AccScience Publishing / AN / Online First / DOI: 10.36922/AN025160040
REVIEW ARTICLE

Neurodegeneration in Alzheimer’s disease: A narrative review of mechanistic insights and emerging therapeutic approaches

Md. Nazmul Hossain1 Rabeya Sultana Badhon1 Mohammad Shahangir Biswas2,3* Munna Kumar Podder1 Suronjit Kumar Roy1 Rubait Hasan1 Md. Moyen Uddin Pk4
Show Less
1 Department of Biochemistry and Biotechnology, Khwaja Yunus Ali University, Sirajganj, Bangladesh
2 Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong, Chittagong, Bangladesh
3 Department of Public Health, Daffodil International University, Dhaka, Bangladesh
4 Institute of Biological Sciences, Rajshahi University, Rajshahi, Bangladesh
Advanced Neurology, 025160040 https://doi.org/10.36922/AN025160040
Received: 20 April 2025 | Revised: 4 August 2025 | Accepted: 13 August 2025 | Published online: 29 August 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder responsible for 50–75% of dementia cases worldwide, primarily affecting individuals over 65 years of age. It is characterized by cognitive decline, memory loss, and behavioral abnormalities. Key pathological features include extracellular β-amyloid (Aβ) plaques, intracellular neurofibrillary tangles of hyperphosphorylated tau protein, mitochondrial dysfunction, and cholinergic system impairment. Despite extensive research, the precise etiology remains unclear, and current treatments only alleviate symptoms without halting disease progression. A comprehensive literature review was conducted using peer-reviewed articles from PubMed, Scopus, and Google Scholar, emphasizing recent studies on molecular mechanisms, risk factors, diagnostics, and therapies. Major pathogenic mechanisms identified include oxidative stress, tau hyperphosphorylation, Aβ aggregation, and synaptic degeneration. Non-modifiable risk factors such as aging, genetic mutations in amyloid precursor protein, phosphatidylinositol-binding clathrinid assembly protein, presenilin 1/2, and the apolipoprotein E ε4 allele play significant roles, whereas modifiable risks involve lifestyle factors and comorbidities such as diabetes. Diagnostic advancements highlight the promise of blood-based biomarkers, although current practices rely heavily on cerebrospinal fluid markers and neuroimaging. Approved pharmacological interventions, including cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists, provide limited symptomatic relief. Ongoing research into Aβ- and tau-targeted therapies has yielded mixed results. In addition, novel approaches such as tripartite motif-containing protein 2-mediated tau clearance and deep cervical lymphatic-venous anastomosis are being explored for their potential in targeting intracellular aggregates and enhancing brain waste clearance. AD emerges as a multifactorial condition driven by a complex interplay of biological, genetic, and environmental factors. Although substantial progress has been made in understanding its pathophysiology, effective disease-modifying therapies remain elusive. Continued advances in biomarker discovery and personalized therapeutic strategies offer hope for improved early detection and targeted treatment approaches.

Keywords
Alzheimer’s disease
Neurodegeneration
Amyloid-beta
Mitochondrial dysfunction
Biomarkers
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Rahman MR, Tajmim A, Ali M, Sharif M. Overview and current status of Alzheimer’s disease in Bangladesh. J Alzheimers Dis Rep. 2017;1(1):27-42. doi: 10.3233/ADR-170012

 

  1. Bird TD. Alzheimer disease overview. GeneReviews®. Seattle, WA: University of Washington, Seattle; 2018.

 

  1. Gustavsson A, Norton N, Fast T, et al. Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimers Dement. 2023;19(2):658-670. doi: 10.1002/alz.12694.

 

  1. Atri A. The Alzheimer’s disease clinical spectrum: Diagnosis and management. Med Clin North Am. 2019;103(2):263-293. doi: 10.1016/j.mcna.2018.10.009

 

  1. Budson AE. Understanding memory dysfunction. Neurologist. 2009;15(2):71-79. doi: 10.1097/NRL.0b013e318188040d

 

  1. Huynh RA, Mohan C. Alzheimer’s disease: Biomarkers in the genome, blood, and cerebrospinal fluid. Front Neurol. 2017;8:102. doi: 10.3389/fneur.2017.00102

 

  1. Wang W, Zhao F, Ma X, Perry G, Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: Recent advances. Mol Neurodegener. 2020;15:30. doi: 10.1186/s13024-020-00376-6

 

  1. Mary A, Eysert F, Checler F, Chami M. Mitophagy in Alzheimer’s disease: Molecular defects and therapeutic approaches. Mol Psychiatry. 2023;28(1):202-216. doi: 10.1038/s41380-022-01631-6

 

  1. John A, Reddy PH. Synaptic basis of Alzheimer’s disease: Focus on synaptic amyloid beta, P-tau and mitochondria. Ageing Res Rev. 2021;65:101208. doi: 10.1016/j.arr.2020.101208

 

  1. Calvo-Rodriguez M, Bacskai BJ. Mitochondria and calcium in Alzheimer’s disease: From cell signaling to neuronal cell death. Trends Neurosci. 2021;44(2):136-151. doi: 10.1016/j.tins.2020.10.004

 

  1. Rifat MMH, Parvin MN, Hossain ML. Pattern and treatment of Alzheimer’s disease at different health care levels in Bangladesh: A hospital based survey. Int J Community Med Public Health. 2025;12(2):719. doi: 10.18203/2394-6040.ijcmph20250302

 

  1. Porsteinsson AP, Isaacson RS, Knox S, Sabbagh MN, Rubino I. Diagnosis of early Alzheimer’s disease: Clinical practice in 2021. J Prev Alzheimers Dis. 2021;8(3):371-386. doi: 10.14283/jpad.2021.23

 

  1. Bonakdarpour B, Takarabe C. Brain networks, clinical manifestations, and neuroimaging of cognitive disorders: The role of computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and other advanced neuroimaging tests. Clin Geriatr Med. 2023;39(1):45-65. doi: 10.1016/j.cger.2022.07.004

 

  1. Yiannopoulou KG, Papageorgiou SG. Current and future treatments in Alzheimer disease: An update. J Cent Nerv Syst Dis. 2020;12:1-15. doi: 10.1177/1179573520907397

 

  1. Li J, Haj Ebrahimi A, Ali AB. Advances in therapeutics to alleviate cognitive decline and neuropsychiatric symptoms of Alzheimer’s disease. Int J Mol Sci. 2024;25(10):5169. doi: 10.3390/ijms25105169

 

  1. Monteiro AR, Barbosa DJ, Remião F, Silva R. Alzheimer’s disease: Insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs. Biochem Pharmacol. 2023;211:115522. doi: 10.1016/j.bcp.2023.115522

 

  1. Schelterns P, Feldman H, Scarpini E. Treatment of Alzheimer’s disease: Current status and new perspectives. Lancet Neurol. 2003;2:539-547. doi: 10.1016/s1474-4422(03)00502-7

 

  1. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nature. 2015;1:15056. doi: 10.1038/nrdp.2015.56

 

  1. Terry AV Jr., Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: Recent challenges and their implications for novel drug development. J Pharmacol Exp Ther. 2003;306:821-827. doi: 10.1124/jpet.102.041616

 

  1. Firth J, Solmi M, Wootton RE, et al. A meta-review of “lifestyle psychiatry”: The role of exercise, smoking, diet and sleep in the prevention and treatment of mental disorders. World Psychiatry. 2020;19(3):360-380. doi: 10.1002/wps.20773

 

  1. Vasser R. BACE1: The beta-secretase enzyme in Alzheimer’s disease. J Mol Neurosci. 2004;23(1-2):105-113. doi: 10.1385/JMN:23:1-2:105

 

  1. Surguchov A, Emamzadeh F, Titova M, Surguchov AA. Controversial properties of amyloidogenic proteins and peptides: New data in the COVID era. Biomedicines. 2023;11:1215. doi: 10.3390/biomedicines11041215

 

  1. Seeman P, Seeman N. Alzheimer’s disease: β-amyloid plaque formation in human brain. Synapse. 2011;65(12):1289-1297. doi: 10.1002/SYN.20957

 

  1. Tu S, Okamoto S, Lipton SA, Xu H. Oligomeric Aβ-induced synaptic dysfunction in Alzheimer’s disease. Mol Neurodegener. 2014;9:48. doi: 10.1186/1750-1326-9-48

 

  1. Chen JX, Yan SS. Role of mitochondrial amyloid-beta in Alzheimer’s disease. J Alzheimers Dis. 2010;20(Suppl 2):569-578. doi: 10.3233/JAD-2010-100357

 

  1. Crews L, Masliah E. Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum Mol Genet. 2010;19:R12-R20. doi: 10.1093/hmg/ddq160

 

  1. Selkoe DJ. Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature. 1999;399:A23-A31. doi: 10.1038/399a023

 

  1. Sherrington R, Rogaev E, Liang Y, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995;345:754-760. doi: 10.1038/375754a0

 

  1. Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021;20(1):68-80. doi: 10.1016/S1474-4422(20)30412-9

 

  1. Sajjad R, Arif R, Shah AA, Manzoor I, Mustafa G. Pathogenesis of Alzheimer’s disease: Role of amyloid-beta and hyperphosphorylated tau protein. Indian J Pharm Sci. 2018;80(4):581-591. doi: 10.4172/PHARMACEUTICAL-SCIENCES.1000397

 

  1. Das BC, Pradhan S, Ojha DP, Das A, Hosmane NS, Das S. The role of tau protein in diseases. Ann Adv Chem. 2018;2:001-016. doi: 10.29328/JOURNAL.AAC.1001010

 

  1. Mietelska-Porowska A, Wasik U, Goras M, Filipek A, Niewiadomska G. Tau protein modifications and interactions: Their role in function and dysfunction. Int J Mol Sci. 2014;15(3):4671-4713. doi: 10.3390/ijms15034671

 

  1. Iqbal K, Gong CX, Liu F. Hyperphosphorylation-induced tau oligomers. Front Neurol. 2013;4:112. doi: 10.3389/FNEUR.2013.00112

 

  1. Gong CX, Iqbal K. Hyperphosphorylation of microtubule-associated protein tau: A promising therapeutic target for Alzheimer disease. Curr Med Chem. 2008;15(23):2321-2328. doi: 10.2174/092986708785909111

 

  1. Lee HG, Perry G, Moreira PI, et al. Tau phosphorylation in Alzheimer’s disease: Pathogen or protector? Trends Mol Med. 2005;11(4):164-169. doi: 10.1016/j.molmed.2005.02.008

 

  1. Neddens J, Temmel M, Flunkert S, et al. Phosphorylation of different tau sites during progression of Alzheimer’s disease. Acta Neuropathol Commun. 2018;6(1):52. doi: 10.1186/s40478-018-0557-6

 

  1. Zhao H, Chang R, Che H, et al. Hyperphosphorylation of tau protein by calpain regulation in retina of Alzheimer’s disease transgenic mouse. Neurosci Lett. 2013;551:12-16. doi: 10.1016/J.NEULET.2013.06.026

 

  1. Lee VMY, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu Rev Neurosci. 2001;24:1121-1159. doi: 10.1146/ANNUREV.NEURO.24.1.1121

 

  1. Kametani F, Hasegawa M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease. Front Neurosci. 2018;12:25. doi: 10.3389/FNINS.2018.00025

 

  1. Schwarthoff S, Tischer N, Sager H, et al. Evaluation of γ-carboline-phenothiazine conjugates as simultaneous NMDA receptor blockers and cholinesterase inhibitors. Bioorg Med Chem. 2021;46:116355. doi: 10.1016/j.bmc.2021.116355

 

  1. Bartus RT. On neurodegenerative diseases, models, and treatment strategies: Lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol. 2000;163:495-529. doi: 10.1006/exnr.2000.7397

 

  1. Lecrux C, Sandoe CH, Neupane S, et al. Impact of altered cholinergic tones on the neurovascular coupling response to whisker stimulation. J Neurosci. 2017;37:1518-1531. doi: 10.1523/JNEUROSCI.1784-16.2016

 

  1. Frinchi M, Scaduto P, Cappello F, Belluardo N, Mudò G. Heat shock protein (Hsp) regulation by muscarinic acetylcholine receptor (mAChR) activation in the rat hippocampus. J Cell Physiol. 2018;233(8):6107-6116. doi: 10.1002/JCP.26454

 

  1. Hu Y, Qu Z, Cao S, et al. Directed differentiation of basal forebrain cholinergic neurons from human pluripotent stem cells. J Neurosci Methods. 2016;266:42-49. doi: 10.1016/j.jneumeth.2016.03.017

 

  1. Latina V, Caioli S, Zona C, et al. NGF-dependent changes in ubiquitin homeostasis trigger early cholinergic degeneration in cellular and animal AD-model. Front Cell Neurosci. 2018;12:487 doi: 10.3389/FNCEL.2018.00487

 

  1. Eivani M, Alijanpour S, Arefian E, Rezayof A. Corticolimbic analysis of microRNAs and protein expressions in scopolamine-induced memory loss under stress. Neurobiol Learn Mem. 2019;164:107065. doi: 10.1016/j.nlm.2019.107065

 

  1. Cafe-Mendes C, Garay-Malpartida H, Malta MB, et al. Chronic nicotine treatment decreases LPS signaling through NF-κB and TLR-4 modulation in the hippocampus. Neurosci Lett. 2017;636:218-224. doi: 10.1016/j.neulet.2016.10.056

 

  1. Yegla B, Parikh V. Developmental suppression of forebrain trkA receptors and attentional capacities in aging rats: A longitudinal study. Behav Brain Res. 2017;335:111-121. doi: 10.1016/j.bbr.2017.08.017

 

  1. Martinez-Rubio C, Paulk AC, Mcdonald EJ, Widge AS, Eskandar EN. Multimodal encoding of novelty, reward, and learning in the primate nucleus basalis of meynert. J Neurosci. 2018;38:1942-1958. doi: 10.1523/JNEUROSCI.2021-17.2017

 

  1. Chen H, McCaffery J, Cell DC. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell. 2007;130:548-562. doi: 10.1016/j.cell.2007.06.026

 

  1. Guo L, Tian J, Du H. Mitochondrial dysfunction and synaptic transmission failure in Alzheimer’s disease. J Alzheimers Dis. 2017;57(4):1071-1086. doi: 10.3233/JAD-160702

 

  1. Garcia-Casas P, Rossini M, Filadi R, Pizzo P. Mitochondrial Ca2+ signaling and Alzheimer’s disease: Too much or too little? Cell Calcium. 2023;113:102757. doi: 10.1016/J.CECA.2023.102757

 

  1. Hadi F, Mortaja M, Hadi Z. Calcium (Ca2+) hemostasis, mitochondria, autophagy, and mitophagy contribute to Alzheimer’s disease as early moderators. Cell Biochem Funct. 2024;42(5):e4085. doi: 10.1002/CBF.4085

 

  1. Good PF, Perl DP, Bierer LM, Schmeidler J. Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: A laser microprobe (LAMMA) study. Ann Neurol. 1992;31(3):286-292. doi: 10.1002/ANA.410310310

 

  1. Smith MA, Harris PLR, Sayre LM, Perry G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci U S A. 1997;94(18):9866-9868. doi: 10.1073/PNAS.94.18.9866

 

  1. Oteiza PI. A mechanism for the stimulatory effect of aluminum on iron-induced lipid peroxidation. Arch Biochem Biophys. 1994;308:374-379. doi: 10.1006/abbi.1994.1053

 

  1. Colton CA, Gilbert DL. Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett. 1987;223(2):284-288. doi: 10.1016/0014-5793(87)80305-8

 

  1. Good PF, Werner P, Hsu A, Olanow CW, Perl DP. Evidence of neuronal oxidative damage in Alzheimer’s disease. Am J Pathol. 1996;149(1):21-28.

 

  1. Smith MA, Harris PLR, Sayre LM, Beckman JS, Perry G. Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci. 1997;17:2653-2657. doi: 10.1523/JNEUROSCI.17-08-02653.1997

 

  1. Davis RE, Miller S, Herrnstadt C, et al. Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease. Proc Natl Acad Sci U S A. 1997;94(9):4526-4531. doi: 10.1073/PNAS.94.9.4526

 

  1. Parker WD Jr., Filley CM, Parks JK. Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology. 1990;40(8):1302-1303. doi: 10.1212/WNL.40.8.1302

 

  1. Calderon-Garcidueñas A, Duyckaerts C. Alzheimer Disease. Netherlands: Elsevier; Available from: https://www.sciencedirect.com/science/article/pii/ b9780128023952000237 [Last accessed on 2025 Apr 13].

 

  1. Dubois B, Von Arnim CAF, Burnie N, Bozeat S, Cummings J. Biomarkers in Alzheimer’s disease: Role in early and differential diagnosis and recognition of atypical variants. Alzheimers Res Ther. 2023;15(1):175. doi: 10.1186/s13195-023-01314-6

 

  1. Neugroschl J, Davis KL. Biological markers in Alzheimer disease. Am J Geriatr Psychiatry. 2002;10:660-677. doi: 10.1097/00019442-200211000-00005

 

  1. Borroni B, Luca MD, Padovani A. Predicting Alzheimer dementia in mild cognitive impairment patients. Are biomarkers useful? Eur J Pharmacol. 2006;545:73-80. doi: 10.1016/j.ejphar.2006.06.023

 

  1. Fiandaca MS, Mapstone ME, Cheema AK, Federoff HJ. The critical need for defining preclinical biomarkers in Alzheimer’s disease. Alzheimers Dement. 2014;10(3 Suppl):S196-S212. doi: 10.1016/j.jalz.2014.04.015

 

  1. Hampel H, Cummings J, Blennow K, Gao P, Jack CR Jr., Vergallo A. Developing the ATX(N) classification for use across the Alzheimer disease continuum. Nat Rev Neurol. 2021;17:580-589. doi: 10.1038/s41582-021-00520-w

 

  1. Pillai JA, Bonner-Jackson A, Bekris LM, Safar J, Bena J, Leverenz JB. Highly elevated cerebrospinal fluid total tau level reflects higher likelihood of non-amnestic subtype of Alzheimer’s disease. J Alzheimers Dis. 2019;70(4):1051-1058. doi: 10.3233/JAD-190519

 

  1. Ossenkoppele R, Mattsson N, Teunissen CE, et al. Cerebrospinal fluid biomarkers and cerebral atrophy in distinct clinical variants of probable Alzheimer’s disease. Neurobiol Aging. 2015;36(8):2340-2347. doi: 10.1016/j.neurobiolaging.2015.04.011

 

  1. Hansson O, Seibyl J, Stomrud E, et al. CSF biomarkers of Alzheimer’s disease concord with amyloid-β PET and predict clinical progression: A study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimers Dement. 2018;14:1470-1481. doi: 10.1016/j.jalz.2018.01.010

 

  1. Wattmo C, Blennow K, Hansson O. Cerebro-spinal fluid biomarker levels: Phosphorylated tau (T) and total tau (N) as markers for rate of progression in Alzheimer’s disease. BMC Neurol. 2020;20(1):10. doi: 10.1186/s12883-019-1591-0

 

  1. Janelidze S, Zetterberg H, Mattsson N, et al. CSF Aβ42/Aβ40 and Aβ42/Aβ38 ratios: Better diagnostic markers of Alzheimer disease. Anna Clin Transl Neurol. 2016;3(3):154-165. doi: 10.1002/acn3.274

 

  1. Cruz De Souza L, Bertoux M, Funkiewiez A, et al. Frontal presentation of Alzheimer’s disease: A series of patients with biological evidence by CSF biomarkers. Dement Neuropsychol. 2013;7(1):66-74. doi: 10.1590/S1980-57642013DN70100011

 

  1. Ashton NJ, Ea A, Benedet L, et al. Cerebrospinal fluid p-tau231 as an early indicator of emerging pathology in Alzheimer’s disease. EBioMedicine. 2022:76:103836. doi: 10.1016/j.ebiom.2022.103836

 

  1. Liu W, Lin H, He X, et al. Neurogranin as a cognitive biomarker in cerebrospinal fluid and blood exosomes for Alzheimer’s disease and mild cognitive impairment. Transl Psychiatry. 2020;10:125. doi: 10.1038/s41398-020-0801-2

 

  1. Miì A-Alomà M, Brinkmalm A, Ashton NJ, et al. CSF synaptic biomarkers in the preclinical stage of Alzheimer disease and their association with MRI and PET: A cross-sectional study. Neurology. 2021;97(21):E2065-E2078. doi: 10.1212/WNL.0000000000012853

 

  1. Muszyński P, Groblewska M, Kulczyńska-Przybik A, Kułakowska A, Mroczko B. YKL-40 as a potential biomarker and a possible target in therapeutic strategies of Alzheimer’s disease. Curr Neuropharmacol. 2017;15(6):906-917. doi: 10.2174/1570159X15666170208124324

 

  1. Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Lancet Neurol. 2016;15:673-684. doi: 10.1016/S1474-4422(16)00070-3

 

  1. Zetterberg H, Mörtberg E, Song L, et al. Hypoxia due to cardiac arrest induces a time-dependent increase in serum amyloid β levels in humans. PLoS One. 2011;6(12):28263. doi: 10.1371/journal.pone.0028263

 

  1. Janelidze S, Stomrud E, Palmqvist S, et al. Plasma β-amyloid in Alzheimer’s disease and vascular disease. Scie Rep. 2016;6:26801. doi: 10.1038/srep26801

 

  1. Verberk IMW, Slot RE, Verfaillie SCJ, et al. Plasma amyloid as prescreener for the earliest Alzheimer pathological changes. Ann Neurol. 2018;84(5):648-658. doi: 10.1002/ana.25334

 

  1. Nakamura A, Kaneko N, Villemagne V, et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature. 2018;554:249-254. doi: 10.1038/nature25456

 

  1. Ovod V, Ramsey KN, Mawuenyega KG, et al. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement. 2017;13(8):841-849. doi: 10.1016/J.JALZ.2017.06.2266

 

  1. Li QX, Berndt MC, Bush AI, et al. Membrane-associated forms of the beta A4 amyloid protein precursor of Alzheimer’s disease in human platelet and brain: Surface expression on the activated human. Blood. 1994;84:133-142.

 

  1. Zetterberg H, Wilson D, Andreasson U, et al. Plasma tau levels in Alzheimer’s disease. Alzheimers Res Ther. 2013;5(2):9. doi: 10.1186/alzrt163

 

  1. Mattsson N, Zetterberg H, Janelidze S, et al. Plasma tau in Alzheimer disease. Neurology. 2016;87(17):1827-1835. doi: 10.1212/WNL.0000000000003246

 

  1. Mielke MM, Hagen CE, Wennberg AWV, et al. Association of plasma total tau level with cognitive decline and risk of mild cognitive impairment or dementia in the mayo clinic study on aging. JAMA Neurol. 2017;74:1073-1080. doi: 10.1001/jamaneurol.2017.1359

 

  1. Pase MP, Beiser AS, Himali JJ, et al. Assessment of plasma total tau level as a predictive biomarker for dementia and related endophenotypes. JAMA Neurol. 2019;76(5):598-606. doi: 10.1001/JAMANEUROL.2018.4666

 

  1. Mielke M, Hagen C, Xu J, et al. Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau-and amyloid-positron emission tomography. Alzheimers Dement. 2018;14:989-997. doi: 10.1016/j.jalz.2018.02.013

 

  1. Yang CC, Chiu MJ, Chen TF, Chang HL, Liu BH, Yang SY. Assay of plasma phosphorylated tau protein (threonine 181) and total tau protein in early-stage Alzheimer’s disease. J Alzheimers Dis. 2018;61(4):1323-1332. doi: 10.3233/JAD-170810

 

  1. Tatebe H, Kasai T, Ohmichi T, et al. Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: Pilot case-control studies including patients with Alzheimer’s disease and down syndrome. Mol Neurodegener. 2017;12(1):63. doi: 10.1186/s13024-017-0206-8

 

  1. Khalil M, Teunissen CE, Otto M, et al. Neurofilaments as biomarkers in neurological disorders- towards clinical application. Nat Rev Neurol. 2024;20:269-287. doi: 10.1038/s41582-024-00955-x

 

  1. Weston PSJ, Poole T, Ryan NS, et al. Serum neurofilament light in familial Alzheimer disease: A marker of early neurodegeneration. Neurology. 2017;89(21):2167-2175. doi: 10.1212/WNL.0000000000004667

 

  1. Yilmaz A, Blennow K, Hagberg L, et al. Neurofilament light chain protein as a marker of neuronal injury: Review of its use in HIV-1 infection and reference values for HIV-negative controls. Expert Rev Mol Diagn. 2017;17(8):761-770. doi: 10.1080/14737159.2017.1341313

 

  1. Mattsson N, Andreasson U, Zetterberg H, Blennow K, Alzheimer’s Disease Neuroimaging Initiative. Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 2017;74(5):557-566. doi: 10.1001/jamaneurol.2016.6117

 

  1. Minoshima S, Cross D, Thientunyakit T, Foster NL, Drzezga A. 18F-FDG PET imaging in neurodegenerative dementing disorders: Insights into subtype classification, emerging disease categories, and mixed dementia with copathologies. J Nucl Med. 2022;63:2S-12S. doi: 10.2967/jnumed.121.263194

 

  1. Graff-Radford J, Yong KXX, Apostolova LG, et al. New insights into atypical Alzheimer’s disease in the era of biomarkers. Lancet Neurol. 2021;20(3):222-234. doi: 10.1016/S1474-4422(20)30440-3

 

  1. Mecca AP, Chen MK, O’dell RS, et al. In vivo measurement of widespread synaptic loss in Alzheimer’s disease with SV2A PET. Alzheimers Dement. 2020;16(7):974-982. doi: 10.1002/alz.12097

 

  1. Clark CM, Pontecorvo MJ, Beach TG, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: A prospective cohort study. Lancet Neurol. 2012;11:669-678. doi: 10.1016/S1474-4422(12)70142-4

 

  1. Wolk DA. Amyloid imaging in atypical presentations of Alzheimer’s disease. Curr Neurol Neurosci Rep. 2013;13(12):412. doi: 10.1007/s11910-013-0412-x

 

  1. Fleisher AS, Pontecorvo MJ, Devous MD Sr., et al. Positron emission tomography imaging with [18F]flortaucipir and postmortem assessment of Alzheimer disease neuropathologic changes. JAMA Neurol. 2020;77(7):829-839. doi: 10.1001/jamaneurol.2020.0528

 

  1. Ossenkoppele R, Pichet Binette A, Groot C, et al. Amyloid and tau PET-positive cognitively unimpaired individuals are at high risk for future cognitive decline. Nat Med. 2022;28:2381-2387. doi: 10.1038/s41591-022-02049-x

 

  1. Strikwerda-Brown C, Hobbs DA, Gonneaud J, et al. Association of elevated amyloid and tau positron emission tomography signal with near-term development of Alzheimer disease symptoms in older adults without cognitive impairment. JAMA Neurol. 2022;79:975-985. doi: 10.1001/jamaneurol.2022.2379

 

  1. Samra A, Ramtahal J. Recurrent subacute visual loss presenting in a 52-year-recurrent subacute visual loss presenting in a 52-year. Brain. 2012;139(4):16-17. doi: 10.1093/BRAIN/AWW041

 

  1. Werry EL, Bright FM, Piguet O, et al. Recent developments in TSPO PET imaging as a biomarker of neuroinflammation in neurodegenerative disorders. Int J Mol Sci. 2019;20:3161. doi: 10.3390/ijms2013316

 

  1. Vemuri P, Jack CR Jr. Role of structural MRI in Alzheimer’s disease. Alzheimers Res Ther. 2010;2(4):23. doi: 10.1186/ALZRT47

 

  1. Liu S, Buch S, Chen Y, et al. Susceptibility-weighted imaging: Current status and future directions. NMR Biomed. 2017;30(4):10. doi: 10.1002/nbm.3552

 

  1. Damoiseaux JS. Resting-state fMRI as a biomarker for Alzheimer’s disease? Alzheimers Res Ther. 2012;4(3):8. doi: 10.1186/alzrt106

 

  1. Stebbins GT, Murphy CM. Diffusion tensor imaging in Alzheimer’s disease and mild cognitive impairment. Behav Neurol. 2009;21:39-49. doi: 10.3233/BEN-2009-0234

 

  1. Sarazin M, Chauviré V, Gerardin E, et al. The amnestic syndrome of hippocampal type in Alzheimer’s disease: An MRI study. J Alzheimers Dis. 2010;22(1):285-294. doi: 10.3233/JAD-2010-091150

 

  1. Birks J, Craig D. Galantamine for vascular cognitive impairment. Cochrane Database Syst Rev. 2006;2006(1):CD004746. doi: 10.1002/14651858.CD004746

 

  1. Reisberg B, Doody R, Stöffler A, et al. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med. 2003;348(14):1333-1341. doi: 10.1056/NEJMOA013128

 

  1. Van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388:9-21. doi: 10.1056/NEJMoa2212948

 

  1. Olazarán J, Reisberg B, Clare L, et al. Nonpharmacological therapies in Alzheimer’s disease: A systematic review of efficacy. Dement Geriatr Cogn Disord. 2010;30:161-178. doi: 10.1159/000316119

 

  1. Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol. 2019;15(2):73-88. doi: 10.1038/S41582-018-0116-6

 

  1. Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537(7618):50-56. doi: 10.1038/NATURE19323

 

  1. Brodtmann A, Darby D, Oboudiyat C, et al. Assessing preparedness for Alzheimer disease-modifying therapies in Australasian health care systems. Med J Aust. 2023;218(6):247-249. doi: 10.5694/MJA2.51880

 

  1. Budd Haeberlein S, Aisen PS, Barkhof F, et al. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J Prev Alzheimer’s Dis. 2022;9(2):197-210. doi: 10.14283/JPAD.2022.30

 

  1. Dhillon S. Aducanumab: First approval. Drugs. 2021;81(12):1437-1443. doi: 10.1007/S40265-021-01569-Z

 

  1. Alexander GC, Karlawish J. The problem of aducanumab for the treatment of Alzheimer disease. Ann Intern Med. 2021;174(9):1303-1304. doi: 10.7326/M21-2603

 

  1. Cummings J, Aisen P, Lemere C, Atri A, Sabbagh M, Salloway S. Aducanumab produced a clinically meaningful benefit in association with amyloid lowering. Alzheimers Res Ther. 2021;13(1):98. doi: 10.1186/S13195-021-00838-Z

 

  1. Hershey LA, Tarawneh R. Clinical efficacy, drug safety, and surrogate endpoints: Has aducanumab met all of its expectations? Neurology. 2021;97(11):517-518. doi: 10.1212/WNL.0000000000012453

 

  1. Cummings J, Aisen P, Apostolova LG, Atri A, Salloway S, Weiner M. Aducanumab: Appropriate use recommendations. J Prev Alzheimers Dis. 2021;8:398-410. doi: 10.14283/jpad.2021.41

 

  1. Söderberg L, Johannesson M, Nygren P, et al. Lecanemab, aducanumab, and gantenerumab- binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical trials for. Neurotherapeutics. 2023;20:195-206. doi: 10.1007/s13311-022-01308-6

 

  1. FDA Grants Accelerated Approval for Alzheimer’s. Google Scholar. Available from: https://scholar.google.com/scholar?hl=en&as_sdt=0%2c5&q=12.%09fda+grants+accelerated+approval+for+alzheimer%e2%80%99s+drug+%282023%29+us+food+and+drug+administration+available+t%3a+https%3a%2f%2fwww.fda.gov%2fdrugs%2fnews+eventshumandrugs%2ffdaapproves/treatment/adults/alzheimers+disease+%28accessed+on+july+05%2c+2024%29.&btng=#d=gs_cit&t=1746172558266&u=%2fscholar%3fq%3dinfo%3ax96l0erloqj%3ascholar.google.com%2f%26output%3dcite%26scirp%3d0%26hl%3den [Last accessed on 2025 May 01].

 

  1. Swanson CJ, Zhang Y, Dhadda S, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimers Res Ther. 2021;13(1):80. doi: 10.1186/S13195-021-00813-8

 

  1. Fatima R, Khan Y, Maqbool M, et al. Amyloid-β clearance with monoclonal antibodies: Transforming Alzheimer’s treatment. Curr Protein Pept Sci. 2025;26:515-545. doi: 10.2174/0113892037362037250205143911

 

  1. Loeffler DA. Antibody-mediated clearance of brain amyloid-β: Mechanisms of action, effects of natural and monoclonal anti-Aβ antibodies, and downstream effects. J Alzheimers Dis Rep. 2023;7(1):873-899. doi: 10.3233/ADR-230025

 

  1. Pleen J, Townley R. Alzheimer’s disease clinical trial update 2019-2021. J Neurol. 2022;269(2):1038-1051. doi: 10.1007/S00415-021-10790-5

 

  1. DeMattos RB, Lu J, Tang Y, et al. A plaque-specific antibody clears existing β-amyloid plaques in Alzheimer’s disease mice. Neuron. 2012;76(5):908-920. doi: 10.1016/J.NEURON.2012.10.029

 

  1. Thussu S, Naidu A, Manivannan S, Grossberg GT. Profiling aducanumab as a treatment option for Alzheimer’s disease: An overview of efficacy, safety and tolerability. Expert Rev Neurother. 2024;24:1045-1053. doi: 10.1080/14737175.2024.2402058

 

  1. Navitsky M, Joshi AD, Kennedy I, et al. Standardization of amyloid quantitation with florbetapir standardized uptake value ratios to the centiloid scale. Alzheimers Dement. 2018;14:1565-1571. doi: 10.2967/JNUMED.117.198389

 

  1. Li X, Tsolis KC, Koper MJ, et al. Sequence of proteome profiles in preclinical and symptomatic Alzheimer’s disease. Alzheimers Dement. 2021;17(6):946-958. doi: 10.1002/ALZ.12345

 

  1. Leventhal SS, Bisom T, Clift D, et al. Antibodies targeting the Crimean-Congo hemorrhagic fever virus nucleoprotein protect via TRIM21. Nat Commun. 2024;15:9236. doi: 10.1038/s41467-024-53362-7

 

  1. Mallery DL, McEwan WA, Bidgood SR, Towers GJ, Johnson CM, James LC. Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proc Natl Acad Sci. 2010;107(46):19985-19990. doi: 10.1073/PNAS.1014074107

 

  1. James LC, Keeble AH, Khan Z, Rhodes DA, Trowsdale J. Structural basis for PRYSPRY-mediated tripartite motif (TRIM) protein function. Proc Natl Acad Sci. 2007;104(15):6200-6205. doi: 10.1073/PNAS.0609174104

 

  1. Manocha GD, Mishra R, Sharma N, Kumawat KL, Basu A, Singh SK. Regulatory role of TRIM21 in the type-I interferon pathway in Japanese encephalitis virus-infected human microglial cells. J Neuroinflammation. 2014;11(1):24. doi: 10.1186/1742-2094-11-24)

 

  1. McEwan WA, Hauler F, Williams CR, et al. Regulation of virus neutralization and the persistent fraction by TRIM21. J Virol. 2012;86(16):8482-8491. doi: 10.1128/JVI.00728-12

 

  1. McEwan WA, Falcon B, Vaysburd M, et al. Cytosolic fc receptor TRIM21 inhibits seeded tau aggregation. Proc Natl Acad Sci. 2017;114(3):574-579. doi: 10.1073/PNAS.1607215114

 

  1. Zeng J, Santos A, Mukadam A, et al. Target-induced clustering activates trim-away of pathogens and proteins. Nat Struct Mol Biol. 2021;28:278-289. doi: 10.1038/s41594-021-00560-2

 

  1. Miller LV, Papa G, Vaysburd M, et al. Co-opting templated aggregation to degrade pathogenic tau assemblies and improve motor function. Cell. 2024;187:5967-5980.e17. doi: 10.1016/j.cell.2024.08.024

 

  1. Benn J, Cheng S, Keeling S, et al. Aggregate-selective removal of pathological tau by clustering-activated degraders. Science. 2024;385(6712):1009-1016. doi: 10.1126/SCIENCE.ADP5186

 

  1. Dupré E, Danis C, Arrial A, et al. Single domain antibody fragments as new tools for the detection of neuronal tau protein in cells and in mice studies. ACS Chem Neurosci. 2019;10(9):3997-4006. doi: 10.1021/ACSCHEMNEURO.9B00217

 

  1. Hong JP, Chen WF, Nguyen DH, Xie Q. A proposed role for lymphatic supermicrosurgery in the management of Alzheimer’s disease: A primer for reconstructive microsurgeons. Arch Plast Surg. 2025;52(2):96-103. doi: 10.1055/A-2513-4313

 

  1. Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111. doi: 10.1126/SCITRANSLMED.3003748

 

  1. Sandrone S, Moreno-Zambrano D, Kipnis J, Van Gijn J. A (delayed) history of the brain lymphatic system. Nat Med. 2019;25:538-540. doi: 10.1038/s41591-019-0417-3

 

  1. Li W, Chen D, Liu N, Luan Y, Zhu S, Wang H. Modulation of lymphatic transport in the central nervous system. Theranostics. 2022;12:1117-1131. doi: 10.7150/thno.66026

 

  1. Proulx ST. Sciences SPC and ML, 2021 undefined. Cerebrospinal fluid outflow: A review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell Mol Life Sci. 2021;78(6): 2429-2457. doi: 10.1007/S00018-020-03706-5

 

  1. Chen JY, Zhao DW, Yin Y, et al. Deep cervical lymphovenous anastomosis (LVA) for Alzheimer’s disease: Microsurgical procedure in a prospective cohort study. Int J Surg. 2025;111:4211-4221. doi: 10.1097/JS9.0000000000002490

 

  1. Ma YN, Wang Z, Tang W. Deep cervical lymphaticovenous anastomosis in Alzheimer’s disease: A promising frontier or premature enthusiasm? Biosci Trends. 2025;19(2):144-149. doi: 10.5582/bst.2025.01108
Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing