Serotonin-interleukin pathway in neurological disorders: A mixed pathway approach

Neurological disorders involve complex interactions between neurotransmitters and immune signaling pathways, with serotonin (5-HT) and interleukins (ILs) playing crucial roles. This review explores the mixed pathway of 5-HT-IL signaling and its involvement in the pathophysiology of neurodegenerative and neuropsychiatric conditions. Dysregulated 5-HT and IL signaling has been implicated in Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, depression, anxiety, schizophrenia, autism spectrum disorder, and attention-deficit/hyperactivity disorder. 5-HT influences neuroinflammation, synaptic plasticity, and cognitive function, while ILs regulate immune responses and neuronal survival. Their interplay modulates neurotransmission, neuroinflammation, and neurodegeneration through mechanisms, such as cytokine-mediated 5-HT depletion and 5-HT receptor regulation. Understanding the 5-HT-IL pathway offers new insights into disease progression and potential therapeutic strategies, including selective 5-HT reuptake inhibitors, cytokine inhibitors, and combination therapies targeting neuroimmune interactions.
- Kanova M, Kohout P. Serotonin-its synthesis and roles in the healthy and the critically Ill. Int J Mol Sci. 2021;22(9):4837. doi: 10.3390/IJMS22094837
- Costedio MM, Hyman N, Mawe GM. Serotonin and its role in colonic function and in gastrointestinal disorders. Dis Colon Rectum. 2007;50(3):376-388. doi: 10.1007/s10350-006-0763-3
- De Pontes ALB, Engelberth RCGJ, Da Nascimento ES, et al. Serotonin and circadian rhythms. Psychol Neurosci. 2010;3(2):217-228. doi: 10.3922/J.PSNS.2010.2.011
- Kmieć Z. Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol. 2001;161:III-XIII, 1-151. doi: 10.1007/978-3-642-56553-3
- Choy E, Rose-John S. Interleukin-6 as a multifunctional regulator: Inflammation, immune response, and fibrosis. J Scleroderma Relat Disord. 2017;2:S1-S5. doi: 10.5301/JSRD.5000265
- Zhou M, Li YJ, Tang YC, et al. Apoptotic bodies for advanced drug delivery and therapy. J Control Release. 2022;351:394-406. doi: 10.1016/J.JCONREL.2022.09.045
- Pons-Espinal M, Blasco-Agell L, Fernandez-Carasa I, et al. Blocking IL-6 signaling prevents astrocyte-induced neurodegeneration in an iPSC-based model of Parkinson’s disease. JCI Insight. 2024;9(3):e1633599. doi: 10.1172/jci.insight.163359
- Diaz K, Kohut ML, Russell DW, Stegemöller EL. Peripheral inflammatory cytokines and motor symptoms in persons with Parkinson’s disease. Brain Behav Immun Health. 2022;21:100442. doi: 10.1016/j.bbih.2022.100442
- Eide S, Misztal M, Feng ZP. Interleukin-6 as a marker of Huntington’s disease progression: Systematic review and meta-analysis. Brain Behav Immun Health. 2023;30:100635. doi: 10.1016/j.bbih.2023.100635
- Bensadoun JC, Pereira De Almeida L, Dréano M, Aebischer P, Déglon N. Neuroprotective effect of interleukin-6 and IL6/ IL6R chimera in the quinolinic acid rat model of Huntington’s syndrome. Eur J Neurosci. 2001;14(11):1753-1761. doi: 10.1046/j.0953-816X.2001.01802.x
- Wertz MH, Pineda SS, Lee H, Kulicke R, Kellis M, Heiman M. Interleukin-6 deficiency exacerbates Huntington’s disease model phenotypes. Mol Neurodegener. 2020;15(1):1-8. doi: 10.1186/s13024-020-00379-3
- Dorszewska J, Prendecki M, Oczkowska A, Rozycka A, Lianeri M, Kozubski W. Polymorphism of the COMT, MAO, DAT, NET and 5-HTT Genes, and biogenic amines in Parkinson’s disease. Curr Genomics. 2014;14(8):518-533. doi: 10.2174/1389202914666131210210241
- Gulisano W, Maugeri D, Baltrons MA, et al. Role of amyloid-β and tau proteins in Alzheimer’s disease: Confuting the amyloid cascade. J Alzheimers Dis. 2018;64(Suppl 1):S611. doi: 10.3233/JAD-179935
- Wu Q, He Q, Zhang X, Chen S, Xue X. Systemic modulators: Potential mechanism for the 5-HT system to mediate exercise amelioration in Alzheimer’s disease. Aging Dis. 2024;16:2770-2802. doi: 10.14336/AD.2024.0834
- Quintanilla RA, Orellana DI, González-Billault C, MaccioniRB. Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/ p35 pathway. Exp Cell Res. 2004;295(1):245-257. doi: 10.1016/j.yexcr.2004.01.002
- Lin W, Song H, Shen J, et al. Functional role of skeletal muscle-derived interleukin-6 and its effects on lipid metabolism. Front Physiol. 2023;14:1110926. doi: 10.3389/fphys.2023.1110926
- Spooren A, Kolmus K, Laureys G, et al. Interleukin-6, a mental cytokine. Brain Res Rev. 2011;67(1-2):157-183. doi: 10.1016/j.brainresrev.2011.01.002
- Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dement (NY). 2018;4:575-590. doi: 10.1016/j.trci.2018.06.014
- Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: A roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology. 2019;27(4):663-677. doi: 10.1007/s10787-019-00580-x
- Shan C, Zhang C, Zhang C. The role of IL-6 in neurodegenerative disorders. Neurochem Res. 2024;49(4):834-846. doi: 10.1007/S11064-023-04085-6
- Yang J, Ran M, Li H, et al. New insight into neurological degeneration: Inflammatory cytokines and blood-brain barrier. Front Mol Neurosci. 2022;15:1013933. doi: 10.3389/fnmol.2022.1013933
- Huang Z, Wong LW, Su Y, et al. Blood-brain barrier integrity in the pathogenesis of Alzheimer’s disease. Front Neuroendocrinol. 2020;59:100857. doi: 10.1016/j.yfrne.2020.100857
- Takeshita Y, Fujikawa S, Serizawa K, et al. New BBB model reveals that IL-6 blockade suppressed the BBB disorder, preventing onset of NMOSD. Neurol Neuroimmunol Neuroinflamm. 2021;8(6):e1076. doi: 10.1212/NXI.0000000000001076
- März P, Cheng JG, Gadient RA, et al. Sympathetic neurons can produce and respond to interleukin 6. Proc Natl Acad Sci U S A. 1998;95(6):3251-3256. doi: 10.1073/pnas.95.6.3251
- Omedul I, Xiandi G, Stefan RJ, Heese K. Interleukin-6 and neural stem cells: More than gliogenesis. Mol Biol Cell. 2009;20:188-199. doi: 10.1091/mbc.e08-05-0463
- Mousa A, Bakhiet M. Role of cytokine signaling during nervous system development. Int J Mol Sci. 2013;14(7):13931-13957. doi: 10.3390/ijms140713931
- Kummer KK, Zeidler M, Kalpachidou T, Kress M. Role of IL-6 in the regulation of neuronal development, survival and function. Cytokine. 2021;144:155582. doi: 10.1016/j.cyto.2021.155582
- Irina K, Rodrigo PA, Thais VWCBM. Advances in Cellular and Cell-Free Therapy Medicinal Products for Huntington Disease Treatment. Vol. 11. London: IntechOpen; 2016. p. 13.
- Palpagama TH, Waldvogel HJ, Faull RLM, Kwakowsky A. The role of microglia and astrocytes in Huntington’s disease. Front Mol Neurosci. 2019;12:258. doi: 10.3389/fnmol.2019.00258
- Jia Q, Li S, Li XJ, Yin P. Neuroinflammation in Huntington’s disease: From animal models to clinical therapeutics. Front Immunol. 2022;13:1088124. doi: 10.3389/fimmu.2022.1088124
- Conroy SM, Nguyen V, Quina LA, et al. Interleukin-6 produces neuronal loss in developing cerebellar granule neuron cultures. J Neuroimmunol. 2004;155(1-2):43-54. doi: 10.1016/j.jneuroim.2004.06.014
- Ma J, Gao J, Niu M, Zhang X, Wang J, Xie A. P2X4R overexpression upregulates interleukin-6 and exacerbates 6-OHDA-induced dopaminergic degeneration in a rat model of PD. Front Aging Neurosci. 2020;12:580068. doi: 10.3389/fnagi.2020.580068
- Dufek M, Rektorova I, Thon V, Lokaj J, Rektor I. Interleukin-6 may contribute to mortality in Parkinson’s disease patients: A 4-year prospective study. Parkinsons Dis. 2015;2015:898192. doi: 10.1155/2015/898192
- Scalzo P, Kümmer A, Cardoso F, Teixeira AL. Serum levels of interleukin-6 are elevated in patients with Parkinson’s disease and correlate with physical performance. Neurosci Lett. 2010;468(1):56-58. doi: 10.1016/j.neulet.2009.10.062
- Kozina E, Byrne M, Smeyne RJ. Mutant LRRK2 in lymphocytes regulates neurodegeneration via IL-6 in an inflammatory model of Parkinson’s disease. NPJ Parkinsons Dis. 2022;8(1):24. doi: 10.1038/s41531-022-00289-9
- Sterling JK, Kam TI, Guttha S, et al. Interleukin-6 triggers toxic neuronal iron sequestration in response to pathological α-synuclein. Cell Rep. 2022;38(7):110358. doi: 10.1016/j.celrep.2022.110358
- Müller T, Blum-Degen D, Przuntek H, Kuhn W. Interleukin-6 levels in cerebrospinal fluid inversely correlate to severity of Parkinson’s disease. Acta Neurol Scand. 1998;98(2):142-144. doi: 10.1111/j.1600-0404.1998.tb01736.x
- Qin XY, Zhang SP, Cao C, Loh YP, Cheng Y. Aberrations in peripheral inflammatory cytokine levels in Parkinson disease: A systematic review and meta-analysis. JAMA Neurol. 2016;73(11):1316-1324. doi: 10.1001/jamaneurol.2016.2742
- Karpenko MN, Vasilishina AA, Gromova EA, Muruzheva ZM, Bernadotte A. Interleukin-1β interleukin-1 receptor antagonist, interleukin-6, interleukin-10, and tumor necrosis factor-α levels in CSF and serum in relation to the clinical diversity of Parkinson’s disease. Cell Immunol. 2018;327:77-82. doi: 10.1016/j.cellimm.2018.02.011
- Dzamk N. Cytokine activity in Parkinson’s disease. Neuronal Signal. 2023;7(4):NS20220063. doi: 10.1042/NS20220063
- Shad KF, Shad KF. Serotonin - a chemical messenger between all types of living cells. In: Serotonin a Chemical Messenger between All Types of Living Cells. London: IntechOpen; 2017. doi: 10.5772/65233
- Levraut M, Bourg V, Capet N, et al. Cerebrospinal fluid IL-17A could predict acute disease severity in non- NMDA-receptor autoimmune encephalitis. Front Immunol. 2021;12:673021. doi: 10.3389/fimmu.2021.673021
- Zeng C, Chen L, Chen B, et al. Th17 cells were recruited and accumulated in the cerebrospinal fluid and correlated with the poor prognosis of anti-NMDAR encephalitis. Acta Biochim Biophys Sin (Shanghai). 2018;50(12):1266-1273. doi: 10.1093/abbs/gmy137
- Dorszewska J, Florczak-Wyspianska J, Kowalska M, et al. Serotonin in neurological diseases. In: Serotonin - a Chemical Messenger between All Types of Living Cells. London: IntechOpen; 2017. doi: 10.5772/INTECHOPEN.69035
- Oades RD. The role of serotonin in attention-deficit hyperactivity disorder (ADHD). Handb Behav Neurosci. 2010;21:565-584. doi: 10.1016/S1569-7339(10)70101-6
- Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med. 2009;60:355-366. doi: 10.1146/annurev.med.60.042307.110802
- Wu H, Denna TH, Storkersen JN, Gerriets VA. Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacol Res. 2019;140:100-114. doi: 10.1016/j.phrs.2018.06.015
- Reisine T. Pertussis toxin in the analysis of receptor mechanisms. Biochem Pharmacol. 1990;39(10):1499-1504. doi: 10.1016/0006-2952(90)90513-K
- Gierschik P. ADP-ribosylation of signal-transducing guanine nucleotide-binding proteins by pertussis toxin. Curr Top Microbiol Immunol. 1992;175:69-96. doi: 10.1007/978-3-642-76966-5_4
- Branchek T, Adham N, Macchi M, Kao HT, Hartig PR. [3H]-DOB(4-bromo-2,5-dimethoxyphenylisopropylamine) and [3H] ketanserin label two affinity states of the cloned human 5-hydroxytryptamine2 receptor. Mol Pharmacol. 1990;38(5):604-609.
- Nichols DE. Hallucinogens. Pharmacol Ther. 2004;101(2):131-181. doi: 10.1016/j.pharmthera.2003.11.002
- Nebigil CG, Choi DS, Dierich A, et al. Serotonin 2B receptor is required for heart development. Proc Natl Acad Sci U S A. 2000;97(17):9508-9513. doi: 10.1073/pnas.97.17.9508
- Choi DS, Ward SJ, Messaddeq N, et al. 5-HT2B receptor-mediated serotonin morphogenetic functions in mouse cranial neural crest and myocardiac cells. Development.1997;124(9):1745–1755. doi:10.1242/dev.124.9.1745
- Nebigil CG, Etienne N, Schaerlinger B, Hickel P, Launay JM, Maroteaux L. Developmentally regulated serotonin 5-HT2B receptors. Int J Dev Neurosci. 2001;19(4):365–372. doi:10.1016/s0736-5748(01)00022-3
- Clemett DA, Punhani T, Duxon MS, Blackburn TP, Fone KCF. Immunohistochemical localisation of the 5-HT2C receptor protein in the rat CNS. Neuropharmacology. 2000;39(1):123-132. doi: 10.1016/S0028-3908(99)00086-6
- Pasqualetti M, Ori M, Castagna M, Marazziti D, Cassano GB, Nardi I. Distribution and cellular localization of the serotonin type 2C receptor messenger RNA in human brain. Neuroscience. 1999;92(2):601-611. doi: 10.1016/S0306-4522(99)00011-1
- Gershon MD. Nerves, reflexes, and the enteric nervous system: Pathogenesis of the irritable bowel syndrome. J Clin Gastroenterol. 2005;39(5 Suppl 3):S184-S193. doi: 10.1097/01.mcg.0000156403.37240.30
- Irving HR, Tan YY, Tochon-Danguy N, et al. Comparison of 5-HT4 and 5-HT7 receptor expression and function in the circular muscle of the human colon. Life Sci. 2007;80(13):1198-1205. doi: 10.1016/j.lfs.2006.12.025
- Svenningsson P, Tzavara ET, Qi H, et al. Biochemical and behavioral evidence for antidepressant-like effects of 5-HT6 receptor stimulation. J Neurosci. 2007;27(15):4201-4209. doi: 10.1523/JNEUROSCI.3110-06.2007
- Wesołowska A, Nikiforuk A. Effects of the brain-penetrant and selective 5-HT6 receptor antagonist SB-399885 in animal models of anxiety and depression. Neuropharmacology. 2007;52(5):1274-1283. doi: 10.1016/j.neuropharm.2007.01.007
- Guscott M, Bristow LJ, Hadingham K, et al. Genetic knockout and pharmacological blockade studies of the 5-HT7 receptor suggest therapeutic potential in depression. Neuropharmacology. 2005;48(4):492-502. doi: 10.1016/j.neuropharm.2004.11.015
- Somers JM, Goldner EM, Waraich P, Hsu L. Prevalence and incidence studies of anxiety disorders: A systematic review of the literature. Can J Psychiatry. 2006;51(2):100-113. doi: 10.1177/070674370605100206
- Cleare A, Pariante CM, Young AH, et al. Evidence-based guidelines for treating depressive disorders with antidepressants: A revision of the 2008 British association for psychopharmacology guidelines. J Psychopharmacol. 2015;29:459-525. doi: 10.1177/0269881115581093
- Morrissette DA, Stahl SM. Modulating the serotonin system in the treatment of major depressive disorder. CNS Spectr. 2014;19:57-67; quiz 54-7, 68. doi: 10.1017/S1092852914000613
- Mulinari S. Monoamine theories of depression: Historical impact on biomedical research. J Hist Neurosci. 2012;21(4):366-392. doi: 10.1080/0964704X.2011.623917
- Melander H, Salmonson T, Abadie E, Van Zwieten-Boot B. A regulatory apologia--a review of placebo-controlled studies in regulatory submissions of new-generation antidepressants. Eur Neuropsychopharmacol. 2008;18(9):623-627. doi: 10.1016/j.euroneuro.2008.06.003
- Timothy Walsh B, Seidman SN, Sysko R, Gould M. Placebo response in studies of major depression: Variable, substantial, and growing. JAMA. 2002;287(14):1840-1847. doi: 10.1001/jama.287.14.1840
- Hindmarch I. Beyond the monoamine hypothesis: Mechanisms, molecules and methods. Eur Psychiatry. 2002;17(Suppl 3):294-299. doi: 10.1016/S0924-9338(02)00653-3
- Owens MJ. Selectivity of antidepressants: From the monoamine hypothesis of depression to the SSRI revolution and beyond. J Clin Psychiatry. 2004;65(Suppl 4):5-10.
- Young SN. Acute tryptophan depletion in humans: A review of theoretical, practical and ethical aspects. J Psychiatry Neurosci. 2013;38(5):294-305. doi: 10.1503/jpn.120209
- MacE JL, Porter RJ, Dalrymple-Alford JC, Wesnes KA, Anderson TJ. The effects of acute tryptophan depletion on neuropsychological function, mood and movement in the healthy elderly. J Psychopharmacol. 2011;25(10):1337-1343. doi: 10.1177/0269881110389094
- Ellenbogen MA, Young SN, Dean P, Palmour RM, Benkelfat C. Mood response to acute tryptophan depletion in healthy volunteers: Sex differences and temporal stability. Neuropsychopharmacology. 1996;15(5):465-474. doi: 10.1016/S0893-133X(96)00056-5
- Feder A, Skipper J, Blair JR, et al. Tryptophan depletion and emotional processing in healthy volunteers at high risk for depression. Biol Psychiatry. 2011;69(8):804-807. doi: 10.1016/j.biopsych.2010.12.033
- Van Der Veen FM, Evers EAT, Deutz NEP, Schmitt JAJ. Effects of acute tryptophan depletion on mood and facial emotion perception related brain activation and performance in healthy women with and without a family history of depression. Neuropsychopharmacology. 2007;32(1):216-224. doi: 10.1038/sj.npp.1301212
- Smith KA, Fairburn CG, Cowen PJ. Relapse of depression after rapid depletion of tryptophan. Lancet. 1997;349(9056):915-919. doi: 10.1016/S0140-6736(96)07044-4
- Moreno FA, Gelenberg AJ, Heninger GR, et al. Tryptophan depletion and depressive vulnerability. Biol Psychiatry. 1999;46(4):498-505. doi: 10.1016/S0006-3223(99)00095-5
- Booij L, Van Der Does AJW, Haffmans PMJ, Riedel WJ, Fekkes D, Blum MJB. The effects of high-dose and low-dose tryptophan depletion on mood and cognitive functions of remitted depressed patients. J Psychopharmacol. 2005;19(3):267-275. doi: 10.1177/0269881105051538
- Booij L, Van Der Does AJW, Haffmans PMJ, Riedel WJ. Acute tryptophan depletion in depressed patients treated with a selective serotonin-noradrenalin reuptake inhibitor: Augmentation of antidepressant response? J Affect Disord. 2005;86(2-3):305-311. doi: 10.1016/j.jad.2005.01.012
- Haynes PL, McQuaid JR, Kelsoe J, Rapaport M, Gillin JC. Affective state and EEG sleep profile in response to rapid tryptophan depletion in recently recovered nonmedicated depressed individuals. J Affect Disord. 2004;83(2-3):253-262. doi: 10.1016/j.jad.2004.05.010
- Meneses A. 5-HT system and cognition. Neurosci Biobehav Rev. 1999;23(8):1111-1125. doi: 10.1016/S0149-7634(99)00067-6
- Buhot MC, Martin S, Segu L. Role of serotonin in memory impairment. Ann Med. 2000;32(3):210-221. doi: 10.3109/07853890008998828
- Ögren SO, Eriksson TM, Elvander-Tottie E, et al. The role of 5-HT(1A) receptors in learning and memory. Behav Brain Res. 2008;195(1):54-77. doi: 10.1016/j.bbr.2008.02.023
- Sharma T, Mockler D. The cognitive efficacy of atypical antipsychotics in schizophrenia. J Clin Psychopharmacol. 1998;18(2 Suppl 1):12S-19S. doi: 10.1097/00004714-199804001-00004
- Bockaert J, Claeysen S, Compan V, Dumuis A. 5-HT(4) receptors, a place in the sun: Act two. Curr Opin Pharmacol. 2011;11(1):87-93. doi: 10.1016/j.coph.2011.01.012
- Wolf H. Preclinical and clinical pharmacology of the 5-HT3 receptor antagonists. Scand J Rheumatol. 2000;113:37-45. doi: 10.1080/030097400446625
- Cowen P, Sherwood AC. The role of serotonin in cognitive function: Evidence from recent studies and implications for understanding depression. J Psychopharmacol. 2013;27(7):575-583. doi: 10.1177/0269881113482531
- Blundel JE. Serotonin and appetite. Neuropharmacology. 1984;23(12B):1537-1551. doi: 10.1016/0028-3908(84)90098-4
- Lesch KP, Beckmann H. The serotonin hypothesis of depression. Fortschr Neurol Psychiatr. 1990;58(11):427-438. doi: 10.1055/s-2007-1001206
- Robins E, Murphy GE, Wilkinson RH Jr., Gassner S, Kayes J. Some clinical considerations in the prevention of suicide based on a study of 134 successful suicides. Am J Public Nations Health. 1959;49(7):888-899. doi: 10.2105/ajph.49.7.888
- Barraclough B, Bunch J, Nelson B, Sainsbury P. A hundred cases of suicide: Clinical aspects. Br J Psychiatry. 1974;125(10):355-373. doi: 10.1192/bjp.125.4.355
- Åsberg M, Bertilsson L, Mårtensson B, Scalia‐Tomba GP, Thorén P, Träskman‐Bendz L. CSF monoamine metabolites in melancholia. Acta Psychiatr Scand. 1984;69(3):201-219. doi: 10.1111/j.1600-0447.1984.tb02488.x
- Davies P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet. 1976;2(8000):1403. doi: 10.1016/s0140-6736(76)91936-x
- DeKosky ST, Scheff SW, Markesbery WR. Laminar organization of cholinergic circuits in human frontal cortex in Alzheimer’s disease and aging. Neurology. 1985;35(10):1425-1431. doi: 10.1212/WNL.35.10.1425
- Bergmann K, Tomlinson BE, Blessed G, Gibson PH, Perry RH. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J. 1978;2(6150):1457-1459. doi: 10.1136/bmj.2.6150.1457
- Reinikainen KJ, Soininen H, Riekkinen PJ. Neurotransmitter changes in Alzheimer’s disease: Implications to diagnostics and therapy. J Neurosci Res. 1990;27(4):576-586. doi: 10.1002/jnr.490270419
- Curcio CA, Kemper T. Nucleus raphe dorsalis in dementia of the Alzheimer type: Neurofibrillary changes and neuronal packing density. J Neuropathol Exp Neurol. 1984;43(4):359-368. doi: 10.1097/00005072-198407000-00001
- Cheng AVT, Ferrier IN, Morris CM, et al. Cortical serotonin-S2 receptor binding in Lewy body dementia, Alzheimer’s and Parkinson’s diseases. J Neurol Sci. 1991;106(1):50-55. doi: 10.1016/0022-510X(91)90193-B
- Quirion R, Richard J, Dam TV. Evidence for the existence of serotonin type-2 receptors on cholinergic terminals in rat cortex. Brain Res. 1985;333(2):345-349. doi: 10.1016/0006-8993(85)91590-2
- Bowen DM, Allen SJ, Benton JS, et al. Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease. J Neurochem. 1983;41(1):266-272. doi: 10.1111/j.1471-4159.1983.tb11838.x
- Nordberg A. Clinical studies in Alzheimer patients with positron emission tomography. Behav Brain Res. 1993;57(2):215-224. doi: 10.1016/0166-4328(93)90138-G
- Michelsen KA, Prickaerts J, Steinbusch HWM. The dorsal raphe nucleus and serotonin: implications for neuroplasticity linked to major depression and Alzheimer’s disease. Prog Brain Res. 2008;172:233-264. doi: 10.1016/S0079-6123(08)00912-6
- Santulli C. Beyond buttons: repurposing of casein-based materials in education and industry—A review. Academia Materials Science. 2024;1(3):1-13. doi: 10.20935/ACADMATSCI7286
- Paudel K, Gautam K, Bhandari P, et al. Suicidal ideation, plan, and attempt among men who have sex with men in Nepal: Findings from a cross-sectional study. PLOS Glob Public Health. 2023;3(11):e0002348. doi: 10.1371/journal.pgph.0002348
- Gottfries CG. Clinical and neurochemical aspects of diseases with cognitive impairment. Rev Neurosci. 1992;3(3):191-206. doi: 10.1515/REVNEURO.1992.3.3.191
- Chen CPLH, Alder JT, Bowen DM, et al. Presynaptic serotonergic markers in community-acquired cases of Alzheimer’s disease: Correlations with depression and neuroleptic medication. J Neurochem. 1996;66(4):1592-1598. doi: 10.1046/j.1471-4159.1996.66041592.x
- Crow TJ, Cross AJ, Cooper SJ, et al. Neurotransmitter receptors and monoamine metabolites in the brains of patients with Alzheimer-type dementia and depression, and suicides. Neuropharmacology. 1984;23(12 B):1561-1569. doi: 10.1016/0028-3908(84)90100-X
- Palmer AM, Stratmann GC, Procter AW, Bowen DM. Possible neurotransmitter basis of behavioral changes in Alzheimer’s disease. Ann Neurol. 1988;23(6):616-620. doi: 10.1002/ana.410230616
- Zubenko GS, Moossy J, Martinez AJ, et al. Neuropathologic and neurochemical correlates of psychosis in primary dementia. Arch Neurol. 1991;48(6):619-624. doi: 10.1001/archneur.1991.00530180075020
- Schneider LS, Severson JA, Chui HC, Pollock VE, Bruce Sloane R, Fredrickson ER. Platelet tritiated imipramine binding and MAO activity in Alzheimer’s disease patients with agitation and delusions. Psychiatry Res. 1988;25(3):311-322. doi: 10.1016/0165-1781(88)90101-1
- Durum SK. Interleukins: An overview. In: Lipid Mediators in the Immunology of Shock. Berlin: Springer; 1987. p. 311-319. doi: 10.1007/978-1-4613-0919-2_34
- Trotta PP. Cytokines: An overview. Am J Reprod Immunol. 1991;25(3):137-141. doi: 10.1111/J.1600-0897.1991.TB01082.X
- Immunology CDS in, 2013 Undefined. Overview of the Interleukin-1 Family of Ligands and Receptors. Elsevier. Available from: https://www.sciencedirect.com/science/ article/pii/S1044532313000821 [Last accessed on 2025 Mar 31].
- Taga T. Immunology TKA Review of, 1997 Undefined. gp130 and the Interleukin-6 Family of Cytokines. Available from: https://www.annualreviews.org/content/journals/10.1146/ annurev.immunol.15.1.797 [Last accessed on 2025 Mar 31].
- Mizel SB. The interleukins1. FASEB J. 1989;3(12):2379-2388. doi: 10.1096/FASEBJ.3.12.2676681
- Vaillant A. Interleukin; 2022. Available from: https://www. ncbi.nlm.nih.gov/books/nbk499840 [Last accessed on 2025 Mar 31].
- Nicod LP. Cytokines. 1. Overview. Thorax. 1993;48:660-667. doi: 10.1136/thx.48.6.660
- Snick JV. Interleukin-6: An overview. Annu Rev Immunol. 1990;8:253-278. doi: 10.1146/annurev.iy.08.040190.001345
- Gaffen SL, Liu KD. Overview of interleukin-2 function, production and clinical applications. Cytokine. 2004;28:109-123. doi: 10.1016/j.cyto.2004.06.010
- Maher JJ. Cytokines: Overview. Semin Liver Dis. 1999;19(2):109-116. doi: 10.1055/S-2007-1007103
- DurumSK. Interleukins: An Overview. Springer; 1987. Availablefrom: https://link.springer.com/chapter/10.1007/978-1-4613-0919-2_34 [Last accessed on 2025 Mar 31].
- NZPA. Interleukin 35: An Overview; 2020. Available from: https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype= crawler&jrnl=12308013&an=148532767&h=7ouuggfhti5n%2fcj8yage2cfdiubjv5hystwnbv5c6zfi6yicr188ruu6pfquq en2y%2foigbff%2b2ai0g98anre9g%3d%3d&crl=c [Last accessed on 2025 Mar 31].
- Disease JMS. Cytokines: Overview; 1999. Available from: https://www.thieme/connect.com/products/ ejournals/html/10.1055/s-2007-1007103 [Last accessed on 2025 Mar 31].
- Newsletter DACI. The Interleukins, Interferons, Transforming Growth Factors, and their Assays: An Overview. Elsevier; 1990. Available from: https://www.sciencedirect.com/ science/article/pii/019718599090005s [Last accessed on 2025 Mar 31].
- Gulati K, Guhathakurta S, Joshi J, Rai N, Immunol ARM. Cytokines and their role in health and disease: A brief overview. MOJ Immunol. 2016;4:00121. doi: 10.15406/moji.2016.04.00121
- Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519-550. doi: 10.1146/ANNUREV.IMMUNOL.021908.132612
- Rosenwasser LJ. Interleukin-1: An overview. In: IUPHAR 9th International Congress of Pharmacology London 1984. Berlin: Springer; 1984. p. 301-306. doi: 10.1007/978-1-349-17615-1_44
- Kaneko N, Kurata M, Yamamoto T, Morikawa S, Masumoto J. The role of interleukin-1 in general pathology. Inflamm Regen. 2019;39:12. doi: 10.1186/s41232-019-0101-5
- Briukhovetska D, Dörr J, Endres S, Dinarello CA, Libby P, Kobold S. Interleukins in cancer: From biology to therapy. Nat Rev Cancer. 2021;21:481-499. doi: 10.1038/s41568-021-00363-z
- Mertowska P, Mertowski S, Smarz-Widelska I, Grywalska E. Biological role, mechanism of action and the importance of interleukins in kidney diseases. Int J Mol Sci. 2022;23:647. doi: 10.3390/ijms23020647
- Greene WC. An overview of the human interleukin-2 receptor: Molecular, biochemical, and functional properties. Cancer Investig. 1987;5(4):369-376. doi: 10.1080/07357908709170110
- Rosenwasser LJ. Interleukin-1: An Overview. Berlin: Springer; Available from: https://link.springer.com/ chapter/10.1007/978-1-349-17615-1_44 [Last accessed on 2025 Mar 31].
- Saleh RO, Jasim SA, Kadhum WR, et al. Exploring the detailed role of interleukins in cancer: A comprehensive review of literature. Pathol Res Pract. 2024;257:155284. doi: 10.1016/j.prp.2024.155284
- Fietta P, Costa E, Delsante G. Interleukins (ILS), a fascinating family of cytokines. Part I: ILS from IL-1 to IL-19. Theor Biol Forum. 2014;107:13-45.
- Houwing DJ, Buwalda B, Van Der Zee EA, De Boer SF, Olivier JDA. The serotonin transporter and early life stress: Translational perspectives. Front Cell Neurosci. 2017;11:117. doi: 10.3389/fncel.2017.00117
- Bremshey S, Groß J, Renken K, Masseck OA. The role of serotonin in depression-A historical roundup and future directions. J Neurochem. 2024;168:1751-1779. doi: 10.1111/jnc.16097
- Boraschi D. What is IL-1 for? The functions of interleukin-1 across evolution. Front Immunol. 2022;13:872155. doi: 10.3389/FIMMU.2022.872155
- Kurzrock R, Talpaz M. Cytokines: Interleukins and their Receptors; 2012. Available from: https://books.google.com/books?hl=en&lr=&id=zucybwaaqbaj&oi=fnd&pg=pa1&dq=overview+of+interleukins+and+their+functions&ots=ag22hnynck&sig=xspnyjfubrkk6ok_6atfjwtcti0 [Last accessed on 2025 Mar 31].
- Strober W, James P. The interleukins. 1988;4(5):549-557. doi: 10.1203/00006450-198811000-00001
- Prados-Carmona A, Navarro-Triviño FJ, Ruiz-Villaverde R, Corell A. Role of interleukins in dermatology: Exploring the immune mechanisms in skin diseases. J Eur Acad Dermatol Venereol. 2024;3:1381-1398. doi: 10.1002/jvc2.537
- Weber A, Wasiliew P, Kracht M. Interleukin-1 (IL-1) pathway. Sci Signal. 2010;3(105):cm1. doi: 10.1126/scisignal.3105cm1
- Keller E, Wanagat J, Ershler WB. Molecular and cellular biology of interleukin-6 and its receptor. Front Biosci. 1996;1:340-357.
- Uciechowski P, Dempke WC. Interleukin-6: A masterplayer in the cytokine network. Oncology. 2020;98:131-137. doi: 10.1159/000505099
- Banchereau J, Briere F, Galizzi JP, Miossec P, Rousset F. Human interleukin 4. J Lipid Mediat Cell Signal. 1994;9(1):43-53. doi: 10.1201/9781003067405-12
- Schett G, Dayer JM, Manger B. Interleukin-1 function and role in rheumatic disease. Nat Rev Rheumatol. 2016;12:14-24. doi: 10.1038/nrrheum.2016.166
- Peters M. Actions of cytokines on the immune response and viral interactions: An overview. Hepatology. 1996;23(4):909-916. doi: 10.1002/hep.510230436
- Yang M, Zhang CY. Interleukins in liver disease treatment. World J Hepatol. 2024;16(2):140-145. doi: 10.4254/wjh.v16.i2.140
- Gaffen SL. An overview of IL-17 function and signaling. Cytokine. 2008;43:402-407. doi: 10.1016/j.cyto.2008.07.017
- Human Interleukin-3: An Overview; 2020. Available from: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003067405/12/human/interleukin/3/ yang-yu-chung [Last accessed on 2025 Mar 31].
- Dinarello CA. Historical insights into cytokines. Eur J Immunol. 2007;37(Suppl 1):S34-S35. doi: 10.1002/eji.200737772
- Taga T, Kishimoto T. Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol. 1997;15:797-819. doi: 10.1146/ANNUREV.IMMUNOL.15.1.797
- Litwack G. Interleukins; 2011. Available from: https:// books.google.com/books?hl=en&lr=&id=6oxndu7dlisc&oi=fnd&pg=pp2&dq=overview+of+interleukins+and +their+functions&ots=atuw1abkeh&sig=rusyqru_rrmv2nmekqqbuylyz3y [Last accessed on 2025 Mar 31].
- Negreva M, Georgiev S, Vitlianova K. Interleukin response in cardiovascular diseases: An overview. Sci Online Resour Syst. 2015;47(2):9-13.
- Dinarello CA, Novick D, Puren AJ, et al. Overview of interleukin-18: More than an interferon-gamma inducing factor. J Leukoc Biol. 1998;63(6):658-664. doi: 10.1002/jlb.63.6.658
- Lederer JA, Czuprynski CJ. Interleukin-1; 2020. Available from: https://www.taylorfrancis.com/chapters/ edit/10.1201/9781003067382/2/interleukin/1/james/ lederer-charles-czuprynski [Last accessed on 2025 Mar 31].
- Shajib MS, Khan WI. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol (Oxf). 2015;213(3):561-574. doi: 10.1111/APHA.12430
- Herr N, Bode C, Duerschmied D. The effects of serotonin in immune cells. Front Cardiovasc Med. 2017;4:48. doi: 10.3389/FCVM.2017.00048
- Mössner R, Daniel S, Schmitt A, Albert D, Lesch KP. Modulation of serotonin transporter function by interleukin-4. Life Sci. 2001;68:873-880. doi: 10.1016/S0024-3205(00)00992-9
- Su S, Zhao J, Douglas Bremner J, et al. Serotonin transporter gene, depressive symptoms, and interleukin-6. Ciru Cardiovasc Genet. 2009;2(6):614-620. doi: 10.1161/CIRCGENETICS.109.870386
- Kopp SK. The influence of neuropeptides, serotonin, and interleukin 1β on temporomandibular joint pain and inflammation. J Oral Maxillfac Surg. 1998;56:189-191. doi: 10.1016/S0278-2391(98)90867-9
- Martino M, Rocchi G, Escelsior A, Fornaro M. Immunomodulation mechanism of antidepressants: Interactions between serotonin/norepinephrine balance and Th1/Th2 balance. Curr Neuropharmacol. 2012;10:97-123. doi: 10.2174/157015912800604542
- Müller N, Schwarz MJ. The immune-mediated alteration of serotonin and glutamate: Towards an integrated view of depression. Mol Psychiatry. 2007;12:988-1000. doi: 10.1038/sj.mp.4002006
- Delgado SG, Garza-Veloz I, Trejo-Vazquez F, Martinez- Fierro ML. Interplay between serotonin, immune response, and intestinal dysbiosis in inflammatory bowel disease. Int J Mol Sci. 2022;23:15632. doi: 10.3390/ijms232415632
- Kubera M, Maes M, Kenis G, Kim Y, Lason W. Effects of serotonin and serotonergic agonists and antagonists on the production of tumor necrosis factor α and interleukin-6. Psychiatry Res. 2005;134:251-258. doi: 10.1016/j.psychres.2004.01.014
- Song C, Merali Z, Anisman H. Variations of nucleus accumbens dopamine and serotonin following systemic interleukin-1, interleukin-2 or interleukin-6 treatment. Neuroscience. 1999;88:823-836. doi: 10.1016/s0306-4522(98)00271-1
- Kubera M, Maes M. Serotonin-Immune Interactions in Major Depression. Berlin: Springer; 2000. p. 79-87. doi: 10.1007/978-3-642-59643-8_8
- Haase J, Brown E. Integrating the monoamine, neurotrophin and cytokine hypotheses of depression--a central role for the serotonin transporter? Pharmacol Ther. 2015;147:1-11. doi: 10.1016/j.pharmthera.2014.10.002
- Yang CJ, Liu CL, Sang B, Zhu XM, Du YJ. The combined role of serotonin and interleukin-6 as biomarker for autism. Neuroscience. 2015;284:290-296. doi: 10.1016/j.neuroscience.2014.10.011
- Kubera M, Maes M. Serotonin-Immune Interactions in Major Depression; 2000. Springer. Available from: https://link. springer.com/chapter/10.1007/978-3-642-59643-8_8 [Last accessed on 2025 Mar 31.
- Merali Z, Lacosta S, Anisman H. Effects of interleukin-1β and mild stress on alterations of norepinephrine, dopamine and serotonin neurotransmission: A regional microdialysis study. Brain Res. 1997;761:225-235. doi: 10.1016/S0006-8993(97)00312-0
- Ménard G, Turmel V, Bissonnette EY. Serotonin modulates the cytokine network in the lung: Involvement of prostaglandin E2. Clin Exp Immunol. 2007;150:340-348. doi: 10.1111/j.1365-2249.2007.03492.x
- Bull SJ, Huezo-Diaz P, Cubells JF, et al. Functional polymorphisms in the interleukin-6 and serotonin transporter genes, and depression and fatigue induced by interferon-alpha and ribavirin treatment. Mol Psychiatry. 2009;14(12):1095-1104. doi: 10.1038/mp.2008.48
- Mössner R, Heils A, Stöber G, et al. Enhancement of serotonin transporter function by tumor necrosis factor alpha but not by interleukin-6. Neurochem Int. 1998;33:251-254. doi: 10.1016/S0197-0186(98)00026-6
- Myint A, Kim YK. Cytokine-serotonin interaction through IDO: A neurodegeneration hypothesis of depression. Med Hypotheses. 2003;61:519-525. doi: 10.26481/dis.20070118am
- Kubera M, Kenis G, Bosmans E, Scharpé S, Maes M. Effects of serotonin and serotonergic agonists and antagonists on the production of interferon-gamma and interleukin-10. Neuropsychopharmacology. 2000;23(1):89-98. doi: 10.1016/S0893-133X(99)00150-5
- Zhu CB, Blakely RD, Hewlett WA. The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology. 2006;31:2121-2131. doi: 10.1038/sj.npp.1301029
- Correia A, Cardoso A, Vale N. Highlighting immune system and stress in major depressive disorder, Parkinson’s, and Alzheimer’s diseases, with a connection with serotonin. Int J Mol Sci. 2021;22:8525. doi: 10.3390/ijms22168525
- Anderson G, Kubera M, Duda W, Lasoń W, Berk M, Maes M. Increased IL-6 trans-signaling in depression: Focus on the tryptophan catabolite pathway, melatonin and neuroprogression. Pharmacol Rep. 2013;65(6):1647-1654. doi: 10.1016/S1734-1140(13)71526-3
- Lindqvist D, Janelidze S, Hagell P, et al. Interleukin-6 is elevated in the cerebrospinal fluid of suicide attempters and related to symptom severity. Biol Psychiatry. 2009;66:287-292. doi: 10.1016/j.biopsych.2009.01.030
- Szelenyi J, Vizi ES. The catecholamine cytokine balance: Interaction between the brain and the immune system. Ann N Y Acad Sci. 2007;1113:311-324. doi: 10.1196/annals.1391.026
- Brebner K, Hayley S, Zacharko R, Merali Z, Anisman H. Synergistic effects of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha: Central monoamine, corticosterone, and behavioral variations. Neuropsychopharmacology. 2000;22(6):566-580. doi: 10.1016/S0893-133X(99)00166-9
- Miura H, Ozaki N, Sawada M, Isobe K, Ohta T, Nagatsu T. A link between stress and depression: shifts in the balance between the kynurenine and serotonin pathways of tryptophan metabolism and the etiology and pathophysiology of depression. Stress. 2008;11(3):198-209. doi: 10.1080/10253890701754068
- Wang J, Dunn AJ. Mouse interleukin-6 stimulates the HPA axis and increases brain tryptophan and serotonin metabolism. Neurochem Int. 1998;33:143-154. doi: 10.1016/S0197-0186(98)00016-3
- Amitai M, Taler M, Carmel M, et al. The relationship between plasma cytokine levels and response to selective serotonin reuptake inhibitor treatment in children and adolescents with depression and/or anxiety disorders. J Child Adolesc Psychopharmacol. 2016;26(8):727-732. doi: 10.1089/cap.2015.0147
- Li N, Ghia JE, Wang H, et al. Serotonin activates dendritic cell function in the context of gut inflammation. Am J Pathol. 2011;178:662-671. doi: 10.1016/j.ajpath.2010.10.028
- Shajib MS, Wang H, Kim JJ, et al. Interleukin 13 and serotonin: Linking the immune and endocrine systems in murine models of intestinal inflammation. PLoS One. 2013;8(8):e72774. doi: 10.1371/journal.pone.0072774
- Ramamoorthy S, Ramamoorthy J, Prasad PD, et al. Regulation of the human serotonin transporter by interleukin-1β. Biochem Biophys Res Commun. 1995;216:560-567. doi: 10.1006/bbrc.1995.2659
- Cloëz‐Tayarani I, Petit‐Bertron AF, Venters HD, Cavaillon JM. Differential effect of serotonin on cytokine production in lipopolysaccharide‐stimulated human peripheral blood mononuclear cells: Involvement of 5‐hydroxytryptamine2A receptors. Int Immunol. 2003;15:233-240. doi: 10.1093/intimm/dxg027
- Postal M, Appenzeller S. The importance of cytokines and autoantibodies in depression. Autoimmun Rev. 2015;14:30-35. doi: 10.1016/j.autrev.2014.09.001
- Jaffré F, Callebert J, Sarre A, et al. Involvement of the serotonin 5-HT2B receptor in cardiac hypertrophy linked to sympathetic stimulation: Control of interleukin-6, interleukin-1beta, and tumor necrosis. Circulation. 2004;110(8):969-974. doi: 10.1161/01.CIR.0000139856.20505.57
- Zhang J, Terreni L, De Simoni MG, Dunn AJ. Peripheral interleukin-6 administration increases extracellular concentrations of serotonin and the evoked release of serotonin in the rat striatum. Neurochem Int. 2001;38:303-308. doi: 10.1016/s0197-0186(00)00099-1
- Myint AM, Schwarz MJ, Steinbusch HWM, Leonard BE. Neuropsychiatric disorders related to interferon and interleukins treatment. Metab Brain Dis. 2009;24(1):55-68. doi: 10.1007/S11011-008-9114-5
- Cross AJ. Serotonin in Alzheimer-type dementia and other dementing illnesses. Ann N Y Acad Sci. 1990;600(1):405- 415; discussion 415-417. doi: 10.1111/j.1749-6632.1990.tb16897.x
- Kohen R, Metcalf MA, Khan N, et al. Cloning, characterization, and chromosomal localization of a human 5-HT6 serotonin receptor. J Neurochem. 1996;66(1):47-56. doi: 10.1046/j.1471-4159.1996.66010047.x
- Woolley ML, Marsden CA, Fone KCF. 5-Ht6 receptors. Curr Drug Targets CNS Neurol Disord. 2004;3(1):59-79. doi: 10.2174/1568007043482561
- Garcia-Alloza M, Hirst WD, Chen CPLH, Lasheras B, Francis PT, Ramírez MJ. Differential involvement of 5-HT(1B/1D) and 5-HT6 receptors in cognitive and non-cognitive symptoms in Alzheimer’s disease. Neuropsychopharmacology. 2004;29(2):410-416. doi: 10.1038/sj.npp.1300330
- Di Bona D, Candore G, Franceschi C, et al. Systematic review by meta-analyses on the possible role of TNF-alpha polymorphisms in association with Alzheimer’s disease. Brain Res Rev. 2009;61(2):60-68. doi: 10.1016/j.brainresrev.2009.05.001
- Italiani P, Puxeddu I, Napoletano S, et al. Circulating levels of IL-1 family cytokines and receptors in Alzheimer’s disease: New markers of disease progression? J Neuroinflammation. 2018;15(1):342. doi: 10.1186/s12974-018-1376-1
- Vom Berg J, Prokop S, Miller KR, et al. Inhibition of IL-12/ IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline. Nat Med. 2012;18(12):1812-1819. doi: 10.1038/nm.2965
- Haddick PCG, Larson JL, Rathore N, et al. A common variant of IL-6R is associated with elevated IL-6 pathway activity in Alzheimer’s disease brains. J Alzheimers Dis. 2017;56(3):1037-1054. doi: 10.3233/JAD-160524
- Yan XZ, Lai L, Ao Q, Tian XH, Zhang YH. Interleukin-17A in Alzheimer’s disease: Recent advances and controversies. Curr Neuropharmacol. 2021;20(2):372-383. doi: 10.2174/1570159x19666210823110004
- Griciuc A, Patel S, Federico AN, et al. TREM2 acts downstream of CD33 in modulating microglial pathology in Alzheimer’s disease. Neuron. 2020;103(5):820-835.e7. doi: 10.1016/j.neuron.2019.06.010.TREM2
- Chaudhuri KR, Martinez-Martin P, Schapira AHV, et al. International multicenter pilot study of the first comprehensive self-completed nonmotor symptomsquestionnaire for Parkinson’s disease: The NMSQuest study. Mov Disord. 2006;21(7):916-923. doi: 10.1002/mds.20844
- Collins LM, Toulouse A, Connor TJ, Nolan YM. Contributions of central and systemic inflammation to the pathophysiology of Parkinson’s disease. Neuropharmacology. 2012;62(7):2154-2168. doi: 10.1016/j.neuropharm.2012.01.028
- Cook EH, Leventhal BL. The serotonin system in autism. Curr Opin Pediatr. 1996;8(4):348–354. doi:10.1097/00008480-199608000-00008
- Muller CL, Anacker AMJ, Veenstra-VanderWeele J. The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience. 2016;321:24-41. doi: 10.1016/J.NEUROSCIENCE.2015.11.010
- Martin H, Choi JE, Rodrigues AR, Eshel N. Review: Dopamine, serotonin, and the translational neuroscience of aggression in autism spectrum disorder. JAACAP Open. 2025;3(1):29-41. doi: 10.1016/J.JAACOP.2024.01.010
- Shen Y, Li Y, Shi L, et al. Autism spectrum disorder and severe social impairment associated with elevated plasma interleukin-8. Pediatr Res. 2021;89(3):591-597. doi: 10.1038/s41390-020-0910-x
- Sallam DE, Shaker YS, Mostafa GA, El-Hossiny RM, Taha SI, Ahamed MAEH. Evaluation of serum interleukin-17 A and interleukin-22 levels in pediatric patients with autism spectrum disorder: A pilot study. BMC Pediatr. 2024;24(1):18. doi: 10.1186/s12887-023-04484-2
- Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van De Water J. Altered T cell responses in children with autism. Brain Behav Immun. 2011;25(5):840-849. doi: 10.1016/j.bbi.2010.09.002
- Suzuki K, Matsuzaki H, Iwata K, et al. Plasma cytokine profiles in subjects with high-functioning autism spectrum disorders. PLoS One. 2011;6(5):e20470. doi: 10.1371/journal.pone.0020470
- Emanuele E, Orsi P, Boso M, et al. Low-grade endotoxemia in patients with severe autism. Neurosci Lett. 2010;471(3):162-165. doi: 10.1016/j.neulet.2010.01.033
- Wei H, Zou H, Sheikh AM, et al. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. J Neuroinflammation. 2011;8(1):52. doi: 10.1186/1742-2094-8-52
- Halmøy A, Johansson S, Winge I, McKinney JA, Knappskog PM, Haavik J. Attention-deficit/hyperactivity disorder symptoms in offspring of mothers with impaired serotonin production. Arch Gen Psychiatry. 2010;67(10):1033-1043. doi: 10.1001/ARCHGENPSYCHIATRY.2010.124
- Oades RD. Role of the serotonin system in ADHD: Treatment implications. Expert Rev Neurother. 2007;7(10):1357-1374. doi: 10.1586/14737175.7.10.1357
- Banerjee E, Nandagopal K. Does serotonin deficit mediate susceptibility to ADHD? Neurochem Int. 2015;82:52-68. doi: 10.1016/J.NEUINT.2015.02.001
- Darwish AH, Elgohary TM, Nosair NA. Serum interleukin-6 level in children with attention-deficit hyperactivity disorder (ADHD). J Child Neurol. 2019;34(2):61-67. doi: 10.1177/0883073818809831
- Pourhamzeh M, Moravej FG, Arabi M, et al. The roles of serotonin in neuropsychiatric disorders. Cell Mol Neurobiol. 2021;42(6):1671-1692. doi: 10.1007/S10571-021-01064-9
- Lin J, Liu W, Guan J, et al. Latest updates on the serotonergic system in depression and anxiety. Front Synaptic Neurosci. 2023;15:1124112. doi: 10.3389/fnsyn.2023.1124112
- Schiele MA, Domschke K. Epigenetics at the crossroads between genes, environment and resilience in anxiety disorders. Genes Brain Behav. 2018;17(3):e12423. doi: 10.1111/gbb.12423
- Roknuzzaman ASM, Sarker R, Nayem J, et al. Altered serum interleukin-17A and interleukin-23A levels may be associated with the pathophysiology and development of generalized anxiety disorder. Sci Rep. 2024;14(1):15087. doi: 10.1038/s41598-024-66131-9
- Abi-Dargham A. Alterations of serotonin transmission in schizophrenia. Int Rev Neurobiol. 2007;78(6):133-164. doi: 10.1016/S0074-7742(06)78005-9
- Kim SA. 5-HT1A and 5-HT2A signaling, desensitization, and downregulation: Serotonergic dysfunction and abnormal receptor density in schizophrenia and the prodrome. Cureus. 2021;13(6):e15811. doi: 10.7759/cureus.15811
- Reale M, Costantini E, Greig NH. Cytokine imbalance in schizophrenia. From research to clinic: Potential implications for treatment. Front Psychiatry. 2021;12:536257. doi: 10.3389/fpsyt.2021.536257
- Sasayama D, Hattori K, Wakabayashi C, et al. Increased cerebrospinal fluid interleukin-6 levels in patients with schizophrenia and those with major depressive disorder. J Psychiatr Res. 2013;47(3):401-406. doi: 10.1016/j.jpsychires.2012.12.001
- Xing C, Chen H, Bi W, Lei T, Hang Z, Du H. Targeting 5-HT Is a potential therapeutic strategy for neurodegenerative diseases. Int J Mol Sci. 2024;25(24):13446. doi: 10.3390/ijms252413446
- De Jong IEM, Mørk A. Antagonism of the 5-HT6 receptor - preclinical rationale for the treatment of Alzheimer’s disease. Neuropharmacology. 2017;125:50-63. doi: 10.1016/j.neuropharm.2017.07.010
- Lu J, Zhang C, Lv J, et al. Antiallergic drug desloratadine as a selective antagonist of 5HT2A receptor ameliorates pathology of Alzheimer’s disease model mice by improving microglial dysfunction. Aging Cell. 2021;20(1):e13286. doi: 10.1111/acel.13286
- Singh Gautam A, Kumar Singh R. Therapeutic potential of targeting IL-17 and its receptor signaling in neuroinflammation. Drug Discov Today. 2023;28(4):103517. doi: 10.1016/J.DRUDIS.2023.103517
- Anderluh A, Klotzsch E, Reismann AWAF, et al. Single molecule analysis reveals coexistence of stable serotonin transporter monomers and oligomers in the live cell plasma membrane. J Biol Chem. 2014;289(7):4387-4394. doi: 10.1074/jbc.M113.531632
- Ogata N, De Souza Dantas LM, Crowell-Davis SL. Selective serotonin reuptake inhibitors. In: Veterinary Psychopharmacology. United States: Wiley; 2023. p. 103-128. doi: 10.1002/9781119226253.ch8
- Jakubovski E, Johnson JA, Nasir M, Müller-Vahl K, Bloch MH. Systematic review and meta-analysis: Dose-response curve of SSRIs and SNRIs in anxiety disorders. Depress Anxiety. 2019;36(3):198-212. doi: 10.1002/DA.22854
- Wongrakpanich S, Wongrakpanich A, Melhado K, Rangaswami J. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis. 2018;9(1):143-150. doi: 10.14336/AD.2017.0306
- Gunaydin C, Bilge SS. Effects of nonsteroidal anti-inflammatory drugs at the molecular level. Eurasian J Med. 2018;50(2):116-121. doi: 10.5152/eurasianjmed.2018.0010
- Choi KW, Chen CY, Stein MB, et al. Assessment of bidirectional relationships between physical activity and depression among adults a 2-sample Mendelian randomization study. JAMA Psychiatry. 2019;76(4):399-408. doi: 10.1001/jamapsychiatry.2018.4175
- Miller BJ, Dias JK, Lemos HP, Buckley PF. An open-label, pilot trial of adjunctive tocilizumab in schizophrenia. J Clin Psychiatry. 2016;77(2):275-276. doi: 10.4088/JCP.15L09920
- Sun Y, Wang D, Salvadore G, et al. The effects of interleukin-6 neutralizing antibodies on symptoms of depressed mood and anhedonia in patients with rheumatoid arthritis and multicentric Castleman’s disease. Brain Behav Immun. 2017;66:156-164. doi: 10.1016/j.bbi.2017.06.014
- Sulistio YA, Lee HK, Jung SJ, Heese K. Interleukin-6- mediated induced pluripotent stem cell (iPSC)-derived neural differentiation. Mol Neurobiol. 2018;55(4):3513-3522. doi: 10.1007/S12035-017-0594-3/METRICS
- Hu WT, Chen-Plotkin A, Arnold SE, et al. Novel CSF biomarkers for Alzheimer’s disease and mild cognitive impairment. Acta Neuropathol. 2010;119(6):669-678. doi: 10.1007/s00401-010-0667-0
- Ekundayo BE, Obafemi TO, Adewale OB, Oyinloye BE. Donepezil-based combination therapy for Alzheimer’s disease and related neuropathies. Comp Clin Path. 2023;32(4):699-708. doi: 10.1007/s00580-023-03487-w
- Le Van M, Diep DT, Tran TTT, Pham TKA, Tran BLT, Nguyen T. Levodopa and pramipexole combination therapy efficacy in Vietnamese patients with Parkinson’s disease: A randomized controlled trial. Russian Open Med J. 2024;13(1):e0107. doi: 10.15275/rusomj.2024.0107
- Begni V, Marchesin A, Riva MA. IUPHAR review - novel therapeutic targets for schizophrenia treatment: A translational perspective. Pharmacol Res. 2025;214:107690. doi: 10.1016/j.phrs.2025.107690
- Van Zonneveld SM, Van Den Oever EJ, Haarman BCM, et al. An anti-inflammatory diet and its potential benefit for individuals with mental disorders and neurodegenerative diseases-a narrative review. Nutrients. 2024;16(16):2646. doi: 10.3390/nu16162646
- Kurowska A, Ziemichód W, Herbet M, Piątkowska-Chmiel I. The role of diet as a modulator of the inflammatory process in the neurological diseases. Nutrients. 2023;15(6):1436. doi: 10.3390/nu15061436
- Francescangeli J, Karamchandani K, Powell M, Bonavia A. The serotonin syndrome: From molecular mechanisms to clinical practice. Int J Mol Sci. 2019;20(9):2288. doi: 10.3390/ijms20092288
- Dunkley EJC, Isbister GK, Sibbritt D, Dawson AH, Whyte IM. The hunter serotonin toxicity criteria: Simple and accurate diagnostic decision rules for serotonin toxicity. QJM. 2003;96(9):635-642. doi: 10.1093/qjmed/hcg109
- Andrade C, Sandarsh S, Chethan KB, Nagesh KS. Serotonin reuptake inhibitor antidepressants and abnormal bleeding: A review for clinicians and a reconsideration of mechanisms. J Clin Psychiatry. 2010;71(12):1565-1575. doi: 10.4088/JCP.09R05786BLU
- De Abajo FJ. Effects of selective serotonin reuptake inhibitors on platelet function: Mechanisms, clinical outcomes and implications for use in elderly patients. Drugs Aging. 2012;28(5):345-367. doi: 10.2165/11589340-000000000-00000
- Mago R, Tripathi N, Andrade C. Cardiovascular adverse effects of newer antidepressants. Expert Rev Neurother. 2014;14(5):539-551. doi: 10.1586/14737175.2014.908709
- Wang SM, Han C, Bahk WM, et al. Addressing the side effects of contemporary antidepressant drugs: A comprehensive review. Chonnam Med J. 2018;54(2):101-112. doi: 10.4068/cmj.2018.54.2.101
- Taylor MJ, Freemantle N, Geddes JR, Bhagwagar Z. Early onset of selective serotonin reuptake inhibitor antidepressant action: Systematic review and meta-analysis. Arch Gen Psychiatry. 2006;63(11):1217-1223. doi: 10.1001/archpsyc.63.11.1217
- Vieira CP, Lelis CA, Ochioni AC, et al. Estimating the therapeutic potential of NSAIDs and linoleic acid-isomers supplementation against neuroinflammation. Biomed Pharmacother. 2024;177:116884. doi: 10.1016/J.BIOPHA.2024.116884
- Kaduševičius E. Novel applications of nsaids: Insight and future perspectives in cardiovascular, neurodegenerative, diabetes and cancer disease therapy. Int J Mol Sci. 2021;22(12):6637. doi: 10.3390/ijms22126637
- Tanaka M, Szabó Á, Vécsei L, Giménez-Llort L. Emerging translational research in neurological and psychiatric diseases: From in vitro to in vivo models. Int J Mol Sci. 2023;24(21):15739. doi: 10.3390/ijms242115739
- Yoon JH, Lee D, Lee C, et al. Paradigm shift required for translational research on the brain. Exp Mol Med. 2024;56(5):1043-1054. doi: 10.1038/s12276-024-01218-x