AccScience Publishing / AN / Online First / DOI: 10.36922/AN025220071
REVIEW ARTICLE

Pediatric primary central nervous system melanoma: A current review of diagnosis and emerging therapies

Adriene Pavek1* Justin Lyon1 Dillon Stevens1 Annabelle Huntsman1 Grace Bradford1
Show Less
1 School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
Advanced Neurology, 025220071 https://doi.org/10.36922/AN025220071
Received: 31 May 2025 | Revised: 5 September 2025 | Accepted: 9 October 2025 | Published online: 24 December 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Pediatric primary central nervous system (CNS) melanoma is a rare and aggressive malignancy, often arising in association with neurocutaneous melanosis but also reported in sporadic cases. Children typically present with signs of increased intracranial pressure, seizures, or focal neurological deficits. Median age at diagnosis is 2.8–3.7 years, that is, under four years, although cases spanning infancy to early adolescence have been reported. Median survival rarely exceeds one year despite multimodal therapy. Melanogenesis may directly influence tumor behavior, as intermediates generate oxidative stress and contribute to radioresistance and variable immunotherapy response. Pediatric CNS melanomas frequently harbor activating mutations in GNAQ, GNA11, or NRAS, which drive mitogen-activated protein kinase and phosphoinositide 3-kinase–AKT signaling to promote proliferation and confer resistance to apoptosis. Additional alterations, such as CDKN2A and TP53 loss, may be linked to accelerated progression. Unlike cutaneous melanoma, BRAF mutations are uncommon. Maximal surgical resection remains the cornerstone of therapy, offering the greatest survival benefit. Adjuvant radiotherapy or chemoradiation provides limited efficacy due to the intrinsic radioresistance of melanoma cells and the restricted delivery of therapeutic agents across the blood–brain barrier (BBB). Among chemotherapies, temozolomide has modest CNS activity, whereas checkpoint inhibitors and targeted agents have shown only transient responses in pediatric case reports. These therapeutic challenges underscore the urgent need for novel strategies that can overcome BBB-related barriers to drug delivery and melanin-mediated resistance. Advances in molecular profiling and targeted drug development, coupled with education for early diagnosis, may improve survival in patients with this aggressive disease.

Keywords
Pediatric melanoma
CNS tumors
Leptomeningeal melanoma
Neurocutaneous melanosis
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Long GV, Swetter SM, Menzies AM, Gershenwald JE, Scolyer RA. Cutaneous melanoma. Lancet. 2023;402(10400):485-502. doi: 10.1016/S0140-6736(23)00821-8. Erratum in: Lancet. 2023;402(10400):450. doi: 10.1016/S0140-6736(23)01581-7

 

  1. Prota G. The chemistry of melanins and melanogenesis. Fortschr Chem Org Naturst. 1995;64:93-148. doi: 10.1007/978-3-7091-9337-2_2

 

  1. D’Ischia M, Wakamatsu K, Napolitano A, et al. Melanins and melanogenesis: Methods, standards, protocols. Pigment Cell Melanoma Res. 2013;26(5):616-633. doi: 10.1111/pcmr.12121

 

  1. Slominski RM, Sarna T, Płonka PM, Raman C, Brożyna AA, Slominski AT. Melanoma, melanin, and melanogenesis: The Yin and Yang relationship. Front Oncol. 2022;12:842496. doi: 10.3389/fonc.2022.842496

 

  1. Moan J, Dahlback A, Setlow RB. Epidemiological support for an hypothesis for melanoma induction indicating a role for UVA radiation. Photochem Photobiol. 1999;70:243-247. doi: 10.1111/j.1751-1097.1999.tb07995.x

 

  1. Nishimura EK, Jordan SA, Oshima H, et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature. 2002;416:854-860. doi: 10.1038/416854a

 

  1. Slominski RM, Kim TK, Janjetovic Z, et al. Malignant melanoma: An overview, new perspectives, and vitamin D signaling. Cancers (Basel). 2024;16(12):2262. doi: 10.3390/cancers16122262

 

  1. Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 2004;84(4):1155-1228. doi: 10.1152/physrev.00044.2003

 

  1. Shain AH, Bagger MM, Yu R, et al. The genetic evolution of metastatic uveal melanoma. Nat Genet. 2019;51(7):1123-1130. doi: 10.1038/s41588-019-0440-9

 

  1. Küsters-Vandevelde HV, Küsters B, van Engen-van Grunsven AC, Groenen PJ, Wesseling P, Blokx WA. Primary melanocytic tumors of the central nervous system: A review with focus on molecular aspects. Brain Pathol. 2015;25(2):209-226. doi: 10.1111/bpa.12241

 

  1. Guo P, Wei X, Guo Z, Wu D. Clinicopathological features, current status, and progress of primary central nervous system melanoma diagnosis and treatment. Pigment Cell Melanoma Res. 2024;37(2):265-275. doi: 10.1111/pcmr.13140

 

  1. Makkar HS, Frieden IJ. Neurocutaneous melanosis. Semin Cutan Med Surg. 2004;23(2):138-144. doi: 10.1016/j.sder.2004.01.007

 

  1. Abele M, Forchhammer S, Eigentler TK, et al. Melanoma of the central nervous system based on neurocutaneous melanocytosis in childhood: A rare but fatal condition. Pediatr Blood Cancer. 2024;71(4):e30859. doi: 10.1002/pbc.30859

 

  1. Xu X, Zheng Y, Li J, Wang F, Li F. Pediatric primary diffuse leptomeningeal melanomatosis: Case report and review of the literature. Medicine (Baltimore). 2020;99(8):e19178. doi: 10.1097/MD.0000000000019178

 

  1. Lim MJR, Tan EEK, Wong RX, et al. Pediatric primary intracranial malignant melanoma: Case report and literature review. Pediatr Neurosurg. 2023;58(4):223-230. doi: 10.1159/000531544

 

  1. Yamauhci S, Fukuyama T, Inaba Y, et al. Diagnostic challenges of primary diffuse leptomeningeal melanomatosis in early adolescence: A case report. Brain Dev. 2022;44(6):421-425. doi: 10.1016/j.braindev.2022.02.004

 

  1. Man W, Wang G. Incidence, outcomes and predictors of primary central nervous system melanoma: A SEER-based study. World Neurosurg. 2019;129:e782-e790. doi: 10.1016/j.wneu.2019.06.030

 

  1. Gajjar A, Mahajan A, Abdelbaki M, et al. Pediatric central nervous system cancers, version 2.2023, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2022;20(12):1339-1362. doi: 10.6004/jnccn.2022.0062

 

  1. Ruggieri M, Polizzi A, Catanzaro S, Bianco ML, Praticò AD, Di Rocco C. Neurocutaneous melanocytosis (melanosis). Childs Nerv Syst. 2020;36(10):2571-2596. doi: 10.1007/s00381-020-04770-9

 

  1. Ruth J. Congenital melanocytic nevus syndrome: An association between congenital melanocytic nevi and neurological abnormalities. Semin Pediatr Neurol. 2024;51:101153. doi: 10.1016/j.spen.2024.101153

 

  1. Ruan Y, Kovalchuk A, Jayanthan A, et al. Druggable targets in pediatric neurocutaneous melanocytosis: Molecular and drug sensitivity studies in xenograft and ex vivo tumor cell culture to identify agents for therapy. Neuro Oncol. 2015;17(6):822-831. doi: 10.1093/neuonc/nou310

 

  1. Pedersen M, Küsters-Vandevelde HVN, Viros A, et al. Primary melanoma of the CNS in children is driven by congenital expression of oncogenic NRAS in melanocytes. Cancer Discov. 2013;3(4):458-469. doi: 10.1158/2159-8290.CD-12-0464

 

  1. Garrido MC, Maroñas-Jiménez L, Morales-Raya C, Ruano Y, Rodriguez-Peralto JL. Acquisition of somatic NRAS mutations in central nervous system melanocytes: A predisposing risk factor to primary melanoma of the central nervous system, a frequently forgotten pitfall in congenital nevi. Am J Dermatopathol. 2018;40(7):506-510. doi: 10.1097/DAD.0000000000001039

 

  1. Angelino G, De Pasquale MD, De Sio L, et al. NRAS(Q61K) mutated primary leptomeningeal melanoma in a child: Case presentation and discussion on clinical and diagnostic implications. BMC Cancer. 2016;16:512. doi: 10.1186/s12885-016-2556-y

 

  1. Troya-Castilla M, Rocha-Romero S, Chocrón-González Y, Márquez-Rivas FJ. Primary cerebral malignant melanoma in insular region with extracranial metastasis: Case report and review literature. World J Surg Oncol. 2016;14:235. doi: 10.1186/s12957-016-0965-7

 

  1. Quillo-Olvera J, Uribe-Olalde JS, Alcántara-Gómez LA, Rejón-Pérez JD, Palomera-Gómez HG. Primary malignant melanoma of the central nervous system: A diagnostic challenge. Cir Cir. 2015;83:129-134. doi: 10.1016/j.circir.2015.04.008

 

  1. Golden N, Kencana IGKAS, Lauren C, Saputra A, Japardi D. Primary intracranial malignant melanoma in an adolescent: Case report and literature review. Front Surg. 2025;12:1524204. doi: 10.3389/fsurg.2025.1524204

 

  1. Brat DJ, Giannini C, Scheithauer BW, Burger PC. Primary melanocytic neoplasms of the central nervous system. Am J Surg Pathol. 2000;24(6):797-805.

 

  1. Rodriguez FJ, Tihan T, Lin DD. Melanocytic tumors of the central nervous system: A review. J Neuropathol Exp Neurol. 2016;75(4):369-382.

 

  1. Allcutt D, Michowiz S, Weitzman S, et al. Primary leptomeningeal melanoma. Neurosurgery. 1993;32(5):721-729; discussion 729. doi: 10.1227/00006123-199305000-00004

 

  1. Weller RO, Sharp MM, Christodoulides M, Carare RO, Møllgård K. The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS. Acta Neuropathol. 2018;135(3):363-385. doi: 10.1007/s00401-018-1809-z

 

  1. Derk J, Jones HE, Como C, Pawlikowski B, Siegenthaler JA. Living on the edge of the CNS: Meninges cell diversity in health and disease. Front Cell Neurosci. 2021;15:703944. doi: 10.3389/fncel.2021.703944

 

  1. Gudjohnsen SA., Atacho DA, Gesbert F, et al. Meningeal melanocytes in the mouse: Distribution and dependence on Mitf. Front Neuroanat. 2015;9:149. doi: 10.3389/fnana.2015.00149

 

  1. Xie ZY, Hsieh KL, Tsang YM, Cheung WK, Hsieh CH. Primary leptomeningeal melanoma. J Clin Neurosci. 2014;21(6):1051-1052. doi: 10.1016/j.jocn.2013.08.018

 

  1. Alves de Lima K, Rustenhoven J, Kipnis J. Meningeal immunity and its function in maintenance of the central nervous system in health and disease. Annu Rev Immunol. 2020;38:597-620. doi: 10.1146/annurev-immunol-102319-103410

 

  1. Patel PU, Regmi A, Dass AI, Rojas OL. Immune conversations at the border: Meningeal immunity in health and disease. Front Immunol. 2025;16:1531068. doi: 10.3389/fimmu.2025.1531068

 

  1. Dankner M, Lam S, Degenhard T, et al. The underlying biology and therapeutic vulnerabilities of leptomeningeal metastases in adult solid cancers. Cancers. 2021;13(4):732. doi: 10.3390/cancers13040732

 

  1. Mitre V, Heym K, Clark GD, Venkatramani R. Neurocutaneous melanocytosis and leptomeningeal melanoma. J Pediatr Hematol Oncol. 2021;43(2):e195-e197. doi: 10.1097/MPH.0000000000001680

 

  1. Kinsler VA, Thomas AC, Ishida M, et al. Multiple congenital melanocytic nevi and neurocutaneous melanosis are caused by postzygotic mutations in codon 61 of NRAS. J Invest Dermatol. 2013;133(9):2229-2236. doi: 10.1038/jid.2013.70

 

  1. Takahashi H, Natsumeda M, Hara N, et al. Missense mutation of NRAS is associated with malignant progression in neurocutaneous melanosis. Acta Neuropathol Commun. 2024;12(1):14. doi: 10.1186/s40478-024-01723-0

 

  1. Fortin Ensign S, Bollin K, Millis SF, Hinds BR, Kosty M, Uchiyama C. Genomic analysis reveals low tumor mutation burden which may be associated with GNAQ/11 alteration in a series of primary leptomeningeal melanomas. Pigment Cell Melanoma Res. 2020;33(3):458-465. doi: 10.1111/pcmr.12839

 

  1. Gessi M, Hammes J, Lauriola L, et al. GNA11 and N-RAS mutations: Alternatives for MAPK pathway activating GNAQ mutations in primary melanocytic tumours of the central nervous system. Neuropathol Appl Neurobiol. 2011;39(4):417-425. doi: 10.1111/j.1365-2990.2012.01288.x

 

  1. Kadonaga JN, Frieden IJ. Neurocutaneous melanosis: Definition and review of the literature. J Am Acad Dermatol. 1991;24(5 Pt 1):747-755. doi: 10.1016/0190-9622(91)70115-i

 

  1. Wang Y, Xu G, Xia H. Targeting the MAPK pathway for NRAS mutant melanoma: From mechanism to clinic. Br J Dermatol. 2025;193(3):381-393. doi: 10.1093/bjd/ljaf178

 

  1. Lamba S, Felicioni L, Buttitta F, et al. Mutational profile of GNAQQ209 in human tumors. PLoS One. 2009;4(8):e6833. doi: 10.1371/journal.pone.0006833

 

  1. Kinsler VA, O’Hare P, Jacques T, Hargrave D, Slater O. MEK inhibition appears to improve symptom control in primary NRAS-driven CNS melanoma in children. Br J Cancer. 2017;116(8):990-993. doi: 10.1038/bjc.2017.49

 

  1. Aasen SN, Parajuli H, Hoang T, et al. Effective treatment of metastatic melanoma by combining MAPK and PI3K signaling pathway inhibitors. Int J Mol Sci. 2019;20(17):4235. doi: 10.3390/ijms20174235

 

  1. Slominski RM, Raman C, Chen JY, Slominski AT. How cancer hijacks the body’s homeostasis through the neuroendocrine system. Trends Neurosci. 2023;46(4):263-275. doi: 10.1016/j.tins.2023.01.003

 

  1. Slominski AT, Zmijewski MA, Zbytek B, Tobin DJ, Theoharides TC, Rivier J. Key role of CRF in the skin stress response system. Endocr Rev. 2013;34:827-884. doi: 10.1210/er.2012-1092

 

  1. Slominski A, Wortsman J, Pisarchik A, et al. Cutaneous expression of corticotropin-releasing hormone (CRH), urocortin, and CRH receptors. FASEB J. 2001;15:1678-1693. doi: 10.1096/fj.00-0850rev

 

  1. Kim MH, Cho D, Kim HJ, et al. Investigation of the corticotropin-releasing hormone-proopiomelanocortin axis in various skin tumours. Br J Dermatol. 2006;155:910-915. doi: 10.1111/j.1365-2133.2006.07442

 

  1. Liu X, Hoft DF, Peng G. Tumor microenvironment metabolites directing T cell differentiation and function. Trends Immunol. 2022;43:132-147. doi: 10.1016/j.it.2021.12.004

 

  1. van de Nes J, Gessi M, Sucker A, et al. Targeted next generation sequencing reveals unique mutation profile of primary melanocytic tumors of the central nervous system. J Neurooncol. 2016;127(3):435-444. doi: 10.1007/s11060-015-2052-2

 

  1. Hale EK, Stein J, Ben-Porat L, et al. Association of melanoma and neurocutaneous melanocytosis with large congenital melanocytic naevi--results from the NYU-LCMN registry. Br J Dermatol. 2005;152(3):512-517. doi: 10.1111/j.1365-2133.2005.06316.x

 

  1. Chen L, Zhai L, Al-Kzayer LFY, et al. Neurocutaneous melanosis in association with large congenital melanocytic nevi in children: A report of 2 cases with clinical, radiological, and pathogenetic evaluation. Front Neurol. 2019;10:79. doi: 10.3389/fneur.2019.00079

 

  1. Murphy G, Hussey D, Metser U. Non-cutaneous melanoma: Is there a role for (18)F-FDG PET-CT? Br J Radiol. 2014;87(1040):20140324. doi: 10.1259/bjr.20140324

 

  1. Elsherif Y, Aziz N, Nabi W, Bhat A, Basharat A, Nelli F. Pigmented peril: A fatal case of primary intracranial melanoma in a paediatric patient. Radiol Case Rep. 2025;20(7):3484-3496. doi: 10.1016/j.radcr.2025.03.070

 

  1. Nicolaides P, Newton RW, Kelsey A. Primary malignant melanoma of meninges: Atypical presentation of subacute meningitis. Pediatr Neurol. 1995;12(2):172-174. doi: 10.1016/0887-8994(94)00155-u

 

  1. Ginat DT, Meyers SP. Intracranial lesions with high signal intensity on T1-weighted MR images: Differential diagnosis. Radiographics. 2012;32(2):499-516. doi: 10.1148/rg.322105761

 

  1. Tosaka M, Tamura M, Oriuchi N, et al. Cerebrospinal fluid immunocytochemical analysis and neuroimaging in the diagnosis of primary leptomeningeal melanoma. Case report. J Neurosurg. 2001;94(3):528-532. doi: 10.3171/jns.2001.94.3.0528

 

  1. Hoon DS, Kuo CT, Wascher RA, Fournier P, Wang HJ, O’Day SJ. Molecular detection of metastatic melanoma cells in cerebrospinal fluid in melanoma patients. J Investig Dermatol. 2001;117(2):375-378. doi: 10.1046/j.0022-202x.2001.01417.x

 

  1. Smith AB, Rushing EJ, Smirniotopoulos JG. Pigmented lesions of the central nervous system: Radiologic-pathologic correlation. Radiographics. 2009;29(5):1503-1524. doi: 10.1148/rg.295095109

 

  1. De Mattos-Arruda L, Mayor R, Ng CKY, et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun. 2015;6:8839. doi: 10.1038/ncomms9839

 

  1. Ballester LY, Glitza Oliva IC, Douse DY, et al. Evaluating circulating tumor DNA from the cerebrospinal fluid of patients with melanoma and leptomeningeal disease. J Neuropathol Exp Neurol. 2018;77(7):628-635. doi: 10.1093/jnen/nly046

 

  1. Cornejo KM, Hutchinson L, Cosar EF, et al. Is it a primary or metastatic melanocytic neoplasm of the central nervous system?: A molecular based approach. Pathol Int. 2013;63(11):559-564. doi: 10.1111/pin.12107

 

  1. Pellerino A, Verdijk RM, Nichelli L, Andratschke NH, Idbaih A, Goldbrunner R. Primary meningeal melanocytic tumors of the central nervous system: A review from the ultra-rare brain tumors task force of the European network for rare cancers (EURACAN). Cancers (Basel). 2024;16(14):2508. doi: 10.3390/cancers16142508

 

  1. Wadasadawala T, Trivedi S, Gupta T, Epari S, Jalali R. The diagnostic dilemma of primary central nervous system melanoma. J Clin Neurosci. 2010;17(8):1014-1017. doi: 10.1016/j.jocn.2009.12.020

 

  1. Griewank KG, Koelsche C, van de Nes JAP, et al. Integrated genomic classification of melanocytic tumors of the central nervous system using mutation analysis, copy number alterations, and DNA methylation profiling. Clin Cancer Res. 2018;24(18):4494-4504. doi: 10.1158/1078-0432.CCR-18-0763

 

  1. Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol. 2021;23(8):1231-1251. doi: 10.1093/neuonc/noab106

 

  1. Gritsch S, Batchelor TT, Gonzalez Castro LN. Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system. Cancer. 2022;128(1):47-58. doi: 10.1002/cncr.33918

 

  1. Smith HL, Wadhwani N, Horbinski C. Major features of the 2021 WHO classification of CNS tumors. Neurotherapeutics. 2022;19(6):1691-1704. doi: 10.1007/s13311-022-01249-0

 

  1. Liubinas SV, Maartens N, Drummond KJ. Primary melanocytic neoplasms of the central nervous system. J Clin Neurosci. 2010;17(10):1227-1232. doi: 10.1016/j.jocn.2010.01.017

 

  1. Hobbs GA, Der CJ, Rossman KL. RAS isoforms and mutations in cancer at a glance. J Cell Sci. 2016;129(7):1287-1292. doi: 10.1242/jcs.182873

 

  1. Otero-Soto GA, Vidal-Anaya V, Labat EJ. Primary brain melanoma in a pediatric patient: A case report. Am J Case Rep. 2021;22:e926749. doi: 10.12659/AJCR.926749

 

  1. Li CB, Song LR, Li D, et al. Primary intracranial malignant melanoma: proposed treatment protocol and overall survival in a single-institution series of 15 cases combined with 100 cases from the literature. J Neurosurg. 2019;132(3):902-913. doi: 10.3171/2018.11.JNS181872

 

  1. Wang J, Guo ZZ, Wang YJ, Zhang SG, Xing DG. Microsurgery for the treatment of primary malignant intracranial melanoma: A surgical series and literature review. Eur J Surg Oncol. 2014;40(9):1062-1071. doi: 10.1016/j.ejso.2013.11.024

 

  1. Balakrishnan R, Porag R, Asif DS, Satter AM, Taufiq M, Gaddam SS. Primary intracranial melanoma with early leptomeningeal spread: A case report and treatment options available. Case Rep Oncol Med. 2015;2015:293802. doi: 10.1155/2015/293802

 

  1. Youland RS, Blanchard ML, Dronca R, et al. Role of radiotherapy in extracranial metastatic malignant melanoma in the modern era. Clin Transl Radiat Oncol. 2017;6:25-30.

 

  1. Strojan P. Role of radiotherapy in melanoma management. Radiol Oncol. 2010;44(1):1-12. doi: 10.2478/v10019-010-0008-x

 

  1. Mehrabian H, Detsky J, Soliman H, Sahgal A, Stanisz GJ. Advanced magnetic resonance imaging techniques in management of brain metastases. Front Oncol. 2019;9:440. doi: 10.3389/fonc.2019.00440

 

  1. Chia BSH, Leow YG, Kumar AA, Keong NC, Farid M. Case report of a rare primary intracranial malignant melanoma, reviewing the literature and guidance for management. Ther Radiol Oncol. 2022;6:30. doi: 10.21037/tro-21-32.

 

  1. Kunwar A, Adhikary B, Jayakumar S, et al. Melanin, a promising radioprotector: Mechanisms of actions in a mice model. Toxicol Appl Pharmacol. 2012;264(2):202-211. doi: 10.1016/j.taap.2012.08.002

 

  1. Dewey DL. The radiosensitivity of melanoma cells in culture. Br J Radiol. 1971;44(526):816-817. doi: 10.1259/0007-1285-44-526-816

 

  1. Lesueur P, Doyen J, Lecornu M, et al. Nouvelles indications de protonthérapie et essais cliniques en cours: Tumeurs intracrâniennes [New indications of protontherapy for adults intracranial tumours]. Cancer Radiother. 2021;25(6-7):545-549. doi: 10.1016/j.canrad.2021.06.009

 

  1. Naik PP. Current trends of immunotherapy in the treatment of cutaneous melanoma: A review. Dermatol Ther (Heidelb). 2021;11(5):1481-1496. doi: 10.1007/s13555-021-00583-z

 

  1. Paul MJ, Summers Y, Calvert AH, et al. Effect of temozolomide on central nervous system relapse in patients with advanced melanoma. Melanoma Res. 2002;12(2):175-178. doi: 10.1097/00008390-200204000-00011

 

  1. Baumgartner A, Stepien N, Mayr L, et al. Novel insights into diagnosis, biology and treatment of primary diffuse leptomeningeal melanomatosis. J Pers Med. 2021;11(4):292. doi: 10.3390/jpm11040292

 

  1. Randic T, Kozar I, Margue C, Utikal J, Kreis S. NRAS mutant melanoma: Towards better therapies. Cancer Treat Rev. 2021;99:102238. doi: 10.1016/j.ctrv.2021.102238

 

  1. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378(2):158-168. doi: 10.1056/NEJMra1703481

 

  1. You H, Zhang S, Zhang Y, et al. Engineered bacterial outer membrane vesicles-based doxorubicin and CD47-siRNA co-delivery nanoplatform overcomes immune resistance to potentiate the immunotherapy of glioblastoma. Adv Mater. 2025;37(15):e2418053. doi: 10.1002/adma.202418053

 

  1. Rached L, Laparra A, Sakkal M, et al. Toxicity of immunotherapy combinations with chemotherapy across tumor indications: Current knowledge and practical recommendations. Cancer Treat Rev. 2024;127:102751. doi: 10.1016/j.ctrv.2024.102751

 

  1. Kirchberger MC, Ugurel S, Mangana J, et al. MEK inhibition may increase survival of NRAS-mutated melanoma patients treated with checkpoint blockade: Results of a retrospective multicentre analysis of 364 patients. Eur J Cancer. 2018;98:10-16. doi: 10.1016/j.ejca.2018.04.010

 

  1. Lee MH, Lee JI. Malignant ascites after subduroperitoneal shunt in a patient with leptomeningeal metastasis. J Korean Neurosurg Soc. 2011;50(4):385-387. doi: 10.3340/jkns.2011.50.4.385

 

  1. Liu S, Jin X, Ge Y, et al. Advances in brain-targeted delivery strategies and natural product-mediated enhancement of blood-brain barrier permeability. J Nanobiotechnol. 2025;23(1):382. doi: 10.1186/s12951-025-03415-w

 

  1. Choi DK, Pillay-Smiley N, Marzec S, et al. Primary central nervous system malignant melanoma in children: A case series and review of the literature. J Pediatr Hematol Oncol. 2018;40(8):616-619. doi: 10.1097/MPH.0000000000001092

 

  1. Abla O, Weitzman S, Blay JY, et al. Primary CNS lymphoma in children and adolescents: a descriptive analysis from the International Primary CNS Lymphoma Collaborative Group (IPCG). Clin Cancer Res. 2011;17(2):346-352. doi: 10.1158/1078-0432.CCR-10-1161

 

  1. Lin T, Wang K, Yang D, et al. Age-related differences in primary central nervous system lymphomas based on the SEER database. Front Med (Lausanne). 2025;12:1534956. doi: 10.3389/fmed.2025.1534956

 

  1. Li X, Gong J. Study on primary central nervous system lymphoma in pediatric patients. Childs Nerv Syst. 2023;39(8):2037-2043. doi: 10.1007/s00381-023-06021-z

 

  1. Shi ZF, Li KK, Liu AP, et al. The molecular landscape of primary CNS lymphomas (PCNSLs) in children and young adults. Cancers (Basel). 2024;16(9):1740. doi: 10.3390/cancers16091740

 

  1. Blundell AR, Moustafa D, Samore WR, Hawryluk EB. Fatal GNAQ‐mutated CNS melanoma in an adolescent with nevus of Ota. Pediatr Dermatol. 2021;38(2):497-499. doi: 10.1111/pde.14501

 

  1. Liu X, Shi H, Wen X, et al. Primary intracranial malignant melanoma in an adolescent girl with NRAS and TP53 mutations: Case report and literature review. Front Oncol. 2024;14:1465676. doi: 10.3389/fonc.2024.1465676

 

  1. Shahab SW, Patil P, Fangusaro JR, et al. Primary diffuse leptomeningeal melanomatosis in a child with extracranial metastasis: Case report. Curr Oncol. 2024;31(1):579-587. doi: 10.3390/curroncol31010041

 

  1. Marquez YB, Johnson AR, Argañaraz R, Mantese B. Primary diffuse leptomeningeal melanomatosis: A case report of an unusual presentation in a pediatric patient. Surg Neurol Int. 2024;15:6. doi: 10.25259/SNI_641_2023

 

  1. Tavana Rad S, Ashrafzadeh F, Golmakani H, Ganjeifar B. Nonsyndromic primary diffuse leptomeningeal melanomatosis in a child. Iran J Child Neurol. 2021;15(3):153-157. doi: 10.22037/ijcn.v15i2.20159

 

  1. Sivaraju L, Ghosal N, Mahadevan A, Uday Krishna AS, Rao S, Hegde AS. Aggressive primary pediatric intracranial malignant melanoma: Sphinx of the tissue diagnosis. Asian J Neurosurg. 2019;14(1):275-279. doi: 10.4103/ajns.AJNS_253_17

 

  1. Hung PC, Chang YC, Hsieh MY, Wu CT. Primary intracranial meningeal melanoma mimicking chronic meningitis: A case report. Pediatr Neonatol. 2019;60(5):589-591. doi: 10.1016/j.pedneo.2018.10.003

 

  1. Szathmari A, Perbet R, Hermier M, Di Rocco F, Frappaz D, Mottolese C. Primary amelanotic leptomeningeal melanomatosis in a child: A rare but severe disease. World Neurosurg. 2016;92:581.e15-581.e20. doi: 10.1016/j.wneu.2016.06.039

 

  1. Flodmark O, Fitz CR, Harwood-Nash DC, Chuang SH. Neuroradiological findings in a child with primary leptomeningeal melanoma. Neuroradiology. 1979;18:153-156. doi: 10.1007/BF00346871

 

  1. Makin GW, Eden OB, Lashford LS, et al. Leptomeningeal melanoma in childhood. Cancer. 1999;86(5):878-886.

 

  1. Tanaka Y, Sakamoto K, Kobayashi N, Ito H. Primary melanomas in the central nervous system with peritoneal dissemination through ventriculo peritoneal shunt. Neurol Med Chir. 1985;25(12):1029-1035. doi: 10.2176/nmc.25.1029

 

  1. Gattuso P, Carson HJ, Attal H, Castelli MJ. Peritoneal implantation of meningeal melanosis via ventriculoperitoneal shunt: A case report and review of the literature. Diagn Cytopathol. 1995;13:257-259. doi: 10.1002/dc.2840130314

 

  1. Toomey CB, Fraser K, Thorson JA, Goldbaum MH, Lin JH. GNAQ and PMS1 mutations associated with uveal melanoma, ocular surface melanosis, and nevus of ota. Ocul Oncol Pathol. 2019;5(4):267-272. doi: 10.1159/000495508

 

  1. Pappo AS, McPherson V, Pan H, et al. A prospective, comprehensive registry that integrates the molecular analysis of pediatric and adolescent melanocytic lesions. Cancer. 2021;127(20):3825-3831. doi: 10.1002/cncr.33750

 

  1. Suthapot P, Chiangjong W, Chaiyawat P, et al. Genomics-driven precision medicine in pediatric solid tumors. Cancers (Basel). 2023;15(5):1418. doi: 10.3390/cancers15051418
Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing