AccScience Publishing / AN / Online First / DOI: 10.36922/AN025150032
ORIGINAL RESEARCH ARTICLE

Discovering genes associated with multiple sclerosis through cross-tissue integrative transcriptome-wide association studies

Xiaoyun Zhang1,2* Zhen Liu3
Show Less
1 Jinan University, Guangzhou, Guangdong, China
2 Department of Rehabilitation, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
3 Department of Pharmaceutical, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
Advanced Neurology, 025150032 https://doi.org/10.36922/AN025150032
Received: 13 April 2025 | Revised: 2 September 2025 | Accepted: 12 September 2025 | Published online: 14 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Genome-wide association studies (GWASs) have identified over 200 loci associated with multiple sclerosis (MS), yet these loci explain only a fraction of the genetic risk. Integrating GWAS with expression quantitative trait loci through transcriptome-wide association studies (TWAS) provides a powerful approach to pinpointing candidate genes underlying complex traits. We performed a TWAS using FUSION with Genotype-Tissue Expression version 8 expression weights, based on meta-analyzed summary statistics from large-scale MS GWAS datasets (5263 cases and 83,167 controls). To refine candidate genes and assess causality, we applied conditional analysis, Bayesian colocalization, summary-data-based Mendelian randomization (SMR), and fine-mapping strategies. TWAS identified 403 candidate genes, of which 15 were further supported by SMR analysis. Six of these genes (HLA-G, HLA-J, HLA-DRB1, TAP2, HLA-C, and HLA-B) overlapped with previously reported MS loci, and nine additional genes (e.g., MICF, USP8P1, PSORS1C3, HCG24, and HLA-DQB1-AS1) represented novel candidates requiring further validation. Through the integration of transcriptomic and GWAS data, our study unveiled established and novel genetic contributors to MS. These findings deepen our understanding of MS pathogenesis and highlight high-priority targets for future functional and therapeutic studies.

Keywords
Multiple sclerosis
Post-GWAS analysis
Transcriptome-wide association study
Summary Mendelian randomization
Funding
This work was supported by the Scientific Research Projects of Medical and Health Institutions in Longhua District, Shenzhen (ID: 2023034, PI: YXZ).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Speil C, Rzepka R. Vaccines and vaccine adjuvants as biological response modifiers. Infect Dis Clin North Am. 2011;25(4):755-772. doi: 10.1016/j.idc.2011.07.004

 

  1. Sadovnick AD, Ebers GC. Epidemiology of multiple sclerosis: A critical overview. Can J Neurol Sci. 1993;20(1):17-29. doi: 10.1017/s0317167100047351

 

  1. Moransard M, Bednar M, Frei K, Gassmann M, Ogunshola OO. Erythropoietin reduces experimental autoimmune encephalomyelitis severity via neuroprotective mechanisms. J Neuroinflammation. 2017;14(1):202. doi: 10.1186/s12974-017-0976-5

 

  1. Qian Z, Li Y, Guan Z, et al. Global, regional, and national burden of multiple sclerosis from 1990 to 2019: Findings of global burden of disease study 2019. Front Public Health. 2023;11:1073278. doi: 10.3389/fpubh.2023.1073278

 

  1. Battaglia MA, Bezzini D, Cecchini I, et al. Patients with multiple sclerosis: A burden and cost of illness study. J Neurol. 2022;269(9):5127-5135. doi: 10.1007/s00415-022-11169-w

 

  1. International Multiple Sclerosis Genetics C, Beecham AH, Patsopoulos NA, et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet. 2013;45(11):1353-1360. doi: 10.1038/ng.2770

 

  1. Patsopoulos NA, Bayer Pharma MS, Edan G, et al. Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci. Ann Neurol. 2011;70(6):897-912. doi: 10.1002/ana.22609

 

  1. International Multiple Sclerosis Genetics C. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science. 2019;365(6460):eaav7188. doi: 10.1126/science.aav7188

 

  1. Kim W, Patsopoulos NA. Genetics and functional genomics of multiple sclerosis. Semin Immunopathol. 2022;44(1):63-79. doi: 10.1007/s00281-021-00907-3

 

  1. Westerlind H, Ramanujam R, Uvehag D, et al. Modest familial risks for multiple sclerosis: A registry-based study of the population of Sweden. Brain. 2014;137(Pt 3):770-778. doi: 10.1093/brain/awt356

 

  1. O’Gorman C, Freeman S, Taylor BV, et al. Familial recurrence risks for multiple sclerosis in Australia. J Neurol Neurosurg Psychiatry. 2011;82(12):1351-1354. doi: 10.1136/jnnp.2010.233064

 

  1. Kular L, Jagodic M. Epigenetic insights into multiple sclerosis disease progression. J Intern Med. 2020;288(1):82-102. doi: 10.1111/joim.13045

 

  1. Li B, Ritchie MD. From GWAS to Gene: Transcriptome-wide association studies and other methods to functionally understand GWAS discoveries. Front Genet. 2021;12:713230. doi: 10.3389/fgene.2021.713230

 

  1. Dall’Aglio L, Lewis CM, Pain O. Delineating the genetic component of gene expression in major depression. Biol Psychiatry. 2021;89(6):627-636. doi: 10.1016/j.biopsych.2020.09.010

 

  1. Huang S, Wang J, Liu N, et al. A cross-tissue transcriptome association study identifies key genes in essential hypertension. Front Genet. 2023;14:1114174. doi: 10.3389/fgene.2023.1114174

 

  1. Lu M, Zhang Y, Yang F, et al. TWAS Atlas: A curated knowledgebase of transcriptome-wide association studies. Nucleic Acids Res. 2023;51(D1):D1179-D1187. doi: 10.1093/nar/gkac821

 

  1. Gusev A, Mancuso N, Won H, et al. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat Genet. 2018;50(4):538-548. doi: 10.1038/s41588-018-0092-1

 

  1. Zhou W, Nielsen JB, Fritsche LG, et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat Genet. 2018;50(9):1335-1341. doi: 10.1038/s41588-018-0184-y

 

  1. Consortium GT, Laboratory DA, Coordinating Center -Analysis Working G, et al. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204-213. doi: 10.1038/nature24277

 

  1. Giambartolomei C, Vukcevic D, Schadt EE, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10(5):e1004383. doi: 10.1371/journal.pgen.1004383

 

  1. Gusev A, Ko A, Shi H, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48(3):245-252. doi: 10.1038/ng.3506

 

  1. Liao C, Laporte AD, Spiegelman D, et al. Transcriptome-wide association study of attention deficit hyperactivity disorder identifies associated genes and phenotypes. Nat Commun. 2019;10(1):4450. doi: 10.1038/s41467-019-12450-9

 

  1. Zhu Z, Zhang F, Hu H, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48(5):481-487. doi: 10.1038/ng.3538

 

  1. PredictDB Team (2021). GTEx v8 models on eQTL and sQTL. PredictDB. Available from: https://predictdb.org/post/2021/07/21/gtex-v8-models-on-eqtl-and-sqtl/

 

  1. Qi T, Wu Y, Zeng J, et al. Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. Nat Commun. 2018;9(1):2282. doi: 10.1038/s41467-018-04558-1

 

  1. Westra HJ, Peters MJ, Esko T, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. 2013;45(10):1238-1243. doi: 10.1038/ng.2756

 

  1. Lloyd-Jones LR, Holloway A, McRae A, et al. The genetic architecture of gene expression in peripheral blood. Am J Hum Genet. 2017;100(2):228-237. doi: 10.1016/j.ajhg.2016.12.008

 

  1. Consortium GT. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509):1318-1330. doi: 10.1126/science.aaz1776

 

  1. Axisa PP, Hafler DA. Multiple sclerosis: Genetics, biomarkers, treatments. Curr Opin Neurol. 2016;29(3):345-353. doi: 10.1097/WCO.0000000000000319

 

  1. Mirzadeh Azad F, Malakootian M, Mowla SJ. lncRNA PSORS1C3 is regulated by glucocorticoids and fine-tunes OCT4 expression in non-pluripotent cells. Sci Rep. 2019;9(1):8370. doi: 10.1038/s41598-019-44827-7

 

  1. Sorosina M, Santoro S, Ferre L, et al. Risk HLA variants affect the T-cell repertoire in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2023;10(3):e200093. doi: 10.1212/NXI.0000000000200093

 

  1. Xiao D, Ye X, Zhang N, et al. A meta-analysis of interaction between Epstein-Barr virus and HLA-DRB1*1501 on risk of multiple sclerosis. Sci Rep. 2015;5:18083. doi: 10.1038/srep18083

 

  1. Lysandropoulos AP, Mavroudakis N, Pandolfo M, et al. HLA genotype as a marker of multiple sclerosis prognosis: A pilot study. J Neurol Sci. 2017;375:348-354. doi: 10.1016/j.jns.2017.02.019

 

  1. Link J, Lorentzen AR, Kockum I, et al. Two HLA class I genes independently associated with multiple sclerosis. J Neuroimmunol. 2010;226(1-2):172-176. doi: 10.1016/j.jneuroim.2010.07.006

 

  1. Madigand M, Oger JJ, Fauchet R, Sabouraud O, Genetet B. HLA profiles in multiple sclerosis suggest two forms of disease and the existence of protective haplotypes. J Neurol Sci. 1982;53(3):519-529. doi: 10.1016/0022-510x(82)90248-9

 

  1. Middleton D, Megaw G, Cullen C, Hawkins S, Darke C, Savage DA. TAP1 and TAP2 polymorphism in multiple sclerosis patients. Hum Immunol. 1994;40(2):131-134. doi: 10.1016/0198-8859(94)90057-4

 

  1. Mohammadi N, Adib M, Alsahebfosoul F, Kazemi M, Etemadifar M. An investigation into the association between HLA-G 14 bp insertion/deletion polymorphism and multiple sclerosis susceptibility. J Neuroimmunol. 2016;290:115-118. doi: 10.1016/j.jneuroim.2015.11.019

 

  1. Batchelor JR, Compston A, McDonald WI. The significance of the association between HLA and multiple sclerosis. Br Med Bull. 1978;34(3):279-284. doi: 10.1093/oxfordjournals.bmb.a071512

 

  1. Osoegawa K, Creary LE, Montero-Martin G, et al. High resolution haplotype analyses of classical HLA genes in families with multiple sclerosis highlights the role of HLA-DP alleles in disease susceptibility. Front Immunol. 2021;12:644838. doi: 10.3389/fimmu.2021.644838

 

  1. Healy BC, Liguori M, Tran D, et al. HLA B*44: Protective effects in MS susceptibility and MRI outcome measures. Neurology. 2010;75(7):634-640. doi: 10.1212/WNL.0b013e3181ed9c9c

 

  1. Chi C, Shao X, Rhead B, et al. Admixture mapping reveals evidence of differential multiple sclerosis risk by genetic ancestry. PLoS Genet. 2019;15(1):e1007808. doi: 10.1371/journal.pgen.1007808

 

  1. Jacobs BM, Taylor T, Awad A, et al. Summary-data-based Mendelian randomization prioritizes potential druggable targets for multiple sclerosis. Brain Commun. 2020;2(2):fcaa119. doi: 10.1093/braincomms/fcaa119

 

  1. Manuel AM, Dai Y, Freeman LA, Jia P, Zhao Z. An integrative study of genetic variants with brain tissue expression identifies viral etiology and potential drug targets of multiple sclerosis. Mol Cell Neurosci. 2021;115:103656. doi: 10.1016/j.mcn.2021.103656

 

  1. Jia T, Ma Y, Qin F, Han F, Zhang C. Brain proteome-wide association study linking-genes in multiple sclerosis pathogenesis. Ann Clin Transl Neurol. 2023;10(1):58-69. doi: 10.1002/acn3.51699

 

  1. Linh NTT, Giang NH, Lien NTK, et al. Association of PSORS1C3, CARD14 and TLR4 genotypes and haplotypes with psoriasis susceptibility. Genet Mol Biol. 2022;45(4):e20220099. doi: 10.1590/1678-4685-GMB-2022-0099

 

  1. Yang J, Wei P, Barbi J, et al. The deubiquitinase USP44 promotes Treg function during inflammation by preventing FOXP3 degradation. EMBO Rep. 2020;21(9):e50308. doi: 10.15252/embr.202050308

 

  1. Wang H, Yang B, Cai X, et al. Hepatocellular carcinoma risk variant modulates lncRNA HLA-DQB1-AS1 expression via a long-range enhancer-promoter interaction. Carcinogenesis. 2021;42(11):1347-1356. doi: 10.1093/carcin/bgab095

 

  1. Long J, Liu L, Zhou X, Lu X, Qin L. HLA-DQB1-AS1 promotes cell proliferation, inhibits apoptosis, and binds with ZRANB2 protein in hepatocellular carcinoma. J Oncol. 2022;2022:7130634. doi: 10.1155/2022/7130634

 

  1. Liu G, Zhang F, Hu Y, et al. Multiple sclerosis risk pathways differ in caucasian and Chinese populations. J Neuroimmunol. 2017;307:63-68. doi: 10.1016/j.jneuroim.2017.03.012

 

  1. Isobe N, Gourraud PA, Harbo HF, et al. Genetic risk variants in African Americans with multiple sclerosis. Neurology. 2013;81(3):219-227. doi: 10.1212/WNL.0b013e31829bfe2f

 

  1. Andlauer TF, Buck D, Antony G, et al. Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation. Sci Adv. 2016;2(6):e1501678. doi: 10.1126/sciadv.1501678
Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing