AccScience Publishing / MSAM / Volume 4 / Issue 3 / DOI: 10.36922/MSAM025200030
ORIGINAL RESEARCH ARTICLE

Gaussian process-based interpretable prediction of melt track morphology through melt pool in additive manufacturing

Xin Lin1 Shilin Liu1 Haodong Chen1 Jinrong Mao1 Kunpeng Zhu1,2*
Show Less
1 Precision Manufacturing Institute, Wuhan University of Science and Technology, Wuhan, Hubei, China
2 Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
MSAM 2025, 4(3), 025200030 https://doi.org/10.36922/MSAM025200030
Received: 12 May 2025 | Accepted: 8 June 2025 | Published online: 17 July 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Melt track monitoring in the laser powder bed fusion (LPBF) process is crucial for preventing internal defects in as-printed parts. Uncontrollable melt pool dynamic behavior easily leads to melt track morphology defects. Existing monitoring methods face challenges in balancing modeling accuracy and physical interpretability. Specifically, traditional physics-based models typically require complex monitoring equipment, extensive simulation data, and empirical formulas, resulting in high costs and limited applicability. Meanwhile, conventional data-driven models lack physical constraints, leading to insufficient interpretability, process parameter sensitivity, and poor generalization. To address these challenges, this article proposes a deep Gaussian process-based method for LPBF melt track morphology prediction. The proposed model employs kernel functions in the first layer to learn melt pool evolution patterns and embeds the Rosenthal equation into the second-layer kernel function as a physical constraint, constructing a physically interpretable multilayer Gaussian process framework. Finally, a softmax classifier based on melt track geometric deviation achieves five-category melt track morphology recognition. Multi-condition experimental results demonstrated that the proposed method achieved root mean square errors of 0.069, 0.020, and 0.039 for melt track geometry, outperforming traditional data-driven models in prediction accuracy. The classification accuracy reached 90.76%. Furthermore, the influence of different features on melt track morphology is quantified through time-lagged mutual information analysis and other visualization methods. This study provides an effective solution for achieving quality monitoring and defect prediction in the LPBF process.

Graphical abstract
Keywords
Laser powder bed fusion
Deep Gaussian process
Morphology prediction
Physical constraint
Melt pool monitoring
Funding
This work was supported in part by the National Natural Science Foundation of China (grant no. 52175481) and in part by the China Post-doctoral Science Foundation (grant no. 2023M743539).
Conflict of interest
Xin Lin serves as the Editorial Board Member of the journal but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Other authors declare they have no competing interests.
References
  1. Khairallah SA, Martin AA, Lee JR, et al. Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing. Science. 2020;368(6491):660-665. doi: 10.1126/science.aay7830
  2. Fang Q, Tan Z, Li H, et al. In-situ capture of melt pool signature in selective laser melting using U-Net-based convolutional neural network. J Manuf Process. 2021;68:347-355. doi: 10.1016/j.jmapro.2021.05.052
  3. Yang L, Lo L, Ding S, Özel T. Monitoring and detection of meltpool and spatter regions in laser powder bed fusion of super alloy Inconel 625. Prog Addit Manuf. 2020;5(4):367-378. doi: 10.1007/s40964-020-00140-8
  4. Liu J, Wei B, Chang H, Li J, Yang G. Review of visual measurement methods for metal vaporization processes in laser powder bed fusion. Micromachines (Basel). 2023;14(7):1351. doi: 10.3390/mi14071351
  5. Forien JB, Calta NP, DePond PJ, Guss GM, Roehling TT, Matthews MJ. Detecting keyhole pore defects and monitoring process signatures during laser powder bed fusion: A correlation between in situ pyrometry and ex situ X-ray radiography. Addit Manuf. 2020;35:101336. doi: 10.1016/j.addma.2020.101336
  6. Khanzadeh M, Chowdhury S, Tschopp MA, Doude HR, Marufuzzaman M, Bian L. In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes. IISE Trans. 2018;51(5):437-455. doi: 10.1080/24725854.2017.1417656
  7. Khanzadeh M, Dantin M, Tian W, Priddy MW, Doude H, Bian L. Fast prediction of thermal data stream for direct laser deposition processes using network-based tensor regression. J Manuf Sci Eng. 2021;144(4):041004. doi: 10.1115/1.4052207
  8. Scime L, Beuth J. Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm. Addit Manuf. 2018;19:114-126. doi: 10.1016/j.addma.2017.11.009
  9. Okaro IA, Jayasinghe S, Sutcliffe C, Black K, Paoletti P, Green PL. Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning. Addit Manuf. 2019;27:42-53. doi: 10.1016/j.addma.2019.01.006
  10. Yuan B, Giera B, Guss G, Matthews M, McMains S. Semi-supervised convolutional neural networks for in-situ video monitoring of selective laser melting. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). United States: IEEE; 2019. p. 744-753. doi: 10.1109/WACV.2019.00084
  11. Yuan B, Guss GM, Wilson AC, et al. Machine-learning-based monitoring of laser powder bed fusion. Adv Mater Technol. 2018;3(12):1800136. doi: 10.1002/admt.201800136
  12. Mojahed Yazdi R, Imani F, Yang H. A hybrid deep learning model of process-build interactions in additive manufacturing. J Manuf Syst. 2020;57:460-468. doi: 10.1016/j.jmsy.2020.11.001
  13. Lopez F, Witherell P, Lane B. Identifying uncertainty in laser powder bed fusion additive manufacturing models. J Mech Des. 2016;138(11):114502. doi: 10.1115/1.4034103
  14. Mahmoudi M, Ezzat A, Elwany A. Layerwise anomaly detection in laser powder-bed fusion metal additive manufacturing. J Manuf Sci Eng. 2019;141(3):031002. doi: 10.1115/1.4042108
  15. Gaikwad A, Giera B, Guss GM, Forien JB, Matthews MJ, Rao P. Heterogeneous sensing and scientific machine learning for quality assurance in laser powder bed fusion - a single-track study. Addit Manuf. 2020;36:101659. doi: 10.1016/j.addma.2020.101659
  16. Guo K, Qiao L, Huang Z, Anwer N, Cao Y. A computational model of melt pool morphology for selective laser melting process. Int J Adv Manuf Technol. 2022;121(3-4):1651-1673. doi: 10.1007/s00170-022-09366-y
  17. Zhang H, Vallabh CK, Zhao X. Registration and fusion of large-scale melt pool temperature and morphology monitoring data demonstrated for surface topography prediction in LPBF. Addit Manuf. 2022;58:103075. doi: 10.1016/j.addma.2022.103075
  18. Biggio L, Wieland A, Chao MA, Kastanis I, Fink O. Uncertainty-aware prognosis via deep gaussian process. IEEE Access. 2021;9:123517-123527. doi: 10.1109/ACCESS.2021.3110049
  19. Fan Z, Lu M, Huang H. Selective laser melting of alumina: A single track study. Ceram Int. 2018;44(8):9484-9493. doi: 10.1016/j.ceramint.2018.02.166
  20. Yadroitsev I, Krakhmalev P, Yadroitsava I, Johansson S, Smurov I. Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder. J Mater Process Technol. 2013;213(4):606-613. doi: 10.1016/j.jmatprotec.2012.11.014
  21. Yang J, Liu G, Zhu W, et al. High-precision and ultraspeed monitoring of melt-pool morphology in laser-directed energy deposition using deep learning. Addit Manuf Front. 2025;4(2):200199. doi: 10.1016/j.amf.2025.200199
  22. Xiang Y, Zhang S, Wei Z, et al. Forming and defect analysis for single track scanning in selective laser melting of Ti6Al4V. Appl Phys A. 2018;124(10):685. doi: 10.1007/s00339-018-2056-9
  23. Hu Z, Nagarajan B, Song X, Huang R, Zhai W, Wei J. Formation of SS316L single tracks in micro selective laser melting: Surface, geometry, and defects. Adv Mater Sci Eng. 2019;2019:9451406. doi: 10.1155/2019/9451406
  24. Zhou H, Su H, Guo Y, et al. Formation and evolution of surface morphology in overhang structure of IN718 superalloy fabricated by laser powder bed fusion. Acta Metall Sin. 2023;36(9):1433-1453. doi: 10.1007/s40195-023-01546-3
  25. Li C, Guo YB, Zhao JB. Interfacial phenomena and characteristics between the deposited material and substrate in selective laser melting Inconel 625. J Mater Process Technol. 2017;243:269-281. doi: 10.1016/j.jmatprotec.2016.12.033
  26. Khairallah SA, Anderson AT, Rubenchik A, King WE. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2016;108:36-45. doi: 10.1016/j.actamat.2016.02.014
  27. Chen H, Lin X, Sun Y, Wang S, Zhu K, Dan B. Revealing formation mechanism of end of process depression in laser powder bed fusion by multi-physics meso-scale simulation. Virtual Phys Prototyp. 2024;19(1):e2326599. doi: 10.1080/17452759.2024.2326599
  28. Yuan P, Gu D. Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: Simulation and experiments. J Phys D Appl Phys. 2015;48(3):035303. doi: 10.1088/0022-3727/48/3/035303
  29. Yuan W, Chen H, Cheng T, Wei Q. Effects of laser scanning speeds on different states of the molten pool during selective laser melting: Simulation and experiment. Mater Des. 2020;189:108542. doi: 10.1016/j.matdes.2020.108542
  30. Caprio L, Demir A, Previtali B. Observing molten pool surface oscillations during keyhole processing in laser powder bed fusion as a novel method to estimate the penetration depth. Addit Manuf. 2020;36:101470. doi: 10.1016/j.addma.2020.101470
  31. Tang M, Pistorius PC, Beuth JL. Prediction of lack-of-fusion porosity for powder bed fusion. Addit Manuf. 2017;14:39-48. doi: 10.1016/j.addma.2016.12.001
  32. Ning J, Mirkoohi E, Dong Y, Sievers DE, Garmestani H, Liang SY. Analytical modeling of 3D temperature distribution in selective laser melting of Ti-6Al-4V considering part boundary conditions. J Manuf Process. 2019;44:319-326. doi: 10.1016/j.jmapro.2019.06.013
  33. Promoppatum P, Yao SC, Pistorius PC, Rollett AD. A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of inconel 718 products made by laser powder-bed fusion. Engineering. 2017;3(5):685-694. doi: 10.1016/J.ENG.2017.05.023
  34. Wang W, Liang SY. A 3D analytical modeling method for keyhole porosity prediction in laser powder bed fusion. Int J Adv Manuf Technol. 2022;120(5-6):3017-3025. doi: 10.1007/s00170-022-08898-7
  35. Yang J, Han J, Yu H, et al. Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti-6Al-4V alloy. Mater Des. 2016;110:558-570. doi: 10.1016/j.matdes.2016.08.036
  36. Kamath C, El-dasher B, Gallegos GF, King WE, Sisto A. Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W. Int J Adv Manuf Technol. 2014;74(1-4):65-78. doi: 10.1007/s00170-014-5954-9
  37. Salimbeni H, Deisenroth M. Doubly stochastic variational inference for deep Gaussian processes. In: Advances in Neural Information Processing Systems. United States: Morgan Kaufmann Publishers Inc.; 2017. p. 30. doi: 10.48550/arXiv.1705.08933
  38. Roth K, Pemula L, Zepeda J, Scholkopf B, Brox T, Gehler P. Towards total recall in industrial anomaly detection. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). United States: IEEE; 2022. p. 14298-14308. doi: 10.1109/cvpr52688.2022.01392
  39. Shojaie A, Fox EB. Granger causality: A review and recent advances. Annu Rev Stat Appl. 2022;9(1):289-319. doi: 10.1146/annurev-statistics-040120-010930

 

 

Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing