AccScience Publishing / AJWEP / Volume 20 / Issue 5 / DOI: 10.3233/AJW230061
REVIEW ARTICLE

Interaction, Adhesion and Aggregation of Microplastic/Nanoplastic Particles: Effects of Plastic Polymer Type

Azizul Hakim1* Ferdouse Zaman Tanu2 Sabrina Sharmeen Alam1
Show Less
1 Department of Soil Science, University of Chittagong, Chattogram – 4331, Bangladesh
2 Department of Soil and Environmental Sciences, University of Barishal, Barishal – 8254, Bangladesh
AJWEP 2023, 20(5), 17–24; https://doi.org/10.3233/AJW230061
Received: 27 January 2023 | Revised: 5 July 2023 | Accepted: 5 July 2023 | Published online: 5 July 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Microplastics (MP; <5 mm) and nanoplastics (NP; <1000 nm) are now ubiquitous in nature as they have been released into inland water, lakes, rivers, and marine water through direct discharge, runoff from upland watersheds, and other terrestrial environments. To understand the aggregation of MP and NP in the last decade, surveys and analytical efforts were undertaken. The MP and NP particles in the soil and water environments interact with other natural and engineered nanoparticles, which in turn form aggregates. These plastic particles could form homoaggregates and/or heteroaggregates depending on pH, ionic type, ionic valence, salt concentration, shape and size of the plastic particles, and the polymer type of MP. Differences in MP aggregation due to differences in plastic polymer type are not yet well documented. This review is conducted to investigate the effect of polymer type on the aggregation of MP and NP particles in the presence of various aggregation conditions.

Keywords
Aggregation
micro- and nano-plastics
polymer type
soil and water environment.
References

Alimi, O.S., FarnerBudarz, J., Hernandez, L.M. and N.  Tufenkji (2018). Microplastics and nanoplastics in aquatic  environments: aggregation, deposition, and enhanced  contaminant transport. Environ. Sci. Technol. 52: 1704- 1724.

Bastos, D. and F. De las Nieves (1994). Colloidal stability  of sulfonated polystyrene model colloids. Correlation  with electrokinetic data. Colloid and Polymer Science.  272(5): 592-597.

Bochicchio, D., Panizon, E., Monticelli, L. and G. Rossi  (2017). Interaction of hydrophobic polymers with model  lipid bilayers. Sci Rep., 7: 6357. https://doi.org/10.1038/ s41598-017-06668-0

Brewer, A., Dror, I. and B. Berkowitz (2021). The mobility  of plastic nanoparticles in aqueous and soil environments:  A critical review. ACS EST Water, 1(1): 48-57. https://doi. org/10.1021/acsestwater.0c00130

Burns, E.E. and A.B.A. Boxall (2018). Microplastics in the  aquatic environment: Evidence for or against adverse  impacts and major knowledge gaps. Environ. Toxicol.  Chem., 37: 2776-2796.

Cai, L., Hu, L., Shi, H., Ye, J., Zhang, Y. and H. Kim (2018).  Effects of inorganic ions and natural organic matter on the  aggregation of nanoplastics. Chemosphere. 197: 142-151.

Carpineti, M., Ferri, F., Giglio, M., Paganini, E. and U. Perini  (1990). Salt-induced fast aggregation of polystyrene latex.  Phys. Rev. A., 42: 7347.

Fu, L., Li, J., Wang, G., Luan, Y. and W. Dai (2021).  Adsorption behavior of organic pollutants on microplastics.  Ecotoxicology and Environmental Safety. 217: 112207.  doi.org/10.1016/j.ecoenv.2021.112207

Hakim, A. and M. Kobayashi (2021). Aggregation and  aggregate strength of microscale plastic particles in  the presence of natural organic matter: Effects of ionic  valence. J Polym Environ., 29: 1921-1929. https://doi. org/10.1007/s10924-020-01985-42021.

Herbort, A.F., Sturm, M.T. and K. Schuhen (2018). A new  approach for the agglomeration and subsequent removal  of polyethylene, polypropylene, and mixtures of both from  freshwater systems–A case study. Environmental Science  and Pollution Research, 25(15): 15226-15234. https://doi. org/10.1007/s11356-018-1981-7

Ives, K.J. and M.A. Debouni (1979).Orthokinetic flocculation  of latex microspheres. Chemical Engineering Science,  34: 983-991.

Järvenpää, J., Perkkiö, M. and R. Laitinen (2022). PE and  PET oligomers’ interplay with membrane bilayers. Sci  Rep., 12: 2234. https://doi.org/10.1038/s41598-022- 06217-4

Kjøniksen, A.L., Joabsson, F., Thuresson, K. and B. Nyström  (1999).Salt-induced aggregation of polystyrene latex  particles in aqueous solutions of a hydrophobically  modified nonionic cellulose derivative and its unmodified  analogue. 103(45): 9818-9825. 

Kłodzińska, E., et al. (2010). Effect of zeta potential value on bacterial behavior during electrophoretic separation.  Electrophoresis, 31: 1590-1596. https://doi.org/10.1002/ elps.200900559 

Kobayashi M., Nitanai, M., Satta, N. and Y. Adachi (2013).  Coagulation and charging of latex particles in the presence  of imogolite, colloids and surfaces A. Physicochem. Eng.  Aspects, 435: 139-146.

Kobayashi, M. (2004). Breakup and strength of polystyrene  latex flocs subjected to a converging flow. Colloids  Surfaces A Physicochem. Eng. Asp., 235: 73-78. https:// doi.org/10.1016/j.colsurfa.2004.01.008

Lehmann, A., Leifheit, E.F.,Gerdawischke, M. and M.C.  Rillig (2021). Microplastics have shape- and polymer  dependent effects on soil aggregation and organic matter  loss – An experimental and meta-analytical approach.  Microplastics and Nanoplastics, 1: 7.

Leiser, R., Wu, G.M., Neu, T.R. and K. Wendt-Potthoff  (2020). Biofouling, metal sorption and aggregation are  related to sinking of microplastics in a stratified reservoir.  Water Research, 176: 115748.

Li, P., Zou, X., Wang, X., Su, M., Chen, C., Sun, X.  and H. Zhang (2020). A preliminary study of the  interactions between microplastics and citrate-coated  silver nanoparticles in aquatic environments. Journal of  Hazardous Material, 385: 121601.

Li, S., Liu, H., Gao, R., Abdurahman, A., Dai, J. and F. Zeng  (2018). Aggregation kinetics of microplastics in aquatic  environment: Complex roles of electrolytes, pH, and  natural organic matter. Environ. Pollut., 237: 126–132.

Lips, A., Smart, C. and E. Willis (1971). Light scattering  studies on a coagulating polystyrene latex. Trans. Faraday  Soc., 67: 2979-2988. doi.org/10.1039/TF9716702979

Long, M., Paul-Pont, I., Hegaret, H., Moriceau, B., Lambert,  C., Huvet, A. and P. Soudant (2017). Interactions between  polystyrene microplastics and marine phytoplankton lead to species-specific hetero-aggregation. Environ. Pollut. 228: 454-463.

Michels, J., Stippkugel, A., Lenz, M., Wirtz, K. and A.  Engel (2018). Rapid aggregation of biofilm-covered  microplastics with marine biogenic particles. Proc. R. Soc.  B., 285: 20181203. https://doi.org/10.1098/rspb.2018.1203

Oles, V. (1991). Shear-induced aggregation and breakup  of polystyrene latex particles. Journal of Colloid and  Interface Science, 154(2): 351-358.

Petit, J.M., Law, B.M. and D. Beysens (1998). Adsorptioninduced aggregation of colloidal particles in binary  mixtures: Modeling the pair free energy. Journal of  Colloid and Interface Science, 202: 441-449. https://doi. org/10.1006/jcis.1998.5500

Sastri, V.R. (2014). Plastics in medical devices: Properties,  requirements and applications. 2nd edition. Elsevier  Science. doi.org/10.1016/C2012-0-05946-7

Schmidtmann, J., Elagami, H., Gilfedder, B.S., Fleckenstein,  J.H., Papastavrou, G., Mansfeldf, U. and S. Peiffer (2022).  Heteroaggregation of PS microplastic with ferrihydrite  leads to rapid removal of microplastic particles from the  water column. Environ. Sci.: Processes Impacts, 24: 1782.

Shams, M., Alam, I. and I. Chowdhury (2020). Aggregation  and stability of nanoscale plastics in aquatic environment.  Water Research, 171: 115401.doi.org/10.1016/j. watres.2019.115401

Singh, N., Tiwari, E., Khandelwal N. and G.K. Darbha  (2019). Understanding the stability of nanoplastics  in aqueous environments: effect of ionic strength,  temperature, dissolved organic matter, clay, and heavy  metals. Environ. Sci.: Nano., 6: 2968-2976.

Sugimoto, T. and M. Kobayashi (2020). Critical coagulation  ionic strengths for heteroaggregation in the presence of  multivalent ions. Colloids and Surfaces A: Physicochemical  and Engineering Aspects, 603: 125234. https://doi. org/10.1016/j.colsurfa.2020.125234

Sugimoto, T., Adachi, Y. and M. Kobayashi (2022).  Heteroaggregation rate coefficients between oppositely  charged particles in a mixing flow: Effect of surface charge  density and salt concentration. Colloids and Surfaces A:  Physicochemical and Engineering Aspects. 632: 127795.

Sugimoto, T., Cao, T., Szilagyi, I., Borkovec, M. and G.  Trefalt (2018). Aggregation and charging of sulfate and  amidine latex particles in the presence of oxyanions.  Journal of Colloid and Interface Science. 524: 456-464.

Szilagyi, I., Trefalt, G., Tiraferri, A., Maroni, P. and M.  Borkovec (2014). Polyelectrolyte adsorption, interparticle  forces, and colloidal aggregation. Soft Matter., 10: 2479- 2502.

Trefalt, G., Tianchi, C., Sugimoto, T. and M. Borkovec  (2020). Heteroaggregation between charged and neutral  particles. Langmuir, 36(19): 5303-5311.

Wagner, M., Scherer, C., Alvarez-Muñoz, D., Brennholt,  N., Bourrain, X. and S. Buchinger (2014) Microplastics  in freshwater ecosystems: What we know and what we  need to know. Environ. Sci. Eur., 26(1): 12. https://doi. org/10.1186/s12302- 014-0012-7

Wang, X., Bolan, N., Tsang, D.C.W., Sarkar, B., Bradney, L.  and Y. Li (2021). A review of microplastics aggregation in  aquatic environment: Influence factors, analytical methods,  and environmental implications. Journal of Hazardous  Materials, 402: 123496.

Wang, Y.X., Chen, Wang, F. and N. Cheng (2023). Influence  of typical clay minerals on aggregation and settling of  pristine and aged polyethylene microplastics. Environ.  Pollut., 316: 120649. 10.1016/j.envpol.2022.120649

Wang, Y., Chen, X., Wang, F. and N. Cheng (2013).  Influence of typical clay minerals on aggregation and  settling of pristine and aged polyethylene microplastics.  Environmental Pollution,306(2): 120649. https://doi. org/10.1016/j.envpol.2022.120649

Zając, M., Kotyńska, J., Zambrowski, G., et al. (2023). Exposure to polystyrene nanoparticles leads to  changes in the zeta potential of bacterial cells. Sci Rep., 13: 9552. https://doi.org/10.1038/s41598-023-36603-5

Zhang, Q., Xu, E.G., Li, J., Chen, Q., Ma, L., Zeng, E.Y.  and H. Shi (2020). A review of microplastics in table salt,  drinking water, and air: direct human exposure. Environ.  Sci. Technol., 54: 3740-3751.

Zhang, W. (2014). Nanoparticle aggregation: Principles and  modeling. In: Nanomaterial: Impacts on Cell Biology and  Medicine. pp. 19-43. Springer.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing