AccScience Publishing / AJWEP / Volume 19 / Issue 2 / DOI: 10.3233/AJW220017
RESEARCH ARTICLE

Simulating the Potential Impacts of Nuclear Power Plant Accident for Northern Vietnam

Dung Kieu-Ngoc1* Quang Nguyen-Hao2 Hang Nguyen-Thị1 Thoa Nguyen-Thị3 Lam Nghiem-Tien4
Show Less
1 National Committee for Search and Rescue of Vietnam (VINASARCOM), Long Bien, Hanoi, Vietnam
2 Viet Nam Atomic Energy Institute, 59 Ly Thuong Kiet, Hanoi, Vietnam
3 Military Environmental Chemistry Institute, AnKhanh, Hoai Duc, Hanoi, Vietnam
4 Irrigation University, 175 Tay Son, Dong Da, Hanoi, Vietnam
AJWEP 2022, 19(2), 1–8; https://doi.org/10.3233/AJW220017
Received: 5 January 2022 | Revised: 17 February 2022 | Accepted: 17 February 2022 | Published online: 17 February 2022
© 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The Fangchenggang nuclear power plant has been built very close to the Vietnam boundary. This is  done to generate potential impacts for Northern Vietnam if nuclear power plant accident occurs. This study applied  the Weather Research and Forecasting (WRF) model to construct the meteorological data at horizontal mesh  resolution of 1 km as input for the FLEXible PARTicle dispersion model (FLEXPART). The assumption of the  nuclear accident at Fangchenggang Power Plant is considered with setup parameter of the Fukushima accident.  The results show a similar in simulating the 137Cs concentration from 03 out of 24 experiments configured with  different parameterisation schemes of the WRF model. However, the dry and wet deposition of radioactive 137Cs  are significantly different. It is especially illustrated that if the accident occurs, then almost all provinces in  northern Vietnam are affected. The high concentration of radioactive pollutants may be intensively transported  from Fangchenggang nuclear power plant to Vietnam under the domination of wind fields in the wintertime. The  maximum values of the total effective dose rate could reach up to over 10 mSvh-1 of dose rate during 50 to 100  hours. Importantly, the maximum effective dose continues to be observed during 145 to 205 hours.

Keywords
Fangchenggang
nuclear power plant
WRF
FLEXPART.
References

Bluett, J., Gimson, N., Fisher, G., Heydenrych, C., Freeman,  T. and J. Godfrey (2002). Good Practice Guide:  Atmospheric dispersion modelling. New Zealand Ministry  for the Environment.

de Foy, B. et al. (2011). Aerosol plume transport and  transformation in high spectral resolution lidar  measurements and WRF-Flexpart simulations during the  MILAGRO Field Campaign. Atmospheric Chem. Phys.,  11(7): 3543-3563.

Kieu Ngoc, D., Hao Quang, N., Huu Duc, H., Thi Hang, N.,  Thi Thoa, N. and N. Quang Trung (2020). Simulation  of atmospheric radiocesium (137Cs) from Fukushima  nuclear accident using FLEXPART-WRF driven by  ERA5 reanalysis data. Journal of Nuclear Science and  Technology, 10(3): 01-12.

Grifoni, R.C. and R.D’Onofrio (2012). Atmospheric Flow  Fields: Theory, Numerical Methods And Software Tools.  Bentham Science Publishers. Chapter: Fundamentals of  Air Pollution Mathematical Modeling.

Hong, S.Y. and J.O.J. Lim (2006). The WRF single-moment  6-class microphysics scheme (WSM6). Asia-Pacific  Journal of Atmospheric Sciences, 42(2): 129-151.

Hong, S.Y., Noh, Y. and J.A. Dudhia (2005). A new vertical  diffusion package with an explicit treatment of entrainment  processes. Mon. Weather. Rev., 134: 2318-2341.

International Atomic Energy Agency (2004). Methods for  Assessing Occupational Radiation Doses Due to Intakes of  Radionuclides. Safety Reports Series No. 37. International  Atomic Energy Agency.

Fast, J.D. (2006). A Lagrangian Particle Dispersion Model Compatible with WRF [Online]. Available: http://www2. mmm.ucar.edu/wrf/users/workshops/WS2006/abstracts/ PSession06/P6_02_Fast.pdf

Kain, J.S. (2004). The Kain–Fritsch convective  parameterization: An update. Journal of Applied  Meteorology, 43(1): 170-181.

Katata, G., et al. (2015). Detailed source term estimation of  the atmospheric release for the Fukushima Daiichi Nuclear  Power Station accident by coupling simulations of an  atmospheric dispersion model with an improved deposition  scheme and oceanic dispersion model. Atmospheric  Chemistry & Physics, 14: 14725-14832.

Leelo˝ssy, A´., Molna´r, F., Izsa´k, F., Havasi, A´ ., Lagzi,  I. and R. Me´sza´ros (2014). Dispersion modeling of air  pollutants in the atmosphere: A review. Central European  Journal of Geosciences, 6: 257-278.

Liu, Y., Zhao, Y., Lu, W., Wang, H. and Q. Huang (2019).  Mododor: 3d numerical model for dispersion simulation  of gaseous contaminants from waste treatment facilities.  Environmental Modelling & Software, 113: 1-19.

Rakesh, P.T., Venkatesan, R., Hedde, T., Roubin, P.,  Baskaran, R. and B. Venkatraman (2015). Simulation of  radioactive plume gamma dose over a complex terrain  using Lagrangian particle dispersion model. Journal of  Environmental Radioactivity, 145: 30-39.

Rolph, G. and B.S. Ariel Stein (2017). Real-time environmental  applications and display system: Ready. Environmental  Modelling & Software, 95: 210-228.

Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D.,  Wang, W. and J. Powers (2008). A description of the  advanced research wrf version (No. NCAR/TN-475+STR).  University Corporation for Atmospheric Research.  doi:10.5065/D68S4MVH

Stohl, A., et al. (2010). The Lagrangian particle dispersion  model FLEXPART version 9.3. Tech. rep., Norwegian  Institute of Air Research (NILU), Kjeller, Norway.  Available at: http://flexpart. eu (last access: 2 June 2016).

Stohl, A., Forster, C., Eckhardt, S., Spichtinger, N.,  Huntrieser, H., Heland, J., Schlager, H., Wilhelm, S.,  Arnold, F. and O. Cooper (2003). A backward modeling  study of intercontinental pollution transport using aircraft  measurements. Journal of Geophysical Research, 108: 4370.

Terada, H., Nagai, H., Tsuduki, K., Furuno, A., Kadowaki, M.  and T. Kakefuda (2020). Refinement of source term and  atmospheric dispersion simulations of radionuclides during  the Fukushima Daiichi Nuclear Power Station accident.  Journal of Environmental Radioactivity, 213:106104.

United Nations (2015). Scientific Committee on the Effects  of Atomic Radiation. Developments since the 2013  UNSCEAR Report on the levels and effects of radiation  exposure due to the nuclear accident following the great  east-Japan earthquake and tsunami: A 2015 White Paper  to guide the Scientific Committee’s future programme of  work. UN.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing