrocytes contribute to motor neuron death in ALS via SOD1-dependent mechanism. Proc Natl Acad Sci U S A. 2016;113(42):E6496-E6505. doi: 10.1073/pnas.1607496113
- Rama Rao KV, Kielian T. Neuron-astrocyte interactions in neurodegenerative diseases: Role of neuroinflammation. Clin Exp Neuroimmunol. 2015;6(3):245-263. doi: 10.1111/cen3.12237
- Gong Z, Ba L, Zhang M. Dysfunction of the oligodendrocytes in amyotrophic lateral sclerosis. J Biomed Res. 2022;36(5):336-342. doi: 10.7555/JBR.36.20220009
- Yue Q, Hoi MPM. Emerging roles of astrocytes in blood-brain barrier disruption upon amyloid-beta insults in Alzheimer’s disease. Neural Regen Res. 2023;18(9):1890-1902. doi: 10.4103/1673-5374.367832
- Narine M, Colognato H. Current insights into oligodendrocyte metabolism and its power to sculpt the myelin landscape. Front Cell Neurosci. 2022;16:892968. doi: 10.3389/fncel.2022.892968
- Reemst K, Noctor SC, Lucassen PJ, Hol EM. The indispensable roles of microglia and astrocytes during brain development. Front Hum Neurosci. 2016;10:566. doi: 10.3389/fnhum.2016.00566
- Elmore MRP, Hohsfield LA, Kramár EA, et al. Replacement of microglia in the aged brain reverses cognitive, synaptic, and neuronal deficits in mice. Aging Cell. 2018;17(6):e12832. doi: 10.1111/acel.12832
- Zhao Y, Huang Y, Cao Y, Yang J. Astrocyte-mediated neuroinflammation in neurological conditions. Biomolecules. 2024;14(10):1204. doi: 10.3390/biom14101204
- Gu N, Makashova O, Laporte C, et al. Microglia regulate neuronal activity via structural remodeling of astrocytes. Neuron. 2025;113(20):3408-3423.e5. doi: 10.1016/j.neuron.2025.07.024
- Pfrieger FW, Barres BA. Synaptic efficacy enhanced by glial cells in vitro. Science. 1997;277(5332):1684-1687. doi: 10.1126/science.277.5332.1684
- Chen L, Zeng L, Li W, Li JS. The activation of hippocampal microglial cells and their role in the regulation of pain. J Integr Neurosci. 2025;24(6):27730. doi: 10.31083/JIN27730
- Cornell J, Salinas S, Huang HY, Zhou M. Microglia regulation of synaptic plasticity and learning and memory. Neural Regen Res. 2022;17(4):705-716. doi: 10.4103/1673-5374.322423
- Huang M, Long A, Hao L, Shi Z, Zhang M. Astrocyte in neurological disease: Pathogenesis and therapy. Med. Comm. 2025;6(8):e70299. doi: 10.1002/mco2.70299
- López-Muguruza E, Matute C. Alterations of oligodendrocyte and myelin energy metabolism in multiple sclerosis. Int J Mol Sci. 2023;24(16):12912. doi: 10.3390/ijms241612912
- Sánchez de Muniain L, Escalada P, Ramírez MJ, Solas M. Astrocytes as metabolic sensors orchestrating energy-driven brain vulnerability in Alzheimer’s disease. J Neurochem. 2025;169(10):e70252. doi: 10.1111/jnc.70252
- Mekala A, Qiu H. Interplay between vascular dysfunction and neurodegenerative pathology: New insights into molecular mechanisms and management. Biomolecules. 2025;15(5):712. doi: 10.3390/biom15050712
- Simons M, Gibson EM, Nave KA. Oligodendrocytes: Myelination, plasticity, and axonal support. Cold Spring Harb Perspect Biol. 2024;16(10):a041359. doi: 10.1101/cshperspect.a041359
- Chen JF, Wang F, Huang NX, Xiao L, Mei F. Oligodendrocytes and myelin: Active players in neurodegenerative brains? Dev Neurobiol. 2022;82(2):160-174. doi: 10.1002/dneu.22867
- Tylek K, Basta-Kaim A. Emerging role of oligodendrocyte malfunction in the progression of Alzheimer’s disease. J Neuroimmune Pharmacol. 2025;20(1):79. doi: 10.1007/s11481-025-10236-z
- Hu X, Zhu Q, Lou T, et al. Pan-ErbB inhibition impairs cognition via disrupting myelination and aerobic glycolysis in oligodendrocytes. Proc Natl Acad Sci U S A. 2024;121(45):e2405152121. doi: 10.1073/pnas.2405152121
- Yalçın B, Pomrenze MB, Malacon K, et al. Myelin plasticity in the ventral tegmental area is required for opioid reward. Nature. 2024;630(8017):677-685. doi: 10.1038/s41586-024-07525-7
- Zheng Y, Huang R, Pan J. Dynamic intercellular networks in the CNS: Mechanisms of crosstalk from homeostasis to neurodegeneration. Int J Mol Sci. 2025;26(17):8155. doi: 10.3390/ijms26178155
- Sun M, Qin F, Bu Q, et al. Exosome-based therapeutics: A natural solution to overcoming the blood-brain barrier in neurodegenerative diseases. MedComm. 2025;6(9):e70386. doi: 10.1002/mco2.70386
- Zhang Z, Niu Z, Dong S. Spinal glia-driven neuroinflammation as a therapeutic target for neuropathic pain: Rational development of novel analgesics. Neurosci Biobehav Rev. 2025;179:106404. doi: 10.1016/j.neubiorev.2025.106404
- Boillée S, Vande Velde C, Cleveland DW. ALS: A disease of motor neurons and their nonneuronal neighbors. Neuron. 2006;52(1):39-59. doi: 10.1016/j.neuron.2006.09.018
- Milnerwood AJ, Raymond LA. Early synaptic pathophysiology in neurodegeneration: Insights from Huntington’s disease. Trends Neurosci. 2010;33(11):513-523. doi: 10.1016/j.tins.2010.08.002
- Eyo UB, Wu LJ. Bidirectional microglia-neuron communication in the healthy brain. Neural Plast. 2013;2013:456857. doi: 10.1155/2013/456857
- Luo Y, Zhao C, Ren J, Tian L, Pan Y. Neuroinflammatory effects of magnetic fields: Insights into glia-mediated secondary cascades and mechanisms. Life Sci. 2025;383:124061. doi: 10.1016/j.lfs.2025.124061
- García-Domínguez M. Neuroinflammation: Mechanisms, dual roles, and therapeutic strategies in neurological disorders. Curr Issues Mol Biol. 2025;47(6):417. doi: 10.3390/cimb47060417
- Yuan B, Zhang X, Liu L, Chai Y, Zhang J, Chen X. Neutrophils-astrocyte interactions in central nervous system inflammation. Cell Death Dis. 2025;16(1):643. doi: 10.1038/s41419-025-07945-x
- Kouba BR, de Araujo Borba L, Borges de Souza P, Gil-Mohapel J, Rodrigues ALS. Role of inflammatory mechanisms in major depressive disorder: From etiology to potential pharmacological targets. Cells. 2024;13(5):423. doi: 10.3390/cells13050423
- Stojanovic B, Milivojcevic Bevc I, Dimitrijevic Stojanovic M, et al. Oxidative stress, inflammation, and cellular senescence in neuropathic pain: Mechanistic crosstalk. Antioxidants (Basel). 2025;14(10):1166. doi: 10.3390/antiox14101166
- Cai Y, Liu J, Wang B, Sun M, Yang H. Microglia in the neuroinflammatory pathogenesis of Alzheimer’s disease and related therapeutic targets. Front Immunol. 2022;13:856376. doi: 10.3389/fimmu.2022.856376
- Holmes BB, Weigel TK, Chung JM, et al. β-Amyloid induces microglial expression of GPC4 and APOE leading to increased neuronal tau pathology and toxicity. Mol Neurodegener. 2025;20(1):96. doi: 10.1186/s13024-025-00883-4
- Tanaka S, Ishii A, Ohtaki H, et al. Activation of microglia induces symptoms of Parkinson’s disease in wild-type, but not in IL-1 knockout mice. J Neuroinflammation. 2013;10:143. doi: 10.1186/1742-2094-10-143
- Pott Godoy MC, Tarelli R, Ferrari CC, Sarchi MI, Pitossi FJ. Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson’s disease. Brain. 2008;131(Pt 7):1880-1894. doi: 10.1093/brain/awn101
- Deng Q, Wu C, Parker E, Liu TC, Duan R, Yang L. Microglia and astrocytes in Alzheimer’s disease: Significance and summary of recent advances. Aging Dis. 2024;15(4):1537-1564. doi: 10.14336/AD.2023.0907.
