Neurological complications of coronavirus disease 2019 and the underlying mechanisms
The recent global pandemic of coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although respiratory symptoms are the primary manifestation of the majority of COVID-19 patients, an increasing number of neurological symptoms and manifestations of COVID-19 have been observed. In this review, we detail the neurological complications of COVID-19, such as gustatory and olfactory dysfunctions, stroke, memory decline, muscle injury, and seizures. Furthermore, we introduce neural invasion mechanism underlying SARS-CoV-2 infection and, further, explain the occurrence of these complications. This review offers insights into the neurological signs and symptoms of COVID-19, which may help improve the prognosis of the infected patients.
Feng W, Zong W, Wang F, et al., 2020, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): A review. Mol Cancer, 19(1): 100. https://doi.org/10.1186/s12943-020-01218-1
Bhatraju PK, Ghassemieh BJ, Nichols M, et al., 2020, Covid- 19 in critically ill patients in the Seattle Region case series. N Engl J Med, 382(21): 2012–2022. https://doi.org/10.1056/NEJMoa2004500
Spinato G, Fabbris C, Polesel J, et al., 2020, Alterations in smell or taste in mildly symptomatic outpatients with SARS-CoV-2 infection. JAMA, 323(20): 2089–2090. https://doi.org/10.1001/jama.2020.6771
Boscolo-Rizzo P, Borsetto D, Fabbris C, et al., 2020, Evolution of altered sense of smell or taste in patients with mildly symptomatic COVID-19. JAMA Otolaryngol Head Neck Surg, 146(8): 729–732. https://doi.org/10.1001/jamaoto.2020.1379
Jalessi M, Barati M, Rohani M, et al., 2020, Frequency and outcome of olfactory impairment and sinonasal involvement in hospitalized patients with COVID-19. Neurol Sci, 41(9): 2331–2338. https://doi.org/10.1007/s10072-020-04590-4
Boscolo-Rizzo P, Menegaldo A, Fabbris C, et al., 2021, Six-month psychophysical evaluation of olfactory dysfunction in patients with COVID-19. Chem Senses, 46: bjab006. https://doi.org/10.1093/chemse/bjab006
Printza A, Katotomichelakis M, Valsamidis K, et al., 2021, Smell and taste loss recovery time in COVID-19 patients and disease severity. J Clin Med, 10(5): 966. https://doi.org/10.3390/jcm10050966
Rojas-Lechuga MJ, Izquierdo-Dominguez A, Chiesa- Estomba C, et al., 2021, Chemosensory dysfunction in COVID-19 out-patients. Eur Arch Otorhinolaryngol, 278(3): 695–702. https://doi.org/10.1007/s00405-020-06266-3
Hajikhani B, Calcagno T, Nasiri MJ, et al., 2020, Olfactory and gustatory dysfunction in COVID-19 patients: A meta-analysis study. Physiol Rep, 8(18): e14578. https://doi.org/10.14814/phy2.14578
Ibekwe TS, Fasunla AJ, Orimadegun AE. 2020, Systematic review and meta-analysis of smell and taste disorders in COVID-19. OTO Open, 4(3): 2473974X20957975. https://doi.org/10.1177/2473974X20957975
Giacomelli A, Pezzati L, Conti F, et al., 20250, Self-reported olfactory and taste disorders in SARS-CoV-2 patients: A cross-sectional study. Clin Infect Dis, 71(15): 889–890. https://doi.org/10.1093/cid/ciaa330
Biadsee A, Dagan O, Ormianer Z, et al., 2021, Eight-month follow-up of olfactory and gustatory dysfunctions in recovered COVID-19 patients. Am J Otolaryngol, 42(4): 103065. https://doi.org/10.1016/j.amjoto.2021.103065
Romero-Sanchez CM, Diaz-Maroto I, Fernandez-Diaz E, et al., 2020, Neurologic manifestations in hospitalized patients with COVID-19: The ALBACOVID registry. Neurology, 95(8): e1060–e1070. https://doi.org/10.1212/WNL.0000000000009937
Meng X, Deng Y, Dai Z, et al., 2020, COVID-19 and anosmia: A review based on up-to-date knowledge. Am J Otolaryngol, 41(5): 102581. https://doi.org/10.1016/j.amjoto.2020.102581
Kumar L, Kahlon N, Jain A, et al., 2021, Loss of smell and taste in COVID-19 infection in adolescents. Int J Pediatr Otorhinolaryngol, 142: 110626. https://doi.org/10.1016/j.ijporl.2021.110626
Lechien J, Chiesa-Estomba C, De Siati D, et al., 2020, Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): A multicenter European study. Eur Arch Otorhinolaryngol, 277(8): 2251–2261. https://doi.org/10.1007/s00405-020-05965-1
Chen R, Wang K, Yu J, et al., 2021, The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in the human and mouse brains. Front Neurol, 11: 573095.
Brann DH, Tsukahara T, Weinreb C, et al., 2020, Non-neuronal expression of SARS-CoV-2 entry genes in the olfaory system suggests mechanisms underlying COVID- 19-associated anosmia. Sci Adv, 6(31): eabc5801. https://doi.org/10.1126/sciadv.abc5801
Lechien JR, Chiesa-Estomba CM, De Siati DR, et al., 2020, Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): A multicenter European study. Eur Arch Otorhinolaryngol, 277(8): 2251–2261. https://doi.org/10.1007/s00405-020-05965-1
Whitcroft KL, Hummel T. 2020, Olfactory dysfunction in COVID-19 diagnosis and management. JAMA, 3(24): 2512– 2514. https://doi.org/10.1001/jama.2020.8391
Pun BT, Badenes R, Heras G, et al., 2021, Prevalence and risk factors for delirium in critically ill patients with COVID-19 (COVID-D): A multicentre cohort study. Lancet Respir Med, 9(3): 239–250. https://doi.org/10.1016/S2213-2600(20)30552-X
Girard TD, Jackson JC, Pandharipande PP, et al., 2010, Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. Crit Care Med, 38(7): 1513–1520. https://doi.org/10.1097/CCM.0b013e3181e47be1
Liu YH, Chen Y, Wang QH, et al., 2022, One-year trajectory of cognitive changes in older survivors of COVID-19 in Wuhan, China: A longitudinal cohort study. JAMA Neurol, 79(5): 509–517. https://doi.org/10.1001/jamaneurol.2022.0461
Blomberg B, Mohn KG, Brokstad KA, et al., 2021, Long COVID in a prospective cohort of home-isolated patients. Nat Med, 27(9): 1607–1613. https://doi.org/10.1038/s41591-021-01433-3
Yerlikaya D, Emek-Savaş DD, Kurşun BB, et al., 2018, Electrophysiological and neuropsychological outcomes of severe obstructive sleep apnea: Effects of hypoxemia on cognitive performance. Cogn Neurodyn, 12(5): 471–480. https://doi.org/10.1007/s11571-018-9487-z
Safavynia SA, Arora S, Pryor KO, et al., 2018, An update on postoperative delirium: Clinical features, neuropathogenesis, and perioperative management. Curr Anesthesiol Rep, 8(3): 252–262.
Safavynia SA, Goldstein PA. 2019, The role of neuroinflammation in postoperative cognitive dysfunction: Moving from hypothesis to treatment. Front Psychiatry, 9: 752. https://doi.org/10.3389/fpsyt.2018.00752
Cecchetti G, Agosta F, Canu E, et al., 2022, Cognitive, EEG, and MRI features of COVID-19 survivors: A 10-month study. J Neurol, 269(7): 3400–3412. https://doi.org/10.1007/s00415-022-11047-5
Hosp JA, Dressing A, Blazhenets G, et al., 2021, Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain, 144(4): 1263–1276. https://doi.org/10.1093/brain/awab009
Liu K, Pan M, Xiao Z, et al., 2020, Neurological manifestations of the coronavirus (SARS-CoV-2) pandemic 2019-2020. J Neurol Neurosurg Psychiatry, 91(6): 669–670. https://doi.org/10.1136/jnnp-2020-323177
Ali L, Mohammed I, Janjua I, et al., 2021, Acute myocardial injury and rhabdomyolysis in COVID-19 patients: Incidence and mortality. Cureus, 13(10): e18899. https://doi.org/10.7759/cureus.18899
Nasiri MJ, Haddadi S, Tahvildari A, et al., 2020, COVID-19 clinical characteristics, and sex-specific risk of mortality: Systematic review and meta-analysis. Front Med (Lausanne), 7: 459. https://doi.org/10.3389/fmed.2020.00459
Zhu J, Ji P, Pang J, et al., 2020, Clinical characteristics of 3062 COVID-19 patients: A meta-analysis. J Med Virol, 92(10): 1902–1914. https://doi.org/10.1002/jmv.25884
Huang C, Huang L, Wang Y, et al., 2021, 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet, 397(10270): 220–232. https://doi.org/10.1016/s0140-6736(20)32656-8
van den Borst B, Peters JB, Brink M, et al., 2019, Comprehensive health assessment 3 months after recovery from acute coronavirus disease 2019 (COVID-19). Clin Infect Dis, 73(5): e1089–e1098. https://doi.org/10.1093/cid/ciaa1750
Ali AM, Kunugi H. 2021, Approaches to nutritional screening in patients with coronavirus disease 2019 (COVID-19). Int J Environ Res Public Health, 18(5): 2772. https://doi.org/10.3390/ijerph18052772
Welch C, Greig C, Masud T, et al., 2020, COVID-19 and acute sarcopenia. Aging Dis, 11(6): 1345–1351. https://doi. org/10.14336/AD.2020.1014
Morley JE, Kalantar-Zadeh K, Anker SD. 2020, COVID: A major cause of cachexia and sarcopenia? J Cachexia Sarcopenia Muscle, 11(4): 863–865. https://doi.org/10.1002/jcsm.12589
Finsterer J, Scorza F. 2021, SARS-CoV-2 associated rhabdomyolysis in 32 patients. Turk J Med Sci, 51(3): 1598–1601. https://doi.org/10.3906/sag-2012-327
Lorenzo RD, Conte C, Lanzani C, et al., 2020, Residual clinical damage after COVID-19: A retrospective and prospective observational cohort study. PLoS One, 15(10): e0239570.
Geng Y, Ma Q, Du YS, et al., 2021, Rhabdomyolysis is associated with in-hospital mortality in patients with COVID-19. Shock, 56(3): 360–367. https://doi.org/10.1097/SHK.0000000000001725
Zhang Q, Schultz J, Aldridge G, Simmering J, et al., 2020, Coronavirus disease 2019 case fatality and Parkinson’s disease. Mov Disord, 35(11): 1914–1915. https://doi.org/10.1002/mds.28325
Yaghi S, Ishida K, Torres J, et al., 2020, SARS2-CoV-2 and stroke in a New York healthcare system. Stroke, 51(5): 2002–2011. https://doi.org/10.1161/strokeaha.120.030335
Romero-Sánchez C, Díaz-Maroto I, Fernández-Díaz E, et al., 2020, Neurologic manifestations in hospitalized patients with COVID-19: The ALBACOVID registry. Neurology, 95(8): e1060–e1070. https://doi.org/10.1212/WNL.0000000000009937
Fridman S, Bres Bullrich M, Jimenez-Ruiz A, et al., 2020, Stroke risk, phenotypes, and death in COVID-19: Systematic review and newly reported cases. Neurology, 95(24): e3373– e3385. https://doi.org/10.1212/WNL.0000000000010851
Merkler AE, Parikh NS, Mir S, et al., 2020, Risk of ischemic stroke in patients with coronavirus disease 2019 (COVID-19) vs patients with influenza. JAMA Neurol, 77(11): 1–7. https://doi.org/10.1001/jamaneurol.2020.2730
Dhamoon MS, Thaler A, Gururangan K, et al., 2021, Acute cerebrovascular events with COVID-19 infection. Stroke, 52(1):48–56. https://doi.org/10.1161/STROKEAHA.120.031668
Harzallah I, Debliquis A, Drénou B. 2020, Lupus anticoagulant is frequent in patients with Covid‐19. J Thromb Haemost, 18(8): 2064–2065. https://doi.org/10.1111/jth.14867
Zhang Y, Xiao M, Zhang S, et al., 2020, Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med, 382(17): e38. https://doi.org/10.1056/NEJMc2007575
Zhou F, Yu T, Du R, et al., 2020, Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 395(10229): 1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3
Lu L, Xiong W, Liu D, et al., 2020, New onset acute symptomatic seizure and risk factors in coronavirus disease 2019: A retrospective multicenter study. Epilepsia, 61(6): e49–e53. https://doi.org/10.1111/epi.16524
Lodigiani C, Iapichino G, Carenzo L, et al., 2020, Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res, 191: 9–14. https://doi.org/10.1016/j.thromres.2020.04.024
Cui S, Chen S, Li X, et al., 2020, Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost, 18(6): 1421–1424. https://doi.org/10.1111/jth.14830
Janes F, Gigli GL, Kuris F, et al., 2022, Failure of therapeutic anticoagulation in COVID-19 patients with acute ischemic stroke. A retrospective multicenter study. Front Neurol, 13: 834469. https://doi.org/10.3389/fneur.2022.834469
Shakibajahromi B, Borhani-Haghighi A, Haseli S, et al., 2020, Cerebral venous sinus thrombosis might be under-diagnosed in the COVID-19 era. eNeurologicalSci, 20: 100256. https://doi.org/10.1016/j.ensci.2020.100256
Abdalkader M, Shaikh SP, Siegler JE, et al., 2021, Cerebral venous sinus thrombosis in COVID-19 patients: A multicenter study and review of literature sciencedirect. J Stroke Cerebrovasc Dis, 30(6): 105733. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105733
Kow CS, Zaihan AF, Hasan SS. 2020, Anticoagulant approach in COVID-19 patients with cerebral venous thrombosis. J Stroke Cerebrovasc Dis, 29(12): 105222. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105222
Schulz JB, Berlit P, Diener HC, et al., 2021, COVID-19 vaccine-associated cerebral venous thrombosis in Germany. Ann Neurol, 90(4): 627–639. https://doi.org/10.1002/ana.26172
Lyons S, O’Kelly B, Woods S, et al., Seizure with CSF lymphocytosis as a presenting feature of COVID-19 in an otherwise healthy young man. Seizure, 80: 113–114. https://doi.org/10.1016/j.seizure.2020.06.010
Abdulsalam MA, Abdulsalam AJ, Shehab D. Generalized status epilepticus as a possible manifestation of COVID-19. Acta Neurol Scand, 142(4): 297–298. https://doi.org/10.1111/ane.13321
Asadi-Pooya AA. 2020, Seizures associated with coronavirus infections. Seizure, 79: 49–52. https://doi.org/10.1016/j.seizure.2020.05.005
Hepburn M, Mullaguri N, George P, et al., 2021, Acute symptomatic seizures in critically ill patients with cOVID-19: Is there an association? Neurocrit Care, 34(1): 139–143. https://doi.org/10.1007/s12028-020-01006-1
Ashraf M, Sajed S. 2020, Seizures related to coronavirus disease (COVID-19): Case series and literature review. Cureus, 12(7): e9378. https://doi.org/10.7759/cureus.9378
Bhatta S, Sayed A, Ranabhat B, et al., 2020, New-onset seizure as the only presentation in a child with COVID-19. Cureus, 12(6): e8820. https://doi.org/10.7759/cureus.8820
Moriguchi T, Harii N, Goto N, et al., 2020, A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis, 94:55–58. https://doi.org/10.1016/j.ijid.2020.03.062
Mardani M, Nadji SA, Sarhangipor KA, et al., 2020, COVID-19 infection recurrence presenting with meningoencephalitis. New Microbes New Infect, 37: 100372. https://doi.org/10.1016/j.nmni.2020.100732
Bernard-Valnet R, Pizzarotti B, Anichini A, et al., 2020, Two patients with acute meningo-encephalitis concomitant to SARS-CoV-2 infection. Eur J Neurol, 27(9): e43–e44. https://doi.org/10.1111/ene.14298
Kaya Y, Kara S, Akinci C, et al., 2020, Transient cortical blindness in COVID-19 pneumonia; a PRES-like syndrome: Case report. J Neurol Sci, 413: 116858. https://doi.org/10.1016/j.jns.2020.116858
Papri N, Hayat S, Mohammed A, et al., 2021, Guillain-Barré syndrome associated with SARS-CoV-2 infection: A case report with long term follow up. J Neuroimmunol, 356(8): 577590. https://doi.org/10.1016/j.jneuroim.2021.577590
Tiet MY, Alshaikh N, 2020, Guillain-Barré syndrome associated with COVID-19 infection: A case from the UK. BMJ Case Rep, 13(7): e236536. https://doi.org/10.1136/bcr-2020-236536
Lascano AM, Epiney JB, Coen M, et al., 2020, SARS-CoV-2 and Guillain-Barre syndrome: AIDP variant with a favourable outcome. Eur J Neurol, 27(9): 1751-1753. https://doi.org/10.1111/ene.14368
Carod-Artal FJ, 2020, Neurological complications of coronavirus and COVID-19. Rev Neurol, 70(9): 311–322. https://doi.org/10.33588/rn.7009.2020179
Desforges M, Coupanec AL, Brison E, et al., 2014, Neuroinvasive and neurotropic human respiratory coronaviruses: Potential neurovirulent agents in humans. Adv Exp Med Biol, 807: 75–96.
Zhou Z, Kang H, Li S, et al., 2020, Understanding the neurotropic characteristics of SARS-CoV-2: From neurological manifestations of COVID-19 to potential neurotropic mechanisms. J Neurol, 267(10223): 2179–2184. https://doi.org/10.1007/s00415-020-09929-7
Desforges M, Coupanec AL, Dubeau P, et al., 2019, Human coronaviruses and other respiratory viruses: Underestimated opportunistic pathogens of the central nervous system? Viruses, 12(1): 14. https://doi.org/10.3390/v12010014
Prather KA, Wang CC, Schooley RT. 2020, Reducing transmission of SARS-CoV-2. Science, 368(6498): 1422–1424. https://doi.org/10.1126/science.abc6197
Mehta P, McAuley DF, Brown M, et al., 2020, COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet, 395(10229): 1033–1034. https://doi.org/10.1016/S0140-6736(20)30628-0
Adhikary A, Halder K, Ghosh D, et al., 2020, A review of anti-inflammatory drugs use in the treatment of people infected by coronavirus disease 2019 (COVID-19). Acta Sci Microbiol, 3: 28-34. https://doi.org/10.31080/ASMI.2020.03.0712
Durrant DM, Ghosh S, Klein RS, 2016, The olfactory bulb: An immunosensory effector organ during neurotropic viral infections. Acs Chem Neurosci, 7(4): 464–469. https://doi.org/10.1021/acschemneuro.6b00043
Netland J, Meyerholz DK, Moore S, et al., 2008, Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol, 82(15): 7264–7275. https://doi.org/10.1128/JVI.00737-08
Amirian ES. 2020, Potential fecal transmission of SARS-CoV-2: Current evidence and implications for public health. Int J Infect Dis, 95: 363–370. https://doi.org/10.1016/j.ijid.2020.04.057
Ahmed MU, Hanif M, Ali MJ, et al., 2020, Neurological manifestations of COVID-19 (SARS-CoV-2): A review. Front Neurol, 11: 518. https://doi.org/10.3389/fneur.2020.00518
Ludvigsson JF, 2022, Convulsions in children with COVID-19 during the Omicron wave. Acta Paediatr, 111(5): 1023–1026. https://doi.org/10.1111/apa.16276
Thongsing A, Eizadkhah D, Fields C, et al., 2022, Provoked seizures and status epilepticus in a pediatric population with COVID-19 disease. Epilepsia 10: 1111. https://doi.org/10.1111/epi.17293
Pinzon RT, Wijaya VO, Buana RB, et al., 2020, Neurologic characteristics in coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Front Neurol, 11: 565. https://doi.org/10.3389/fneur.2020.00565
Collantes M, Espiritu AI, Sy MC, et al., 2021, Neurological manifestations in COVID-19 infection: A systematic review and meta-analysis. Can J Neurol Sci, 48(1): 66–76. https://doi.org/10.1017/cjn.2020.146