Artificial intelligence and biomarker approaches for Parkinson’s disease detection

Parkinson’s disease (PD) is a neurological syndrome or condition that occurs due to a deficit of dopamine-producing neurons in the substantia nigra. Diagnosing PD in its early stages is difficult, as its symptoms often resemble those of other neurological diseases. Therefore, recognizing reliable biomarkers is important for discriminating PD from related conditions, monitoring disease progression, and evaluating responses to therapeutic interventions. PD biomarkers are categorized into the following classes: clinical, neuroimaging, biochemical and proteomic, and genetic. Ongoing research aims to discover the most effective PD biomarkers that could help doctors identify PD risk and accelerate early diagnosis. Artificial intelligence (AI) methods, including deep learning and machine learning, have become increasingly significant in recent years due to their ability to evaluate and process large volumes of medical data with high accuracy. Furthermore, these methods have contributed significantly to the early diagnosis and effective treatment of various diseases, such as cancer and neurological conditions, such as Alzheimer’s disease, PD, and multiple sclerosis. Given that PD affects a large population, the present study aims to review the applications of AI approaches in the early diagnosis of PD and the latest advancements in the field of PD biomarkers. Promising results have been obtained using various AI algorithms, which are helpful not only in identifying the PD stages but also in supporting early diagnosis. However, the implementation of these techniques in clinical practice faces challenges, including data quality and variability, model interpretability, and the need for interdisciplinary collaboration.
- Neurodegenerative Diseases. Cleveland Clinic; 2023. Available from: https://my.clevelandclinic.org/health/diseases/24976-neurodegenerative-diseases [Last accessed on 2025 Apr 21].
- Launch of WHO’s Parkinson Disease Technical Brief. WHO. Geneva: World Health Organization; 2022.
- Statistics. Parkinson’s Foundation. Available from: https:// www.parkinson.org/understanding-parkinsons/statistics [Last accessed on 2025 Apr 20].
- Yang W, Hamilton JL, Kopil C, et al. Current and projected future economic burden of Parkinson’s disease in the US. NPJ Parkinsons Dis. 2020;6:15. doi: 10.1038/s41531-020-0117-1
- Zhou ZD, Yi LX, Wang DQ, Lim TM, Tan EK. Role of dopamine in the pathophysiology of Parkinson’s disease. Transl Neurodegener. 2023;12(1):44. doi: 10.1186/s40035-023-00378-6
- Zhang T, Yang R, Pan J, Huang S. Parkinson’s disease related depression and anxiety: A 22-year bibliometric analysis (2000-2022). Neuropsychiatr Dis Treat. 2023:1477-1489. doi: 10.2147/NDT.S403002
- Xiao B, Zhou Z, Chao Y, Tan EK. Pathogenesis of Parkinson’s disease. Neurol Clin. 2025;43(2):185-207. doi: 10.1016/j.ncl.2024.12.003
- Lee TK, Yankee EL. A review on Parkinson’s disease treatment. Neuroimmunol Neuroinflamm. 2021;8:222-244.
- Jankovic J, Tan EK. Parkinson’s disease: Etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91(8):795-808. doi: 10.1136/jnnp-2019-322338
- Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021;397(10291):2284-2303. doi: 10.1016/S0140-6736(21)00218-X
- Rodriguez-Sanchez F, Rodriguez-Blazquez C, Bielza C, et al. Identifying Parkinson’s disease subtypes with motor and non-motor symptoms via model-based multi-partition clustering. Sci Rep. 2021;11(1):23645. doi: 10.1038/s41598-021-03118-w
- Ramesh S, Arachchige ASPM. Depletion of dopamine in Parkinson’s disease and relevant therapeutic options: A review of the literature. AIMS Neurosci. 2023;10(3):200-231. doi: 10.3934/Neuroscience.2023017
- Bidesi NS, Vang Andersen I, Windhorst AD, Shalgunov V, Herth MM. The role of neuroimaging in Parkinson’s disease. J Neurochem. 2021;159(4):660-689. doi: 10.1111/jnc.15516
- Öksüz N, Öztürk Ş, Doğu O. Future prospects in Parkinson’s disease diagnosis and treatment. Noro Psikiyatr Ars. 2022;59:S36-S41. doi: 10.29399/npa.28169
- Jurcau A, Andronie-Cioara FL, Nistor-Cseppento DC, et al. The involvement of neuroinflammation in the onset and progression of Parkinson’s disease. Int J Mol Sci. 2023;24(19):14582. doi: 10.3390/ijms241914582
- Ma ZL, Wang ZL, Zhang FY, Liu HX, Mao LH, Yuan L. Biomarkers of Parkinson’s disease: From basic research to clinical practice. Aging Dis. 2024;15(4):1813-1830. doi: 10.14336/AD.2023.1005
- Mazzotta GM, Conte C. Alpha synuclein toxicity and non-motor Parkinson’s. Cells. 2024;13:1265. doi: 10.3390/cells13151265
- Koníčková D, Menšíková K, Tučková L, et al. Biomarkers of neurodegenerative diseases: Biology, taxonomy, clinical relevance, and current research status. Biomedicines. 2022;10(7):1760. doi: 10.3390/biomedicines10071760
- Nila IS, Sumsuzzman DM, Khan ZA, et al. Identification of exosomal biomarkers and its optimal isolation and detection method for the diagnosis of Parkinson’s disease: A systematic review and meta-analysis. Ageing Res Rev. 2022;82:101764. doi: 10.1016/j.arr.2022.101764
- Parkinson’s Foundation. Genetics behind Parkinson’s. PD GENEration. Parkinson’s Foundation website. Available from: https://www.parkinson.org/advancing-research/our-research/pdgeneration/genetics-behind-pd [Last accessed on 2025 Apr 19].
- FDA-NIH Biomarker Working Group. Glossary. Food and Drug Administration; 2025. Available from: https://www. ncbi.nlm.nih.gov/books/NBK338448 [Last accessed on 2025 Apr 20].
- Available from: https://www.physio-pedia.com/index.php?title=biomarkers_of_parki nson’s _ disease&oldid=346298 [Last accessed on 2025 Apr 21].
- Surguchov A. Biomarkers in Parkinson’s disease. In: Neurodegenerative Diseases Biomarkers: Towards Translating Research to Clinical Practice. Berlin: Springer; 2022. p. 155-180.
- Triadafilopoulos G. Research in gut PD. In: The Gut in Parkinson’s Disease. Berlin: Springer Nature Switzerland; 2025. p. 165-167.
- Rahmani AM, Yousefpoor E, Yousefpoor MS, et al. Machine learning (ML) in medicine: Review, applications, and challenges. Mathematics. 2021;9:2970.
- Chakraborty C, Bhattacharya M, Pal S, Lee SS. From machine learning to deep learning: Advances of the recent data-driven paradigm shift in medicine and healthcare. Curr Res Biotechnol. 2024;7:100164.
- Oliveira AM, Coelho L, Carvalho E, Ferreira-Pinto MJ, Vaz R, Aguiar P. Machine learning for adaptive deep brain stimulation in Parkinson’s disease: Closing the loop. J Neurol. 2023;270(11):5313-5326. doi: 10.1007/s00415-023-11873-1
- El Maachi I, Bilodeau GA, Bouachir W. Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait. Expert Syst Appl. 2020;143:113075.
- Goyal P, Rani R. Comparative analysis of machine learning, ensemble learning and deep learning classifiers for Parkinson’s disease detection. SN Comput Sci. 2023;5(1):66.
- Senturk ZK. Early diagnosis of Parkinson’s disease using machine learning algorithms. Med Hypotheses. 2020;138:109603.
- Ouhmida A, Raihani A, Cherradi B, Terrada O. A novel approach for Parkinson’s disease detection based on voice classification and features selection techniques. Int J Online Biomed Eng. 2021;17(10):111-130.
- Chintalapudi N, Battineni G, Hossain MA, Amenta F. Cascaded deep learning frameworks in contribution to the detection of Parkinson’s disease. Bioengineering (Basel). 2022;9(3):116. doi: 10.3390/bioengineering9030116
- Ferreira MIASN, Barbieri FA, Moreno VC, Penedo T, Tavares JMR. Machine learning models for Parkinson’s disease detection and stage classification based on spatial-temporal gait parameters. Gait Posture. 2022;98:49-55. doi: 10.1016/j.gaitpost.2022.08.014
- Sigcha L, Domínguez B, Borzì L, et al. Bradykinesia detection in Parkinson’s disease using smartwatches’ inertial sensors and deep learning methods. Electronics. 2022;11(23):3879.
- Thakur K, Kapoor DS, Singh KJ, Sharma A, Malhotra J. Diagnosis of Parkinson’s disease using machine learning algorithms. In: Congress on Intelligent Systems. Berlin: Springer Nature; 2022. p. 205-217.
- Trabassi D, Serrao M, Varrecchia T, et al. Machine learning approach to support the detection of Parkinson’s disease in IMU-based Gait analysis. Sensors (Basel). 2022;22(10):3700. doi: 10.3390/s22103700
- Alalayah KM, Senan EM, Atlam HF, Ahmed IA, Shatnawi HSA. Automatic and early detection of Parkinson’s disease by analyzing acoustic signals using classification algorithms based on recursive feature elimination method. Diagnostics (Basel). 2023;13(11):1924. doi: 10.3390/diagnostics13111924
- Govindu A, Palwe S. Early detection of Parkinson’s disease using machine learning. Procedia Comput Sci. 2023;218:249-261.
- Martinez-Eguiluz M, Arbelaitz O, Gurrutxaga I, et al. Diagnostic classification of Parkinson’s disease based on non-motor manifestations and machine learning strategies. Neural Comput Appl. 2023;35(8):5603-5617.
- Yadav S, Singh MK, Pal S. Artificial intelligence model for parkinson disease detection using machine learning algorithms. Biomed Mater Dev. 2023;1(2):899-911.
- Goyal J, Khandnor P, Aseri TC. Objective and automatic assessment of bradykinesia in Parkinson’s patients using new repetitive pointing task with machine learning approach. Multimedia Tools Appl. 2024;83:81413-81429.
- Faiem N, Asuroglu T, Acici K, Kallonen A, Van Gils M. Assessment of Parkinson’s disease severity using gait data: a deep learning-based multimodal approach. In: Nordic Conference on Digital Health and Wireless Solutions. Berlin: Springer; 2024. p. 29-48.
- Palakayala AR, Kuppusamy P. A qualitative and quantitative approach using machine learning and non-motor symptoms for Parkinson’s disease classification. A hierarchical study. Appl Comput Sci. 2024;20(3):171-191.
- Salsone M, Vescio B, Quattrone A, et al. Periodic leg movements during sleep associated with REM sleep behavior disorder: A machine learning study. Diagnostics (Basel). 2024;14(4):363. doi: 10.3390/diagnostics14040363
- Wang Q, Zeng W, Dai X. Gait classification for early detection and severity rating of Parkinson’s disease based on hybrid signal processing and machine learning methods. Cogn Neurodyn. 2024;18(1):109-132. doi: 10.1007/s11571-022-09925-9
- Byeon H. Development of a depression in Parkinson’s disease prediction model using machine learning. World J Psychiatry. 2020;10(10):234-244. doi: 10.5498/wjp.v10.i10.234
- Lee KS, Ham BJ. Machine learning on early diagnosis of depression. Psychiatry Investig. 2022;19(8):597-605. doi: 10.30773/pi.2022.0075
- Pereira PA, Trivedi DK, Silverman J, et al. Multiomics implicate gut microbiota in altered lipid and energy metabolism in Parkinson’s disease. NPJ Parkinsons Dis. 2022;8(1):39. doi: 10.1038/s41531-022-00300-3
- Li J, Zhao Y, Liu Y, et al. AI scheme for high-accuracy and contactless assessment of Parkinson’s disease grades. Biomed Signal Process Control. 2025;100:107025.
- Lu H, Qi G, Wu D, et al. A novel feature extraction method based on dynamic handwriting for Parkinson’s disease detection. PLoS One. 2025;20(1):e0318021.
- Castillo-Barnes D, Martinez-Murcia FJ, Ortiz A, Salas- Gonzalez D, Ramírez J, Górriz JM. Morphological characterization of functional brain imaging by isosurface analysis in Parkinson’s disease. Int J Neural Syst. 2020;30:2050044. doi: 10.1142/S0129065720500446
- Chakraborty S, Aich S, Kim HC. 3D textural, morphological and statistical analysis of voxel of interests in 3T MRI scans for the detection of Parkinson’s disease using artificial neural networks. Healthcare (Basel). 2020;8(1):34. doi: 10.3390/healthcare8010034
- Chakraborty S, Aich S, Kim HC. Detection of Parkinson’s disease from 3T T1 weighted MRI scans using 3D convolutional neural network. Diagnostics (Basel). 2020;10(6):402. doi: 10.3390/diagnostics10060402
- Huang GH, Lin CH, Cai YR, et al. Multiclass machine learning classification of functional brain images for Parkinson’s disease stage prediction. Statistical Analysis and Data Mining. ASA Data Sci J. 2020;13(5):508-523.
- Magesh PR, Myloth RD, Tom RJ. An explainable machine learning model for early detection of Parkinson’s disease using LIME on DaTSCAN imagery. Comput Biol Med. 2020;126:104041. doi: 10.1016/j.compbiomed.2020.104041
- Solana-Lavalle G, Rosas-Romero R. Classification of PPMI MRI scans with voxel-based morphometry and machine learning to assist in the diagnosis of Parkinson’s disease. Comput Methods Programs Biomed. 2021;198:105793. doi: 10.1016/j.cmpb.2020.105793
- Shu ZY, Cui SJ, Wu X, et al. Predicting the progression of Parkinson’s disease using conventional MRI and machine learning: An application of radiomic biomarkers in whole-brain white matter. Magn Reson Med. 2021;85:1611-1624. doi: 10.1002/mrm.28522
- Veetil IK, Gopalakrishnan EA, Sowmya V, Soman KP. Parkinson’s disease classification from magnetic resonance images (MRI) using deep transfer learned convolutional neural networks. In: 2021 IEEE 18th India Council International Conference (INDICON). IEEE; 2021. p. 1-6.
- Guo X, Tinaz S, Dvornek NC. Characterization of early stage Parkinson’s disease from resting-state fMRI data using a long short-term memory network. Front Neuroimaging. 2022;1:952084. doi: 10.3389/fnimg.2022.952084
- Tomer S, Khanna K, Gambhir S, Gambhir M. Comparison analysis of GLCM and PCA on Parkinson’s disease using structural MRI. Int J Inform Retrieval Res. 2022;12(1):1-15.
- Vyas T, Yadav R, Solanki C, Darji R, Desai S, Tanwar S. Deep learning-based scheme to diagnose Parkinson’s disease. Expert Syst. 2022;39(3):e12739.
- Camacho M, Wilms M, Mouches P, et al. Explainable classification of Parkinson’s disease using deep learning trained on a large multi-center database of T1-weighted MRI datasets. Neuroimage Clin. 2023;38:103405. doi: 10.1016/j.nicl.2023.103405
- Erdaş ÇB, Sümer E. A fully automated approach involving neuroimaging and deep learning for Parkinson’s disease detection and severity prediction. PeerJ Comput Sci. 2023;9:e1485. doi: 10.7717/peerj-cs.1485
- Khachnaoui H, Chikhaoui B, Khlifa N, Mabrouk R. Enhanced Parkinson’s disease diagnosis through convolutional neural network models applied to spect datscan images. IEEE Access. 2023;11:91157-91172.
- Wang Y, He N, Zhang C, et al. An automatic interpretable deep learning pipeline for accurate Parkinson’s disease diagnosis using quantitative susceptibility mapping and T1-weighted images. Hum Brain Mapp. 2023;44:4426-4438. doi: 10.1002/hbm.26399
- Praneeth P, Sathvika M, Kommareddy V, et al. Classification of Parkinson’s disease in brain MRI images using deep residual convolutional neural network (DRCNN). Int J Comput Inform Syst Ind Manag Appl. 2023;15:13.
- Ahalya RK, Nkondo GF, Snekhalatha U. Automated detection of Parkinson’s disease based on hybrid CNN and quantum machine learning techniques in MRI images. Biomed Eng Appl Basis Commun. 2024;36(2):2450005.
- Islam N, Turza MSA, Fahim SI, Rahman RM. Advanced Parkinson’s disease detection: A comprehensive artificial intelligence approach utilizing clinical assessment and neuroimaging samples. Int J Cogn Comput Eng. 2024;5:199-220.
- Patil P, Ford WR. Parkinson’s disease recognition using decorrelated convolutional neural networks: Addressing imbalance and scanner bias in rs-fMRI Data. Biosensors (Basel). 2024;14(5):259. doi: 10.3390/bios14050259
- Redhya M, Jayalakshmi M. An Ensembled Grid based Machine Learning Approach For PD Classification From MRI Images. In: 2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). IEEE; 2024. p. 1-6.
- Zhang Z, Peng J, Song Q, Xu Y, Wei Y, Shu Z. Identification of depression subtypes in parkinson’s disease patients via structural MRI whole-brain radiomics: An unsupervised machine learning study. CNS Neurosci Ther. 2025;31(2):e70182. doi: 10.1111/cns.70182
- Alharbi RA. Proteomics approach and techniques in identification of reliable biomarkers for diseases. Saudi J Biol Sci. 2020;27(3):968-974. doi: 10.1016/j.sjbs.2020.01.020
- Wang Z, Becker K, Donadio V, et al. Skin α-synuclein aggregation seeding activity as a novel biomarker for Parkinson disease. JAMA Neurol. 2021;78:1-11. doi: 10.1001/jamaneurol.2020.3311
- Lin CH, Chiu SI, Chen TF, Jang JSR, Chiu MJ. Classifications of neurodegenerative disorders using a multiplex blood biomarkers-based machine learning model. Int J Mol Sci. 2020;21(18):6914. doi: 10.3390/ijms21186914
- Maass F, Michalke B, Willkommen D, et al. Elemental fingerprint: Reassessment of a cerebrospinal fluid biomarker for Parkinson’s disease. Neurobiol Dis. 2020;134:104677. doi: 10.1016/j.nbd.2019.104677
- Wang W, Lee J, Harrou F, Sun Y. Early detection of Parkinson’s disease using deep learning and machine learning. IEEE Access. 2020;8:147635-147646.
- Chung CC, Chan L, Chen JH, Bamodu OA, Chiu HW, Hong CT. Plasma extracellular vesicles tau and β-amyloid as biomarkers of cognitive dysfunction of Parkinson’s disease. FASEB J. 2021;35(10):e21895. doi: 10.1096/fj.202100787R
- Vacchi E, Burrello J, Burrello A, et al. Profiling inflammatory extracellular vesicles in plasma and cerebrospinal fluid: An optimized diagnostic model for Parkinson’s disease. Biomedicines. 2021;9(3):230. doi: 10.3390/biomedicines9030230
- Amboni M, Ricciardi C, Adamo S, et al. Machine learning can predict mild cognitive impairment in Parkinson’s disease. Front Neurol. 2022;13:1010147. doi: 10.3389/fneur.2022.1010147
- Chen PH, Hou TY, Cheng FY, Shaw JS. Prediction of cognitive degeneration in Parkinson’s disease patients using a machine learning method. Brain Sci. 2022;12(8):1048. doi: 10.3390/brainsci12081048
- Dadu A, Satone V, Kaur R, et al. Identification and prediction of Parkinson’s disease subtypes and progression using machine learning in two cohorts. NPJ Parkinsons Dis. 2022;8(1):172. doi: 10.1038/s41531-022-00439-z
- Harvey J, Reijnders RA, Cavill R, et al. Machine learning-based prediction of cognitive outcomes in de novo Parkinson’s disease. NPJ Parkinsons Dis. 2022;8(1):150. doi: 10.1038/s41531-022-00409-5
- Pahuja G, Prasad B. Deep learning architectures for Parkinson’s disease detection by using multi-modal features. Comput Biol Med. 2022;146:105610. doi: 10.1016/j.compbiomed.2022.105610
- Yang Y, Yuan Y, Zhang G, et al. Artificial intelligence-enabled detection and assessment of Parkinson’s disease using nocturnal breathing signals. Nat Med. 2022;28(10):2207-2215. doi: 10.1038/s41591-022-01932-x
- Allwright M, Mundell H, Sutherland G, Austin P, Guennewig B. Machine learning analysis of the UK Biobank reveals IGF-1 and inflammatory biomarkers predict Parkinson’s disease risk. PLos One. 2023;18(5):e0285416. doi: 10.1371/journal.pone.0285416
- Almgren H, Camacho M, Hanganu A, et al. Machine learning-based prediction of longitudinal cognitive decline in early Parkinson’s disease using multimodal features. Sci Rep. 2023;13(1):13193.
- Kelly J, Moyeed R, Carroll C, Luo S, Li X. Blood biomarker-based classification study for neurodegenerative diseases. Sci Rep. 2023;13(1):17191. doi: 10.1038/s41598-023-43956-4
- McFall GP, Bohn L, Gee M, et al. Identifying key multi-modal predictors of incipient dementia in Parkinson’s disease: A machine learning analysis and Tree SHAP interpretation. Front Aging Neurosci. 2023;15:112432. doi: 10.3389/fnagi.2023.1124232
- Tsukita K, Sakamaki-Tsukita H, Kaiser S, et al. High-throughput CSF proteomics and machine learning to identify proteomic signatures for parkinson disease development and progression. Neurology. 2023;101(14):e1434-e1447. doi: 10.1212/WNL.0000000000207725
- Chen H, Guo S, Zhuang Z, et al. Intelligent identification of cerebrospinal fluid for the diagnosis of Parkinson’s disease. Anal Chem. 2024;(6):2534-2542. doi: 10.1021/acs.analchem.3c04849
- Dennis AGP, Strafella AP. The identification of cognitive impairment in Parkinson’s disease using biofluids, neuroimaging, and artificial intelligence. Front Neurosci. 2024;18:1446878. doi: 10.3389/fnins.2024.1446878
- Hällqvist J, Bartl M, Dakna M, et al. Plasma proteomics identify biomarkers predicting Parkinson’s disease up to 7 years before symptom onset. Nat Commun. 2024;15(1):4759. doi: 10.1038/s41467-024-48961-3
- Callegari S, Kirk NS, Gan ZY, et al. Structure of human PINK1 at a mitochondrial TOM-VDAC array. Science. 2025;388:303-310. doi: 10.1126/science.adu6445
- Falchetti M, Prediger RD, Zanotto-Filho A. Classification algorithms applied to blood-based transcriptome meta-analysis to predict idiopathic Parkinson’s disease. Comput Biol Med. 2020;124:103925. doi: 10.1016/j.compbiomed.2020.103925
- Su C, Tong J, Wang F. Mining genetic and transcriptomic data using machine learning approaches in Parkinson’s disease. NPJ Parkinsons Dis. 2020;6(1):24.
- García-Fonseca Á, Martin-Jimenez C, Barreto GE, Pachón AFA, González J. The emerging role of long non-coding RNAs and microRNAs in neurodegenerative diseases: A perspective of machine learning. Biomolecules. 2021;11(8):1132. doi: 10.3390/biom11081132
- Hu S, Li S, Ning W, et al. Identifying crosstalk genetic biomarkers linking a neurodegenerative disease, Parkinson’s disease, and periodontitis using integrated bioinformatics analyses. Front Aging Neurosci. 2022;14:1032401. doi: 10.3389/fnagi.2022.1032401
- Lam S, Arif M, Song X, Uhlén M, Mardinoglu A. Machine learning analysis reveals biomarkers for the detection of neurological diseases. Front Mol Neurosci. 2022;15:889728. doi: 10.3389/fnmol.2022.889728
- Makarious MB, Leonard HL, Vitale D, et al. Multi-modality machine learning predicting Parkinson’s disease. NPJ Parkinsons Dis. 2022;8(1):35. doi: 10.1038/s41531-022-00288-w
- Pantaleo E, Monaco A, Amoroso N, et al. A machine learning approach to Parkinson’s disease blood transcriptomics. Genes (Basel). 2022;13(5):727. doi: 10.3390/genes13050727
- Vuidel A, Cousin L, Weykopf B, et al. High-content phenotyping of Parkinson’s disease patient stem cell-derived midbrain dopaminergic neurons using machine learning classification. Stem Cell Reports. 2022;17(10):2349-2364. doi: 10.1016/j.stemcr.2022.09.001
- Cai L, Tang S, Liu Y, Zhang Y, Yang Q. The application of weighted gene co-expression network analysis and support vector machine learning in the screening of Parkinson’s disease biomarkers and construction of diagnostic models. Front Mol Neurosci. 2023;16:1274268. doi: 10.3389/fnmol.2023.1274268
- Hajianfar G, Kalayinia S, Hosseinzadeh M, et al. Prediction of Parkinson’s disease pathogenic variants using hybrid Machine learning systems and radiomic features. Phys Med. 2023;113:102647. doi: 10.1016/j.ejmp.2023.102647
- Wang P, Chen Q, Tang Z, et al. Uncovering ferroptosis in Parkinson’s disease via bioinformatics and machine learningand reversed deducing potential therapeutic natural products. Front Genet. 2023;14:1231707. doi: 10.3389/fgene.2023.1231707
- Xin G, Niu J, Tian Q, et al. Identification of potential immune-related hub genes in Parkinson’s disease based on machine learning and development and validation of a diagnostic classification model. PLoS One. 2023;18(12):e0294984. doi: 10.1371/journal.pone.0294984
- Zhang Y, Sun X, Zhang P, et al. Identification of Parkinson’s disease associated genes through explicable deep learning and bioinformatic. In: International Conference on Applied Intelligence. Berlin: Springer Nature; 2023. p. 136-146.
- Ameli A, Peña-Castillo L, Usefi H. Assessing the reproducibility of machine-learning-based biomarker discovery in Parkinson’s disease. Comput Biol Med. 2024;174:108407. doi: 10.1016/j.compbiomed.2024.108407
- Banou E, Vrahatis AG, Krokidis MG, Vlamos P. Machine learning analysis of genomic factors influencing hyperbaric oxygen therapy in Parkinson’s disease. BioMedInformatics. 2024;4(1):127-138.
- Kumar A, Kouznetsova VL, Kesari S, Tsigelny IF. Parkinson’s disease diagnosis using miRNA biomarkers and deep learning. Front Biosci (Landmark Ed). 2024;29(1):4. doi: 10.31083/j.fbl2901004
- Peng H, Cheng Y, Chen Q, Qin L. Integrated transcriptomic and machine learning analysis identifies EAF2 as a diagnostic biomarker and key pathogenic factor in Parkinson’s disease. Int J Gen Med. 2024;17:5547-5562. doi: 10.2147/IJGM.S486214
- Teng WB, Deng HW, Lv BH, Zhou SD, Li BR, Hu RT. Exploring and validating key genetic biomarkers for diagnosis of Parkinson’s disease. Brain Res Bull. 2025;220:111165. doi: 10.1016/j.brainresbull.2024.111165
- Yan J, Wang Z, Li Y, Li R, Xiang K. m6A-related genes and their role in Parkinson’s disease: Insights from machine learning and consensus clustering. Medicine (Baltimore). 2024;103(45):e40484. doi: 10.1097/MD.0000000000040484
- Yang W, Xu S, Zhou M, Chan P. Aging-related biomarkers for the diagnosis of Parkinson’s disease based on bioinformatics analysis and machine learning. Aging (Albany NY). 2024;16(17):12191-12208. doi: 10.18632/aging.205954
- Yu E, Larivière R, Thomas RA, et al. Machine learning nominates the inositol pathway and novel genes in Parkinson’s disease. Brain. 2024;147(3):887-899. doi: 10.1093/brain/awad345
- Pietrucci D, Teofani A, Unida V, et al. Can gut microbiota be a good predictor for Parkinson’s disease? A machine learning approach. Brain Sci. 2020;10(4):242. doi: 10.3390/brainsci10040242
- Qian Y, Yang X, Xu S, et al. Gut metagenomics-derived genes as potential biomarkers of Parkinson’s disease. Brain. 2020;143(8):2474-2489. doi: 10.1093/brain/awaa201
- Lubomski M, Xu X, Holmes AJ, et al. Nutritional intake and gut microbiome composition predict Parkinson’s disease. Front Aging Neurosci. 2022;14:881872. doi: 10.3389/fnagi.2022.881872
- Nie S, Wang J, Deng Y, Ye Z, Ge Y. Inflammatory microbes and genes as potential biomarkers of Parkinson’s disease. NPJ Biofilms Microbiomes. 2022;8(1):101. doi: 10.1038/s41522-022-00367-z
- Nishiwaki H, Ito M, Hamaguchi T, et al. Short chain fatty acids-producing and mucin-degrading intestinal bacteria predict the progression of early Parkinson’s disease. NPJ Parkinsons Dis. 2022;8(1):65. doi: 10.1038/s41531-022-00328-5
- Sánchez XR. Machine Learning on Gut Microbiome Reveals Potential Biomarkers for Parkinson’s Diagnosis. 2022. Bachelor’s Degree in Bioinformatics (UPF-UPC-UB-UAB) Final Grade Project, Date: June 21, 2022, School of International Studies, Universitat Pompeu Fabra (UPF), Barcelona, Spain. Available from: https://repositori-api.upf.edu/api/core/bitstreams/ddb33240-c4a2-4725-999b-ddfeba0e646a/content [Last accessed on 2025 Apr 21].
- Boodaghidizaji, M., Jungles, T., Chen, T. et al. Machine learning based gut microbiota pattern and response to fiber as a diagnostic tool for chronic inflammatory diseases. BMC Microbiol. 2025; 25(1):353. doi: 10.1186/s12866-025-04072-7
- Dhatrak M. Application of Supervised Learning Classifiers on Gut Microbial Data to Predict Parkinson Disease (Doctoral Dissertation); 2023.
- Li M, Liu J, Zhu J, et al. Performance of gut Microbiome as an independent diagnostic tool for 20 diseases: Cross-cohort validation of machine-learning classifiers. Gut Microbes. 2023;15(1):2205386. doi: 10.1080/19490976.2023.2205386
- Romano, S., Wirbel, J., Ansorge, R. et al. Machine learning-based meta-analysis reveals gut microbiome alterations associated with Parkinson’s disease. Nat Commun. 2025;16(1):4227. doi: 10.1038/s41467-025-56829-3
- Zhang JD, Xue C, Kolachalama VB, Donald WA. Interpretable machine learning on metabolomics data reveals biomarkers for Parkinson’s disease. ACS Cent Sci. 2023;9(5):1035-1045. doi: 10.1021/acscentsci.2c01468
- Li Y, Ren HX, Chi CY, Miao YB. Artificial intelligence-guided gut-microenvironment-triggered imaging sensor reveals potential indicators of Parkinson’s disease. Adv Sci (Weinh). 2024;11(23):e2307819. doi: 10.1002/advs.202307819
- Zhao Z, Chen J, Zhao D, et al. Microbial biomarker discovery in Parkinson’s disease through a network-based approach. NPJ Parkinsons Dis. 2024;10(1):203. doi: 10.1038/s41531-024-00802-2
- Rojas-Velazquez D, Kidwai S, Liu TC, et al. Understanding Parkinson’s: The microbiome and machine learning approach. Maturitas. 2025;193:108185. doi: 10.1016/j.maturitas.2024.108185
- Yu B, Zhang H, Zhang M. Deep learning-based differential gut flora for prediction of Parkinson’s. PLoS One. 2025;20(1):e0310005. doi: 10.1371/journal.pone.0310005
- Aijaz M, Ramesh Kumar A, Ahmad S, Raja MS, Gupta RK, Yadav R. The role of Artificial Intelligence in Parkinson’s disease: A comprehensive review. World J Adv Pharm Med Res. 2024;10(9):270-279.
- Ienca M, Ignatiadis K. Artificial intelligence in clinical neuroscience: Methodological and ethical challenges. AJOB Neurosci. 2020;11(2):77-87. doi: 10.1080/21507740.2020.1740352