Artificial intelligence in health systems: A comprehensive review of opportunities and limitations

Artificial intelligence (AI) has emerged as a transformative tool across multiple sectors, with healthcare being one of the most promising domains. This review article explores the foundational concepts of AI and its rapidly expanding applications in the healthcare sector. The integration of AI in health systems encompasses various branches, including diagnostic imaging, drug discovery, virtual health assistants, robotic surgery, and personalized medicine. AI-powered tools have demonstrated significant advantages, such as enhancing diagnostic accuracy, optimizing treatment plans, reducing administrative burdens, and improving patient outcomes. However, the deployment of AI in healthcare also presents notable challenges and limitations. These include data privacy concerns, algorithmic bias, lack of transparency, and the need for substantial infrastructure and workforce training. Moreover, ethical and regulatory issues continue to influence the pace and scope of AI adoption. This review critically examines these aspects while highlighting recent innovations that underscore AI’s potential. Finally, the article outlines future directions for AI in healthcare, emphasizing the need for interdisciplinary collaboration, robust ethical frameworks, and the development of explainable AI systems. As technology evolves, a balanced approach that maximizes benefits while mitigating risks is essential for the sustainable integration of AI into global health systems.
- Bavli I, Galea S. Key considerations in the adoption of Artificial Intelligence in public health. PLOS Digit Health. 2024;3(7):e0000540. doi: 10.1371/journal.pdig.0000540
- Sood T, Sharma E, Katoch G. Scope and challenges of artificial intelligence in public health. J Epidemiol Found India. 2023;1(1):16-19. doi: 10.56450/jefi.2023.v1i01.004
- Benke K, Benke G. Artificial intelligence and big data in public health. Int J Environ Res Public Health. 2018;15(12):2796. doi: 10.3390/ijerph15122796
- Panah HR. Early detecting of infectious disease outbreaks: AI potentials for public health systems. Rangahau Aranga AUT Grad Rev. 2023;2(3): 11-12. doi: 10.24135/rangahau-aranga.v2i3.180
- Ghanem S, Moraleja M, Gravesande D, Rooney J. Integrating health equity in artificial intelligence for public health in Canada: A rapid narrative review. Front Public Health. 2025;13:1524616. doi: 10.3389/fpubh.2025.1524616
- Fisher S, Rosella LC. Priorities for successful use of artificial intelligence by public health organizations: A literature review. BMC Public Health. 2022;22(1):2146. doi: 10.1186/s12889-022-14422-z
- Morgenstern JD, Rosella LC, Daley MJ, Goel V, Schünemann HJ, Piggott T. “AI’s gonna have an impact on everything in society, so it has to have an impact on public health”: A fundamental qualitative descriptive study of the implications of artificial intelligence for public health. BMC Public Health. 2021;21(1):40. doi: 10.1186/s12889-020-10030-x
- Aung YYM, Wong DCS, Ting DSW. The promise of artificial intelligence: A review of the opportunities and challenges of artificial intelligence in healthcare. Br Med Bull. 2021;139(1):4-15. doi: 10.1093/bmb/ldab016
- Kaur S, Singla J, Nkenyereye L, et al. Medical diagnostic systems using artificial intelligence (AI) algorithms: Principles and perspectives. IEEE Access. 2020;8:228049-228069. doi: 10.1109/access.2020.3042273
- Ren S, Chen G, Li T, Chen Q, Li S. A deep learning-based computational Algorithm for identifying damage load condition: An Artificial intelligence inverse problem solution for failure analysis. Comput Model Eng Sci. 2018;117(3):287-307. doi: 10.31614/cmes.2018.04697
- Sancricca C, Siracusa G, Cappiello C. Enhancing data preparation: Insights from a time series case study. J Intell Inform Syst. 2024;62:1503-1530. doi: 10.1007/s10844-024-00867-8
- Whang SE, Roh Y, Song H, Lee JG. Data Collection and Quality Challenges in Deep Learning: A Data-Centric AI Perspective. arXiv.org; 2021. Available from: https://arxiv. org/abs/2112.06409 [Last accessed on 2025 Jul 11].
- Varnosfaderani SM, Forouzanfar M. The role of AI in hospitals and clinics: Transforming healthcare in the 21st century. Bioengineering (Basel). 2024;11(4):337. doi: 10.3390/bioengineering11040337
- Ali O, Abdelbaki W, Shrestha A, Elbasi E, Alryalat MAA, Dwivedi YK. A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities. J Innov Knowl. 2023;8(1):100333. doi: 10.1016/j.jik.2023.100333
- Nair M, Svedberg P, Larsson I, Nygren JM. A comprehensive overview of barriers and strategies for AI implementation in healthcare: Mixed-method design. PLoS One. 2024;19(8):e0305949. doi: 10.1371/journal.pone.0305949
- Feng J, Phillips RV, Malenica I, et al. Clinical artificial intelligence quality improvement: towards continual monitoring and updating of AI algorithms in healthcare. NPJ Digit Med. 2022;5(1):66. doi: 10.1038/s41746-022-00611-y
- Bohr A, Memarzadeh K. The Rise of Artificial Intelligence in Healthcare Applications. Netherlands: Elsevier eBooks; 2020. p. 25-60. doi: 10.1016/b978-0-12-818438-7.00002-2
- Vaidya J, Shafiq B, Jiang X, Ohno-Machado L. Identifying inference attacks against healthcare data repositories. AMIA Jt Summits Transl Sci Proc. 2013;2013:262-266.
- Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthc J. 2021;8(2):e188-e194. doi: 10.7861/fhj.2021-0095
- Khubone T, Tlou B, Mashamba-Thompson TP. Electronic health information systems to improve disease diagnosis and management at point-of-care in low and middle income countries: A narrative review. Diagnostics (Basel). 2020;10(5):327. doi: 10.3390/diagnostics10050327
- Mudgal SK, Agarwal R, Chaturvedi J, Gaur R, Ranjan N. Real-world application, challenges and implication of artificial intelligence in healthcare: An essay. Pan Afr Med J. 2022;43:3. doi: 10.11604/pamj.2022.43.3.33384
- Schork NJ. Artificial intelligence and personalized medicine. Cancer Treat Res. 2019;178:265-283. doi: 10.1007/978-3-030-16391-4_11
- Udegbe NFC, Ebulue NOR, Ebulue NCC, Ekesiobi NCS. AI’s impact on personalized medicine: Tailoring treatments for improved health outcomes. Eng Sci Technol J. 2024;5(4):1386-1394. doi: 10.51594/estj.v5i4.1040
- Blanco-González A, Cabezón A, Seco-González A, et al. The role of AI in drug discovery: Challenges, opportunities, and strategies. Pharmaceuticals (Basel). 2023;16(6):891. doi: 10.3390/ph16060891
- Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today. 2020;26(1):80-93. doi: 10.1016/j.drudis.2020.10.010
- Chopra H, Annu, Shin DK, et al. Revolutionizing clinical trials: The role of AI in accelerating medical breakthroughs. Int J Surg. 2023;109(12):4211-4220. doi: 10.1097/js9.0000000000000705
- Borda A, Molnar A, Neesham C, Kostkova P. Ethical issues in AI-enabled disease surveillance: Perspectives from global health. Appl Sci. 2022;12(8):3890. doi: 10.3390/app12083890
- Parums DV. Editorial: Infectious disease surveillance using artificial intelligence (AI) and its role in epidemic and pandemic preparedness. Med Sci Monit. 2023;29:e941209. doi: 10.12659/msm.941209
- Boatemaa R, Asare SO, Akabadin SC, Agyabeng V, Addy A. The role of AI in enhancing disease surveillance and outbreak response in developing countries. Ghana J Nurs Midwifery. 2024;1(4):16-29. doi: 10.69600/gjnmid.2024.v01.i04.16-29
- Shaik T, Tao X, Higgins N, et al. Remote patient monitoring using artificial intelligence: Current state, applications, and challenges. Wiley Interdiscip Rev Data Mining Knowl Discov. 2023;13(2):e1485. doi: 10.1002/widm.1485
- Nigar N. AI in Remote Patient Monitoring. arXiv.org; 2024. Available from: https://arxiv.org/abs/2407.17494 [Last accessed on 2025 Aug 19].
- Guni A, Varma P, Zhang J, Fehervari M, Ashrafian H. Artificial intelligence in surgery: The future is now. Eur Surg Res. 2024;65(1):22-39. doi: 10.1159/000536393
- Kalusivalingam AK, Sharma A, Patel N, Singh V. Enhancing patient care through IoT-Enabled remote monitoring and AI-Driven virtual health assistants: Implementing machine learning algorithms and natural language processing. Int J AI ML. 2021;2(3):1-24.
- Talati D. Virtual health assistance - AI-based. Int AL ML J. 2024;2:1-3. doi: 10.36227/techrxiv.170474377.76705256/v1
- Baurasien BK, Alareefi HS, Almutairi DB, et al. Medical errors and patient safety: Strategies for reducing errors using artificial intelligence. Int J Health Sci. 2023;7(S1):3471-3487. doi: 10.53730/ijhs.v7ns1.15143
- Khalid U, Naeem M, Stasolla F, Syed M, Abbas M, Coronato A. Impact of AI-Powered solutions in rehabilitation Process: Recent improvements and future trends. Int J Gen Med. 2024;17:943-969. doi: 10.2147/ijgm.s453903
- Mennella C, Maniscalco U, De Pietro G, Esposito M. The role of artificial intelligence in future rehabilitation services: A systematic literature review. IEEE Access. 2023;11:11024-11043. doi: 10.1109/access.2023.3236084
- Wendler T, Van Leeuwen FWB, Navab N, Van Oosterom MN. How molecular imaging will enable robotic precision surgery. Eur J Nuclear Med Mol Imaging. 2021;48(13):4201-4224. doi: 10.1007/s00259-021-05445-6
- Huang Y, Li J, Zhang X, et al. A Surgeon Preference-Guided autonomous instrument tracking method with a robotic flexible endoscope based on DVRK platform. IEEE Robot Automat Lett. 2022;7(2):2250-2257. doi: 10.1109/lra.2022.3143305
- Knudsen JE, Ghaffar U, Ma R, Hung AJ. Clinical applications of artificial intelligence in robotic surgery. J Robot Surg. 2024;18(1):102. doi: 10.1007/s11701-024-01867-0
- Nigam S, Gupta M, Srivastava S, Khan MA, Malik S, Chaturvedi R. Future of AI-Driven Surgical Robotics. In: Conference: 2025 3rd International Conference on Disruptive Technologies (ICDT); 2025. p. 413-418. doi: 10.1109/icdt63985.2025.10986377
- Viderman D, Dossov M, Seitenov S, Lee MH. Artificial intelligence in ultrasound-guided regional anesthesia: A scoping review. Front Med. 2022;9:994805. doi: 10.3389/fmed.2022.994805
- Tziortziotis I, Laskaratos FM, Coda S. Role of artificial intelligence in video capsule endoscopy. Diagnostics (Basel). 2021;11(7):1192. doi: 10.3390/diagnostics11071192
- Ness S, Xuan TR, Oguntibeju OO. Influence of AI: Robotics in healthcare. Asian J Res Comput Sci. 2024;17(5):222-237. doi: 10.9734/ajrcos/2024/v17i5451
- Miloski B. Opportunities for artificial intelligence in healthcare and in vitro fertilization. Fertil Steril. 2023;120(1):3-7. doi: 10.1016/j.fertnstert.2023.05.006
- Olawade DB, Teke J, Adeleye KK, Weerasinghe K, Maidoki M, David-Olawade AC. Artificial intelligence in in-vitro fertilization (IVF): A new era of precision and personalization in fertility treatments. J Gynecol Obstet Hum Reprod. 2025;54:102903. doi: 10.1016/j.jogoh.2024.102903
- Chow DJX, Wijesinghe P, Dholakia K, Dunning KR. Does artificial intelligence have a role in the IVF clinic? Reprod Fertil. 2021;2(3):C29-C34. doi: 10.1530/raf-21-0043
- Sadeghi MR. Will artificial intelligence change the future of IVF? J Reprod Infertil. 2022;23:139-140. doi: 10.18502/jri.v23i3.10003
- Sezgin E. Artificial intelligence in healthcare: Complementing, not replacing, doctors and healthcare providers. Digit Health. 2023;9:20552076231186520. doi: 10.1177/20552076231186520
- Wang Z, Wei L, Xue L. Overcoming Medical Overuse with AI Assistance: An Experimental Investigation. arXiv.org; 2024. Available from: https://arxiv.org/abs/2405.10539 [Last accessed on 2025 Aug 17].
- Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):195. doi: 10.1186/s12916-019-1426-2
- Hanif MZ. Impact of human resource practices on employee performance A case study of Vivid Technologies. iRAPA Int J Bus Stud. 2024;1(1):44-60. doi: 10.48112/iijbs.v1i1.779
- Gholizadeh N, Rokni GR, Babaei M. Advantages and disadvantages of using AI in dermatology. Dermatol Rev. 2024;5(4):e248. doi: 10.1002/der2.248
- Prevedello LM, Halabi SS, Shih G, et al. Challenges related to artificial intelligence research in medical imaging and the importance of image analysis competitions. Radiol Artif Intell. 2019;1(1):e180031. doi: 10.1148/ryai.2019180031
- Gupta S, Kumar V, Gupta P. Role of Artificial Intelligence in Health Sector. Boca Raton: CRC Press eBooks; 2024. p. 690-695. doi: 10.1201/9781003559092-119
- Petersson L, Larsson I, Nygren JM, et al. Challenges to implementing artificial intelligence in healthcare: A qualitative interview study with healthcare leaders in Sweden. BMC Health Serv Res. 2022;22(1):850. doi: 10.1186/s12913-022-08215-8
- Wolff J, Pauling J, Keck A, Baumbach J. Success factors of artificial intelligence implementation in healthcare. Front Digit Health. 2021;3:594971. doi: 10.3389/fdgth.2021.594971
- Noorbakhsh-Sabet N, Zand R, Zhang Y, Abedi V. Artificial intelligence transforms the future of health care. Am J Med. 2019;132(7):795-801. doi: 10.1016/j.amjmed.2019.01.017