- Li L, Wang Y, Feng Q, et al. Role of astroglia and microglia in Alzheimer’s disease and multiple therapeutic interventions. J Alzheimers Dis. 2025;105(4):1222-1238. doi: 10.1177/13872877251335572
- Kamila P, Kar K, Chowdhury S, et al. Effect of neuroinflammation on the progression of Alzheimer’s disease and its significant ramifications for novel anti-inflammatory treatments. IBRO Neurosci Rep. 2025;18:771-782. doi: 10.1016/j.ibneur.2025.05.005
- Azmal M, Paul JK, Prima FS, Haque ANMSNB, Meem M, Ghosh A. Microglial dysfunction in Alzheimer’s disease: Mechanisms, emerging therapies, and future directions. Exp Neurol. 2025;392:115374. doi: 10.1016/j.expneurol.2025.115374
- Kiraly M, Foss JF, Giordano T. Neuroinflammation, its role in Alzheimer’s disease and therapeutic strategies. J Prev Alzheimers Dis. 2023;10:686-698. doi: 10.14283/jpad.2023.109
- Lista S, Imbimbo BP, Grasso M, et al. Tracking neuroinflammatory biomarkers in Alzheimer’s disease: A strategy for individualized therapeutic approaches? J Neuroinflammation. 2024;21(1):187. doi: 10.1186/s12974-024-03163-y
- Sobue A, Komine O, Yamanaka K. Neuroinflammation in Alzheimer’s disease: Microglial signature and their relevance to disease. Inflamm Regen. 2023;43(1):26. doi: 10.1186/s41232-023-00277-3
- Kaur S, Malleshwari K, Sharma A, Giridharan VV, Dandekar MP. Brain resident microglia in Alzheimer’s disease: Foe or friends. Inflammopharmacology. 2024;32(5):2781-2800. doi: 10.1007/s10787-024-01550-8
- Croisier E, Moran LB, Dexter DT, et al. Microglial inflammation in the parkinsonian substantia nigra: Relationship to alpha-synuclein deposition. J Neuroinflammation. 2005;2:14. doi: 10.1186/1742-2094-2-14
- Gao C, Shen X, Tan Y, Chen S. Pathogenesis, therapeutic strategies and biomarker development based on omics analysis related to microglia in Alzheimer’s disease. J Neuroinflammation. 2022;19(1):215. doi: 10.1186/s12974-022-02580-1
- Tian SY, Cao X, Liu GJ, et al. Role of the central cholinergic nervous system in motor and non-motor symptoms of Parkinson’s disease. Curr Neuropharmacol. 2025;23(10):1232-1248. doi: 10.2174/011570159X368923250313045859
- Hey GE, Eisinger R, Guarin D, Safarpour D, Rodríguez- Violante M, Ramirez-Zamora A. Developing personalized treatment strategies for Parkinson’s disease based on disease subtypes. Expert Rev Neurother. 2025;25(10):1175-1194. doi: 10.1080/14737175.2025.2552784
- Yu JRT, Kundrick A, Panganiban EC, Sy MA, Anis S, Fernandez HH. Therapeutic innovations for the symptomatic treatment of Parkinson’s disease: A focus on technology-based therapies. J Neural Transm. 2025. doi: 10.1007/s00702-025-02915-1
- Araújo B, Caridade-Silva R, Soares-Guedes C, et al. Neuroinflammation and Parkinson’s disease-from neurodegeneration to therapeutic opportunities. Cells. 2022;11(18):2908. doi: 10.3390/cells11182908
- Arena G, Sharma K, Agyeah G, Krüger R, Grünewald A, Fitzgerald JC. Neurodegeneration and neuroinflammation in Parkinson’s disease: A self-sustained loop. Curr Neurol Neurosci Rep. 2022;22(8):427-440. doi: 10.1007/s11910-022-01207-5
- Su Z, Shu H, Huang X, et al. Rhapontigenin attenuates neurodegeneration in a Parkinson’s disease model by downregulating mtDNA-cGAS–STING–NF-κB-mediated neuroinflammation via PINK1/DRP1-dependent microglial mitophagy. Cell Mol Life Sci. 2025;82(1):337. doi: 10.1007/s00018-025-05873-9
- García-Domínguez I, Veselá K, García-Revilla J, et al. Peripheral inflammation enhances microglia response and nigral dopaminergic cell death in an in vivo MPTP model of Parkinson’s disease. Front Cell Neurosci. 2018;12:398. doi: 10.3389/fncel.2018.00398
- Trainor AR, MacDonald DS, Penney J. Microglia: Roles and genetic risk in Parkinson’s disease. Front Neurosci. 2024;18:1506358. doi: 10.3389/fnins.2024.1506358
- Eo H, Kim S, Jung UJ, Kim SR. Alpha-synuclein and microglia in Parkinson’s disease: From pathogenesis to therapeutic prospects. J Clin Med. 2024;13(23):7243. doi: 10.3390/jcm13237243
- Lee SH, Bae EJ, Park SJ, Lee SJ. Microglia-driven inflammation induces progressive tauopathies and synucleinopathies. Exp Mol Med. 2025;57(5):1017-1031. doi: 10.1038/s12276-025-01450-z
- Le W, Rowe D, Xie W, et al. Microglial activation and dopaminergic cell injury: An in vitro model relevant to Parkinson’s disease. J Neurosci. 2001;21(21):8447-8455. doi: 10.1523/JNEUROSCI.21-21-08447.2001
- Chen K, Wang H, Ilyas I, Mahmood A, Hou L. Microglia and astrocytes dysfunction and key neuroinflammation-based biomarkers in Parkinson’s disease. Brain Sci. 2023;13(4):634. doi: 10.3390/brainsci13040634
- Zhu H, Xiao F, Xiao Y, et al. Targeting CB2R in astrocytes for Parkinson’s disease therapy: Unraveling the Foxg1-mediated neuroprotective mechanism through autophagy-mediated NLRP3 degradation. J Neuroinflammation. 2023;20(1):304. doi: 10.1186/s12974-023-02989-2
- Barba-Reyes JM, Harder L, Marco Salas S, et al. Oligodendroglia vulnerability in the human dorsal striatum in Parkinson’s disease. Acta Neuropathol. 2025;149(1):46. doi: 10.1007/s00401-025-02884-5
- Samant RR, Standaert DG, Harms AS. The emerging role of disease-associated microglia in Parkinson’s disease. Front Cell Neurosci. 2024;18:1476461. doi: 10.3389/fncel.2024.1476461
- Palpagama TH, Waldvogel HJ, Faull RLM, Kwakowsky A. The role of microglia and astrocytes in Huntington’s disease. Front Mol Neurosci. 2019;12:258. doi: 10.3389/fnmol.2019.00258
- Saba J, Couselo FL, Bruno J, et al. Neuroinflammation in Huntington’s disease: A starring role for astrocyte and microglia. Curr Neuropharmacol. 2022;20(6):1116-1143. doi: 10.2174/1570159X19666211201094608
- Abedrabbo M, Kazemian P, Connolly C, Leavitt BR. Emerging roles of microglia and neuroinflammation in Huntington’s disease: From pathophysiology to clinical trials. J Huntingtons Dis. 2025;14(3):241-257. doi: 10.1177/18796397251330144.
- Steinberg N, Galleguillos D, Zaidi A, Horkey M, Sipione S. Naïve Huntington’s disease microglia mount a normal response to inflammatory stimuli but display a partially impaired development of innate immune tolerance that can be counteracted by ganglioside GM1. J Neuroinflammation. 2023;20(1):276. doi: 10.1186/s12974-023-02963-y
- Li X, Tong H, Xu S, et al. Neuroinflammatory proteins in Huntington’s disease: Insights into mechanisms, diagnosis, and therapeutic implications. Int J Mol Sci. 2024;25(21):11787. doi: 10.3390/ijms252111787
- Wawrzyniak A, Krawczyk-Marć I, Żuryń A, Walocha J, Balawender K. Diversity, functional complexity, and translational potential of glial cells in the central nervous system. Int J Mol Sci. 2025;26(18):9080. doi: 10.3390/ijms26189080
- Crotti A, Glass CK. The choreography of neuroinflammation in Huntington’s disease. Trends Immunol. 2015;36(6):364-373. doi: 10.1016/j.it.2015.04.007
- Tai YF, Pavese N, Gerhard A, Tabrizi SJ, et al. Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain. 2007;130(Pt 7):1759-1766. doi: 10.1093/brain/awm044
- Al-Dalahmah O, Sosunov AA, Shaik A, et al. Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathol Commun. 2020;8(1):19. doi: 10.1186/s40478-020-0880-6
- Paryani F, Kwon JS, Ng CW, et al. Multi-omic analysis of Huntington’s disease reveals a compensatory astrocyte state. Nat Commun. 2024;15(1):6742. doi: 10.1038/s41467-024-50626-0
- Ferrari Bardile C, Radulescu CI, Pouladi MA. Oligodendrocyte pathology in Huntington’s disease: From mechanisms to therapeutics. Trends Mol Med. 2023;29(10):802-816. doi: 10.1016/j.molmed.2023.07.010
- Back AM, Connor B, McCaughey-Chapman A. Oligodendrocytes in Huntington’s disease: A review of oligodendrocyte pathology and current cell reprogramming approaches. J Neurosci Res. 2024;102(12):e70010. doi: 10.1002/jnr.70010
- Calafatti M, Cocozza G, Limatola C, Garofalo S. Microglial crosstalk with astrocytes and immune cells in amyotrophic lateral sclerosis. Front Immunol. 2023;14:1223096. doi: 10.3389/fimmu.2023.1223096
- Chamkouri H, Motlagh Mohavi S. Microglia and macrophages in central nervous system homeostasis and disease progression: Guardians and executioners. Neuroglia. 2025;6(3):31. doi: 10.3390/neuroglia6030031
- Clarke BE, Patani R. The microglial component of amyotrophic lateral sclerosis. Brain. 2020;143(12):3526-3539. doi: 10.1093/brain/awaa309
- Beers DR, Appel SH. Immune dysregulation in amyotrophic lateral sclerosis: Mechanisms and emerging therapies. Lancet Neurol. 2019;18(2):211-220. doi: 10.1016/S1474-4422(18)30394-6
- Velasquez E, Savchenko E, Marmolejo-Martínez-Artesero S, et al. TNFα prevents FGF4-mediated rescue of astrocyte dysfunction and reactivity in human ALS models. Neurobiol Dis. 2024;201:106687. doi: 10.1016/j.nbd.2024.106687
- Mouhi S, Pio T, Andersen J. Revisiting oligodendrocytes in amyotrophic lateral sclerosis using human multicellular stem cell models. Trends Cell Biol. 2025:1-16. doi: 10.1016/j.tcb.2025.11.003
- Healy LM, Stratton JA, Kuhlmann T, Antel J. The role of glial cells in multiple sclerosis disease progression. Nat Rev Neurol. 2022;18(4):237-248. doi: 10.1038/s41582-022-00624-x
- Theophanous S, Sargiannidou I, Kleopa KA. Glial cells as key regulators in neuroinflammatory mechanisms associated with multiple sclerosis. Int J Mol Sci. 2024;25(17):9588. doi: 10.3390/ijms25179588
- Prinz M, Jung S, Priller J. Microglia biology: One century of evolving concepts. Cell. 2019;179(2):292-311. doi: 10.1016/j.cell.2019.08.053
- Distéfano-Gagné F, Bitarafan S, Lacroix S, Gosselin D. Roles and regulation of microglia activity in multiple sclerosis: Insights from animal models. Nat Rev Neurosci. 2023;24(7):397-415. doi: 10.1038/s41583-023-00709-6
- Lohrberg M, Mortensen LS, Thomas C, et al. Astroglial modulation of synaptic function in the non-demyelinated cerebellar cortex is dependent on MyD88 signaling in a model of toxic demyelination. J Neuroinflammation. 2025;22(1):47. doi: 10.1186/s12974-025-03368-9
- Colón Ortiz C, Eroglu C. Astrocyte signaling and interactions in multiple sclerosis. Curr Opin Cell Biol. 2024;86:102307. doi: 10.1016/j.ceb.2023.102307
- Ravikumar M, Uvarajan D, Durairaj B. Targeting neuroimmune pathways in epilepsy: Advances in mechanisms and emerging therapeutics. Neurochem Res. 2025;50(4):244. doi: 10.1007/s11064-025-04489-6
- Nespoli E, Hakani M, Hein TM, et al. Glial cells react to closed head injury in a distinct and spatiotemporally orchestrated manner. Sci Rep. 2024;14(1):2441. doi: 10.1038/s41598-024-52337-4
- Kostyunina OV, Komoltsev IG, Timokhova AV, et al. Biomarkers of brain cell-specific immune mechanisms and their translational potential: State of the evidence for traumatic brain injury. Neurochem J. 2024;18:752-762. doi: 10.1134/S1819712424700557
- Calderone A, Latella D, Cardile D, et al. The role of neuroinflammation in shaping neuroplasticity and recovery outcomes following traumatic brain injury: A systematic review. Int J Mol Sci. 2024;25(21):11708. doi: 10.3390/ijms252111708
- He L, Zhang R, Yang M, Lu M. The role of astrocytes in neuroinflammation in traumatic brain injury. Biochim Biophys Acta Mol Basis Dis. 2024;1870(3):166992. doi: 10.1016/j.bbadis.2023.166992
- Cieri MB, Ramos AJ. Astrocytes, reactive astrogliosis, and glial scar formation in traumatic brain injury. Neural Regen Res. 2025;20(4):973-989. doi: 10.4103/NRR.NRR-D-23-02091
- Johnson VE, Stewart JE, Begbie FD, et al. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain. 2013;136(Pt 1):28-42. doi: 10.1093/brain/aws322
- Xiong Y, Chen J, Li Y. Microglia and astrocytes underlie neuroinflammation and synaptic susceptibility in autism spectrum disorder. Front Neurosci. 2023;17:1125428. doi: 10.3389/fnins.2023.1125428
- Luo Y, Wang Z. The impact of microglia on neurodevelopment and brain function in autism. Biomedicines. 2024;12(1):210. doi: 10.3390/biomedicines12010210
- Voineagu I, Wang X, Johnston P, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature. 2011;474(7351):380-384. doi: 10.1038/nature10110
- Estes ML, McAllister AK. Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci. 2015;16(8):469-486. doi: 10.1038/nrn3978
- Wang X, Li Z, Ma B, Jia Q. Research progress on microglial pyroptosis and inflammasomes: A comprehensive analysis. Front Aging Neurosci. 2025;17:1582579. doi: 10.3389/fnagi.2025.1582579
- Noh MY, Kwon HS, Kwon MS, et al. Biomarkers and therapeutic strategies targeting microglia in neurodegenerative diseases: Current status and future directions. Mol Neurodegener. 2025;20(1):82. doi: 10.1186/s13024-025-00867-4
- Piano I, Votta A, Colucci P, et al. Anti-inflammatory reprogramming of microglia cells by metabolic modulators to counteract neurodegeneration: A new role for ranolazine. Sci Rep. 2023;13(1):20138. doi: 10.1038/s41598-023-47540-8
- Shokr MM. Rewiring brain immunity: Targeting microglial metabolism for neuroprotection in neurodegenerative disorders. Metab Brain Dis. 2025;40(8):326. doi: 10.1007/s11011-025-01739-y
- Lee HG, Wheeler MA, Quintana FJ. Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov. 2022;21(5):339-358. doi: 10.1038/s41573-022-00390-x
- Jung BK, Ryu KY. Lipocalin-2: A therapeutic target to overcome neurodegenerative diseases by regulating reactive astrogliosis. Exp Mol Med. 2023;55(10):2138-2146. doi: 10.1038/s12276-023-01098-7
- Kim S, Chun H, Kim Y, et al. Astrocytic autophagy plasticity modulates Aβ clearance and cognitive function in Alzheimer’s disease. Mol Neurodegener. 2024;19(1):55. doi: 10.1186/s13024-024-00740-w
- Long I. Unravelling Alzheimer’s disease: Therapeutic strategies aimed at neuroinflammation signalling pathway. Biomed Res Ther. 2025;12(11):7878-7893. doi: 10.15419/s00m4g68
- Mallick R, Basak S, Chowdhury P, et al. Targeting cytokine-mediated inflammation in brain disorders: Developing new treatment strategies. Pharmaceuticals (Basel). 2025;18(1):104. doi: 10.3390/ph18010104
- Baidya F, Bohra M, Datta A, et al. Neuroimmune crosstalk and evolving pharmacotherapies in neurodegenerative diseases. Immunology. 2021;162(2):160-178. doi: 10.1111/imm.13264
- Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388-405. doi: 10.1016/S1474-4422(15)70016-5
- Dawson TM, Golde TE, Lagier-Tourenne C. Animal models of neurodegenerative diseases. Nat Neurosci. 2018;21(10):1370-1379. doi: 10.1038/s41593-018-0236-8
- Perry VH, Holmes C. Microglial priming in neurodegenerative disease. Nat Rev Neurol. 2014;10(4):217-224. doi: 10.1038/nrneurol.2014.38
- Vivash L, O’Brien TJ. Imaging microglial activation with TSPO PET: Lighting up neurologic diseases? J Nucl Med. 2016;57(2):165-168. doi: 10.2967/jnumed.114.141713
