A comprehensive system for breast cancer screening using rotational thermography and dynamic thermal infrared imaging
Integrated rotational thermography and dynamic infrared imaging enable accurate, non-invasive, and early breast cancer (BC) detection. This study presents an integrated framework for a novel BC screening approach that combines dynamic thermal imaging and comprehensive angle coverage. The proposed system aims to achieve high accuracy and a reliable method for BC detection by addressing the limitations of conventional infrared imaging approaches. By integrating innovative camera technologies, rotational thermography, and advanced data analysis techniques, the system overcomes challenges, such as incomplete breast tissue coverage, limited adaptability to diverse patient profiles, and limitations in data analysis and diagnostic yield. The research methodology comprised pilot studies (PS1, PS2, and PS3), followed by a final study, utilizing various data collection techniques and analysis methods. Infrared images were captured using various infrared cameras, including both low-resolution and high-resolution models. Rotational thermography provided multiple-angle imaging, improving abnormality detectability. User-interface-based image processing software and machine learning algorithms were employed for efficient data analysis and feature extraction. The results demonstrated accurate binary classification of normal versus abnormal breast tissue, achieving sensitivity, specificity, and accuracy of 86.67%, 97.30%, and 93.27%, respectively. In addition, this study highlights the importance of considering angiogenesis in BC screening, as infrared imaging can detect hypervascularity and hyperthermia in non-palpable BCs. Integrating angiogenesis-related factors with infrared imaging can facilitate early detection and enhance prognostic outcomes. Overall, the proposed BC screening system overcomes limitations through dynamic temperature-based imaging, comprehensive angle coverage, and consideration of angiogenesis.

- Jalloul R, Krishnappa CH, Agughasi VI, Alkhatib R. Enhancing early breast cancer detection with infrared thermography: A comparative evaluation of deep learning and machine learning models. Technologies. 2024;13(1):7. doi: 10.3390/technologies13010007
- Berg WA, Zhang Z, Lehrer D, Jong RA, Pisano ED, Barr RG. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast-cancer risk. ACRIN 6666 investigators. JAMA. 2012;307(13):1394-1404. doi: 10.1001/jama.2012.388
- Ohuchi N, Suzuki A, Sobue T, et al. Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan strategic anti-cancerrandomized trial (J-START52): A randomised controlled trial. Lancet. 2016;387(10016):341-348. doi: 10.1016/S0140-6736(15)00774-6
- Francis SV, Sasikala M, Bharathi GB, Jaipurkar DS. Breast cancer detection in rotational thermography images using texture features. Infrared Phys Technol. 2014;67:490-496. doi: 10.1016/j.infrared.2014.08.019
- Meraghni S, Benaggoune K, Al Masry Z, Terrissa LS, Devalland C, Zerhouni N. Towards digital twins driven breast cancer detection. In: Lecture Notes in Networks and Systems. Germany: Springer Nature; 2021. p. 87-99. doi: 10.1007/978-3-030-80129-8_7
- Mashekova A, Zhao Y, Ng EYK, Zarikas V, Fok SC, Mukhmetov O. Early detection of the breast cancer using infrared technology - a comprehensive review. Thermal Sci Eng Prog. 2022;27:101142. doi: 10.1016/j.tsep.2021.101142
- Sella T, Sklair-Levy M, Cohen M, et al. A novel functional infrared imaging system coupled with multiparametric computerised analysis for risk assessment of breast cancer. Eur Radiol. 2013;23(5):1191-1198. doi: 10.1007/s00330-012-2724-7
- Flexman M. Dynamic Digital Optical Tomography for Cancer Imaging and Therapy Monitoring. Columbia: Biomedical Engineering, Columbia University; 2012.
- Leung JH, Karmakar R, Mukundan A, et al. Systematic meta-analysis of computer-aided detection of breast cancer using hyperspectral imaging. Bioengineering (Basel). 2024;11(11):1060. doi: 10.3390/bioengineering11111060
- Karmakar R, Nagisetti Y, Mukundan A, Wang HC. Impact of the family and socioeconomic factors as a tool of prevention of breast cancer. World J Clin Oncol. 2025;16(5):106569. doi: 10.5306/wjco. v16.i5.106569
- Goñi-Arana A, Perez-Martin J, Diez FJ. Breast thermography: A systematic review and meta-analysis. Syst Rev. 2024;13(1):295. doi: 10.1186/s13643-024-02708-9
- Tsarouchi MI, Hoxhaj A, Mann RM. New approaches and recommendations for risk‐adapted breast cancer screening. J Magn Reson Imaging. 2023;58(4):987-1010. doi: 10.1002/jmri.28731
- Tsietso D, Yahya A, Samikannu R. A review on thermal imaging-based breast cancer detection using deep learning. Mobile Inf Syst. 2022;2022:1-19. doi: 10.1155/2022/8952849
- Lozano A 3rd, Hayes JC, Compton LM, Azarnoosh J, Hassanipour F. Determining the thermal characteristics of breast cancer based on high-resolution infrared imaging, 3D breast scans, and magnetic resonance imaging. Sci Rep. 2020;10:10105. doi: 10.1038/s41598-020-66926-6
- Joy JE, Penhoet EE, Petitti DB, Institute of Medicine US and National Research Council US Committee on New Approaches to Early Detection and Diagnosis of Breast Cancer. Saving Women’s Lives: Strategies for Improving Breast Cancer Detection and Diagnosis. Washington, DC: The National Academies Press US; 2005. doi: 10.17226/11016
- Lozano A 3rd, Hassanipour F. Infrared imaging for breast cancer detection: An objective review of foundational studies and its proper role in breast cancer screening. Infrared Phys Technol. 2019;97:244-257. doi: 10.1016/j.infrared.2018.12.017
- Wang J, Chang KJ, Chen CY, et al. Evaluation of the diagnostic performance of infrared imaging of the breast: A preliminary study. Biomed Eng Online. 2010;9:3. doi: 10.1186/1475-925x-9-3
- Nass SJ, Henderson IC, Lashof JC. Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer. Washington, DC: Instituteof Medicine and National Research Council US, The National Academies Press US; 2001. doi: 10.17226/10030
- Zuluaga-Gomez J, Zerhouni N, Al Masry Z, Devalland C, Varnier C. A survey of breast cancer screening techniques: Thermography and electrical impedance tomograph. J Med Eng Technol. 2019;43(5):305-322. doi: 10.1080/03091902.2019.1664672
- Mambou S, Maresova P, Krejcar O, Selamat A, Kuca K. Breast cancer detection using infrared thermal imaging and a deep learning model. Sensors (Basel). 2018;18(9):2799. doi: 10.3390/s18092799.
- Abdel-Nasser M, Moreno A, Puig D. Breast cancer detection in thermal infrared images using representation learning and texture analysis methods. Electronics (Basel). 2019;8(1):100. doi: 10.3390/electronics8010100
- Zuluaga-Gomez J, Ai Masry Z, Benaggoune K, Meraghni S, Zerhouni N. A CNN-based methodology for breast cancer diagnosis using thermal images. Comput Methods Biomech Biomed Eng Imaging Vis. 2021;9(2):131-145. doi: 10.1080/21681163.2020.1824685
- Rakhunde MB, Gotarkar S, Choudhari SG. Thermography as a breast cancer screening technique: A review article. Cureus. 2022;14(11):e31251. doi: 10.7759/cureus.31251
- Gautherie M. Thermo-pathology of breast cancer: Measurement and analysis of in vivo temperature and blood flow. Ann New York Acad Sci. 1980;335:383-415. doi: 10.1111/j.1749-6632.1980.tb50764
- Kandlikar SG, Perez-Raya I, Raghupati PA, et al. Infrared imaging technology for breast cancer detection - current status, protocols and new directions. Int J Heat Mass Transf. 2017;108:2303-2320. doi: 10.1016/j.ijheatmasstransfer.2017.01.086
- Kerlikowske K, Ma L, Scott CG, et al. Combining quantitative and qualitative breast density measures to assess breast cancer risk. Breast Cancer Res. 2017;19:97. doi: 10.1186/s13058-017-0887-5
- Ming W, Zhu Y, Li F, et al. Identifying associations between DCE-MRI radiomic features and expression heterogeneity of hallmark pathways in breast cancer: A multi-center radio-genomic study. Genes (Basel). 2022;14:28. doi: 10.3390/genes14010028
- Yang Y, Zhang Y, Hong H, Liu G, Leigh BR, Cai W. In vivo near-infrared fluorescence imaging of CD105 expression during tumor angiogenesis. Eur J Nucl Med Mol Imaging. 2011;38(11):2066-2076. doi: 10.1007/s00259-011-1886-x
- Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77(9):1745-1770. doi: 10.1007/s00018-019-03351-7
- Longatto Filho A, Lopes JM, Schmitt FC. Angiogenesis and breast cancer. J Oncol. 2010;2010:576384. doi: 10.1155/2010/576384
- Ramadan WS, Zaher DM, Altaie AM, Talaat IM, Elmoselhi A. Potential therapeutic strategies for lung and breast cancers through understanding the anti-angiogenesis resistance mechanisms. Int J Mol Sci. 2020;21(2):565. doi: 10.3390/ijms21020565
- Gershenson M, Gershenson J. Dynamic vascular imaging using active breast thermography. Sensors (Basel). 2023;23(6):3012. doi: 10.3390/s23063012
- Amalu WC, Hobbins WB, Head JF, Elliott RL. Infrared Imaging of the Breast-an Overview. In: Medical Devices and Systems. 3rd ed., vol. 25. United States: CRC Press; 2006.
- Singh A, Bhat V, Sudhakar S, et al. Multicentric study to evaluate the effectiveness of Thermalytix as compared with standard screening modalities in subjects who show possible symptoms of suspected breast cancer. BMJ Open. 2021;11(10):e052098. doi: 10.1136/bmjopen-2021-052098
- Pramanik S, Banik D, Nasipuri M, Bhowmik MK, Majumdar G. Suspicious-region segmentation from breast thermogram using DLPE-based level set method. IEEE Trans Med Imaging. 2019;38(2):572-584. doi: 10.1109/tmi.2018.2867620
- Garduño-Ramón MA, Vega-Mancilla SG, Morales- Henández LA, Osornio-Rios RA. Supportive noninvasive tool for the diagnosis of breast cancer using a thermographic camera as sensor. Sensors (Basel). 2017;17(3):497. doi: 10.3390/s17030497
- Kakileti ST, Madhu H, Subramoni T, Manjunath G. Thermalytix. XRDS Crossroads ACM Mag Stud. 2020;26(3):38-41. doi: 10.1145/3383384
- Bandyopadhyay A, Mondal HS, Dam B, Patranabis DC. Efficient infrared image processing and machine learning algorithm for breast cancer screening. Comput Methods Biomech Biomed Eng Imaging Vis. 2023;11(6):2226-2238. doi: 10.1080/21681163.2023.2225639
