AccScience Publishing / MSAM / Volume 4 / Issue 2 / DOI: 10.36922/MSAM025130019
ORIGINAL RESEARCH ARTICLE

Impact behavior of AlSi10Mg porous structures with varying single-unit cell rotation angles fabricated via laser powder bed fusion

Xuezheng Yue1 Hulin Tang1 Songhao Lu2 Rusheng Zhao3 Boyoung Hur4 Shiyue Guo5* Jincheng Wang6,7*
Show Less
1 Additive Manufacture International Lab, School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
2 Shanghai Micro Electronics Equipment (Group) Co., Ltd, Shanghai, China
3 Department of Aerospace Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo 1910065, Japan.
4 Department of Nano Advance Material, Gyeongsang National University, Jinju, South Gyeongsang, Korea
5 Longzhong Lab, Wuhan University of Technology, Wuhan, Hubei, China
6 Department of Mechanical Engineering, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
7 Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
MSAM 2025, 4(2), 025130019 https://doi.org/10.36922/MSAM025130019
Received: 29 March 2025 | Accepted: 23 April 2025 | Published online: 16 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Porous structures offer lightweight design and geometric flexibility for applications in transportation and bioengineering. Additive manufacturing, particularly laser powder bed fusion (LPBF), enables the fabrication of complex porous architectures. However, achieving an optimal balance between weight reduction and mechanical performance remains challenging. Therefore, further investigation into the design of porous structures is essential. This study explores the dynamic mechanical behavior of porous AlSi10Mg structures designed using a parametric modeling approach and the Voronoi tessellation algorithm. The structures, fabricated via LPBF, feature varying single-unit cell rotation angles and porosities. The dynamic mechanical behaviors were experimentally investigated under different impact energies to assess the influence of single-unit cell rotation on impact properties, complemented by finite element analysis simulations. The results indicate that a slight decrease in porosity by 10% (from 90% to 80%) significantly enhances energy absorption and impact resistance while maintaining lightweight features. Significant variations are observed in peak contact force and energy absorption trends. The results demonstrate that single-unit cell rotation improves impact resistance in certain cases, leading to significant enhancements in energy absorption, specific energy absorption, and specific strength, which increased by approximately 18.9% (P90), 17.1% (P90), and 79.5% (P80), respectively, for the dodecahedral (Dodeca)-C structure compared to the original Dodeca-A counterpart at impact of 124 J. In addition, Dodeca-C P80 showed a remarkable 73.1% increase in energy absorption compared to Dodeca-A P80 at a higher impact energy of 248 J. This study provides insights for optimizing porous structures while maintaining consistent unit cell configurations and identical porosity, with rotating unit cell angles enhancing impact resistance.

Graphical abstract
Keywords
Laser powder bed fusion
AlSi10Mg
Porous structures
Impact properties
Energy absorption
X-ray computed tomography
Funding
The authors are grateful for funding from the Shanghai Sailing Program (Grant number: 19YF1434300), Shanghai Engineering Research Center of High-Performance Medical Device Materials (No. 20DZ2255500), and the National Natural Science Foundation of China (Grant number: 11947137).
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
  1. Babaei M, Kiarasi F, Asemi K, Hosseini M. Functionally graded saturated porous structures: A review. J Comput Appl Mech. 2022;53:297-308. doi: 10.22059/jcamech.2022.342710.719
  2. Wu ZY, Liu YJ, Wu X, Liu XC, Wang JC, Wang Q. Fatigue performance of beta titanium alloy topological porous structures fabricated by laser powder bed fusion. J Mater Res Technol. 2024;29:4772-4780. doi: 10.1016/j.jmrt.2024.02.190
  3. Siddique SH, Hazell PJ, Wang H, Escobedo JP, Ameri AAH. Lessons from nature: 3D printed bio-inspired porous structures for impact energy absorption-A review. Addit Manuf. 2022;58:103051. doi: 10.1016/j.addma.2022.103051
  4. Wu ZY, Liu YJ, Bai HW, et al. Microstructure and mechanical behavior of rhombic dodecahedron-structured porous β-Ti composites fabricated via laser powder bed fusion. J Mater Res Technol. 2024;31:298-310. doi: 10.1016/j.jmrt.2024.06.077
  5. Wang B, Luo M, Shi Z, et al. Porous titanium alloys for medical application: Progress in preparation process and surface modification research. MSAM. 2024;3:2753. doi: 10.36922/msam.2753
  6. Dul’nev GN, Volkov DP, Malarev VI. Thermal conductivity of moist porous materials. J Eng Phys. 1989;56:198-206. doi: 10.1007/BF00870578
  7. Yin H, Zhang W, Zhu L, Meng F, Liu J, Wen G. Review on lattice structures for energy absorption properties. Compos Struct. 2023;304:116397. doi: 10.1016/j.compstruct.2022.116397
  8. Xu K, Cao J, Zheng Z, et al. Deformation behavior of inconel 625 alloy with TPMS structure. Materials (Basel). 2025;18:396. doi: 10.3390/ma18020396
  9. Lu S, Zhang M, Guo S, Hur B, Yue X. Numerical investigation of impact behavior of strut-based cellular structures designed by spatial voronoi tessellation. Metals. 2022;12:1189. doi: 10.3390/met12071189
  10. Ha NS, Pham TM, Hao H, Lu G. Energy absorption characteristics of bio-inspired hierarchical multi-cell square tubes under axial crushing. Int J Mech Sci. 2021;201:106464. doi: 10.1016/j.ijmecsci.2021.106464
  11. Ha NS, Pham TM, Tran TT, Hao H, Lu G. Mechanical properties and energy absorption of bio-inspired hierarchical circular honeycomb. Compos Part B Eng. 2022;236:109818. doi: 10.1016/j.compositesb.2022.109818
  12. Zhang L, Feih S, Daynes S, et al. Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading. Addit Manuf. 2018;23:505-515. doi: 10.1016/j.addma.2018.08.007
  13. Zhao M, Zhang DZ, Liu F, Li Z, Ma Z, Ren Z. Mechanical and energy absorption characteristics of additively manufactured functionally graded sheet lattice structures with minimal surfaces. Int J Mech Sci. 2020;167:105262. doi: 10.1016/j.ijmecsci.2019.105262
  14. Hu D, Mei X, Shi P, Zhou X. Inner-pipe structure to improve column heterogeneity and peak shape. J Chromatogr Sci. 2014;53:565-570. doi: 10.1093/chromsci/bmu085
  15. Liu YJ, Zhang ZL, Wang JC, et al. In-situ micro-CT analysis of deformation behavior in sandwich-structured meta-stable beta Ti-35Nb alloy. Trans Nonferrous Met Soc China. 2024;34:2552-2562. doi: 10.1016/S1003-6326(24)66559-3
  16. Wang Z. Recent advances in novel metallic honeycomb structure. Compos Part B Eng. 2019;166:731-741. doi: 10.1016/j.compositesb.2019.02.011
  17. Song ZL, Ma LQ, Wu ZJ, He DP. Effects of viscosity on cellular structure of foamed aluminum in foaming process. J Mater Sci. 2000;35:15-20. doi: 10.1023/A:1004715926692
  18. Zhang M, Bi G, Chen J. Research on impact resistance of AlSi7Mg uniform and gradient porous structures manufactured by laser powder bed fusion. MSAM. 2024;3:5729. doi: 10.36922/msam.5729
  19. Al-Saedi DSJ, Masood SH, Faizan-Ur-Rab M, Alomarah A, Ponnusamy P. Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM. Mater Des. 2018;144:32-44. doi: 10.1016/j.matdes.2018.01.059
  20. Liu YJ, Zhang JS, Liu XC, et al. Non-layer-wise fracture and deformation mechanism in beta titanium cubic lattice structure manufactured by selective laser melting. Mater Sci Eng A. 2021;822:141696. doi: 10.1016/j.msea.2021.141696
  21. Şerban DA, Negru R, Sărăndan S, Belgiu G, Marşavina L. Numerical and experimental investigations on the mechanical properties of cellular structures with open Kelvin cells. Mech Adv Mater Struct. 2021;28:1367-1376. doi: 10.1080/15376494.2019.1669093
  22. Lovinger Z, Czarnota C, Ravindran S, Molinari A, Ravichandran G. The role of micro-inertia on the shock structure in porous metals. J Mech Phys Solids. 2021;154:104508. doi: 10.1016/j.jmps.2021.104508
  23. Czarnota C, Molinari A, Mercier S. Steady shock waves in porous metals: Viscosity and micro-inertia effects. Int J Plast. 2020;135:102816. doi: 10.1016/j.ijplas.2020.102816
  24. Fíla T, Koudelka P, Falta J, et al. Dynamic impact testing of cellular solids and lattice structures: Application of two-sided direct impact Hopkinson bar. Int J Impact Eng. 2021;148:103767. doi: 10.1016/j.ijimpeng.2020.103767
  25. Jin N, Wang F, Wang Y, Zhang B, Cheng H, Zhang H. Failure and energy absorption characteristics of four lattice structures under dynamic loading. Mater Des. 2019;169:107655. doi: 10.1016/j.matdes.2019.107655
  26. Cao X, Duan S, Liang J, Wen W, Fang D. Mechanical properties of an improved 3D-printed rhombic dodecahedron stainless steel lattice structure of variable cross section. Int J Mech Sci. 2018;145:53-63. doi: 10.1016/j.ijmecsci.2018.07.006
  27. Kim JH, Kim D, Lee MG, Lee JK. Multiscale analysis of open-cell aluminum foam for impact energy absorption. J Mater Eng Perform. 2016;25:3977-3984. doi: 10.1007/s11665-016-2187-0
  28. Tancogne-Dejean T, Spierings AB, Mohr D. Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading. Acta Mater. 2016;116:14-28. doi: 10.1016/j.actamat.2016.05.054
  29. Wang JC, Liu YJ, Rabadia CD, Liang SX, Sercombe TB, Zhang LC. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture. J Mater Sci Technol. 2021;61:221-233. doi: 10.1016/j.jmst.2020.05.052
  30. Zheng Z, Qiu S, Yue X, Wang J, Hou J. Detecting irradiation defects in materials: A machine learning approach to analyze helium bubble images. J Nucl Mater. 2024;596:155117. doi: 10.1016/j.jnucmat.2024.155117
  31. Lu WQ, Liu YJ, Wu X, Liu XC, Wang JC. Corrosion and passivation behavior of Ti-6Al-4V surfaces treated with high-energy pulsed laser: A comparative study of cast and 3D-printed specimens in a NaCl solution. Surf Coat Technol. 2023;470:129849. doi: 10.1016/j.surfcoat.2023.129849
  32. Wei SY, Ji LN, Wu WJ, Ma HL. Selective laser melting of lanthanum oxide-reinforced tungsten composites: Microstructure and mechanical properties. Tungsten. 2022;4:67-78. doi: 10.1007/s42864-021-00127-0
  33. Ma HY, Wang JC, Qin P, et al. Advances in additively manufactured titanium alloys by powder bed fusion and directed energy deposition: Microstructure, defects, and mechanical behavior. J Mater Sci Technol. 2024;183:32-62. doi: 10.1016/j.jmst.2023.11.003
  34. Ma HY, Wang JC, Liu YJ, et al. In-situ microstructural evolution and deformation mechanisms of metastable beta titanium fabricated by laser powder bed fusion under flexural stress. Mater Sci Eng A. 2025;925:147873. doi: 10.1016/j.msea.2025.147873
  35. Wang JC, Liu YJ, Liang SX, et al. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder. J Mater Sci Technol. 2022;105:1-16. doi: 10.1016/j.jmst.2021.07.021
  36. Zhang LC, Wang JC. Stabilizing 3D-printed metal alloys. Science. 2024;383:586-587. doi: 10.1126/science.adn6566
  37. Lu W, Liu Y, Wu X, Liu X, Wang J. Corrosion behavior and microstructural effects on passivation film mechanisms in forged Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy under laser surface remelting. Corros Sci. 2024;241:112542. doi: 10.1016/j.corsci.2024.112542
  38. Wang JC, Liu YJ, Qin P, Liang SX, Sercombe TB, Zhang LC. Selective laser melting of Ti–35Nb composite from elemental powder mixture: Microstructure, mechanical behavior and corrosion behavior. Mater Sci Eng A. 2019;760:214-224. doi: 10.1016/j.msea.2019.06.001
  39. Nie X, Chen Z, Qi Y, Zhang H, Zhu H. Spreading behavior and hot cracking mechanism of single tracks in high strength Al–Cu–Mg–Mn Alloy fabricated by laser powder bed fusion. Acta Metall Sin (Engl Lett). 2023;36:1454-1464. doi: 10.1007/s40195-023-01553-4
  40. Lin S, Deng YL, Lin HQ, et al. Microstructure, mechanical properties and stress corrosion behavior of friction stir welded joint of Al–Mg–Si alloy extrusion. Rare Met. 2023;42:2057-2067. doi: 10.1007/s12598-018-1126-7
  41. Sun SB, Zheng LJ, Liu JH, Zhang H. Microstructure, cracking behavior and control of Al–Fe–V–Si alloy produced by selective laser melting. Rare Met. 2023;42:1353-1362. doi: 10.1007/s12598-016-0846-9
  42. Wang JC, Zhu R, Liu YJ, Zhang LC. Understanding melt pool characteristics in laser powder bed fusion: An overview of single and multi-track melt pools for process optimization. Adv Powder Mater. 2023;2:100137. doi: 10.1016/j.apmate.2023.100137
  43. Guo S, Yue X, Kitazono K. Anisotropic compression behavior of additively manufactured porous titanium with ordered open-cell structures at different temperatures. Mater Trans. 2021;62:1771-1776. doi: 10.2320/matertrans.MT-M2021149
  44. Bezci SE, Klineberg EO, O’Connell GD. Effects of axial compression and rotation angle on torsional mechanical properties of bovine caudal discs. J Mech Behav Biomed Mater. 2018;77:353-359. doi: 10.1016/j.jmbbm.2017.09.022
  45. Yang J, Gu D, Lin K, et al. Laser powder bed fusion of mechanically efficient helicoidal structure inspired by mantis shrimp. Int J Mech Sci. 2022;231:107573. doi: 10.1016/j.ijmecsci.2022.107573
  46. Aktürk M, Boy M, Gupta MK, Waqar S, Krolczyk GM, Korkmaz ME. Numerical and experimental investigations of built orientation dependent Johnson-Cook model for selective laser melting manufactured AlSi10Mg. J Mater Res Technol. 2021;15:6244-6259. doi: 10.1016/j.jmrt.2021.11.062
  47. Nurel B, Nahmany M, Frage N, Stern A, Sadot O. Split Hopkinson pressure bar tests for investigating dynamic properties of additively manufactured AlSi10Mg alloy by selective laser melting. Addit Manuf. 2018;22:823-833. doi: 10.1016/j.addma.2018.06.001
  48. Hou Y, Li Y, Cai X, et al. Mechanical response and response mechanism of AlSi10Mg porous structures manufactured by laser powder bed fusion: Experimental, theoretical and numerical studies. Mater Sci Eng A. 2022;849:143381. doi: 10.1016/j.msea.2022.143381
  49. Andrew JJ, Schneider J, Ubaid J, Velmurugan R, Gupta NK, Kumar S. Energy absorption characteristics of additively manufactured plate-lattices under low- velocity impact loading. Int J Impact Eng. 2021;149:103768. doi: 10.1016/j.ijimpeng.2020.103768
  50. Al-Ketan O, Rowshan R, Abu Al-Rub RK. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Addit Manuf. 2018;19:167-183. doi: 10.1016/j.addma.2017.12.006
  51. Paul MJ, Liu Q, Best JP, et al. Fracture resistance of AlSi10Mg fabricated by laser powder bed fusion. Acta Mater. 2021;211:116869. doi: 10.1016/j.actamat.2021.116869
  52. Peters M, Brodie EG, Thomas S, et al. On the importance of nano-oxide control in laser powder bed fusion manufactured Ni-based alloys to enhance fracture properties. Materialia. 2023;32:101958. doi: 10.1016/j.mtla.2023.101958
  53. Shenghao C, Xiang W, Haowei B, Yujing L, Yihao W, Jincheng W. Effects of selective laser surface treatment on plasticity of 2060 Al-Li alloy. Spec Cast Nonferrous Alloys. 2025;45:334-341. doi: 10.15980/j.tzzz.T20240066
  54. Wang R, Wang J, Lei LM, et al. Laser additive manufacturing of strong and ductile Al-12Si alloy under static magnetic field. J Mater Sci Technol. 2023;163:101-112. doi: 10.1016/j.jmst.2023.04.021
  55. Sheng X, Guo A, Guo S, et al. Laser powder bed fusion for the fabrication of triply periodic minimal surface lattice structures: Synergistic macroscopic and microscopic optimization. J Manuf Process. 2024;119:179-192. doi: 10.1016/j.jmapro.2024.03.081
  56. Chen R, Zheng C, Ma H, et al. Multi-parameter optimization and corrosion behavior of FeCoNiCrAl HEA coatings via laser cladding. Metals. 2025;15:406. doi: 10.3390/met15040406
  57. Rubben T, Revilla RI, De Graeve I. Influence of heat treatments on the corrosion mechanism of additive manufactured AlSi10Mg. Corros Sci. 2019;147:406-415. doi: 10.1016/j.corsci.2018.11.038
  58. Liu B, Li BQ, Li Z. Selective laser remelting of an additive layer manufacturing process on AlSi10Mg. Results Phys. 2019;12:982-988. doi: 10.1016/j.rinp.2018.12.018
  59. Li Z, Li Z, Tan Z, Xiong DB, Guo Q. Stress relaxation and the cellular structure-dependence of plastic deformation in additively manufactured AlSi10Mg alloys. Int J Plast. 2020;127:102640. doi: 10.1016/j.ijplas.2019.12.003
  60. Wang H, Fu Y, Su M, Hao H. Effect of structure design on compressive properties and energy absorption behavior of ordered porous aluminum prepared by rapid casting. Mater Des. 2019;167:107631. doi: 10.1016/j.matdes.2019.107631
  61. Chua C, Sing SL, Chua CK. Characterisation of in-situ alloyed titanium-tantalum lattice structures by laser powder bed fusion using finite element analysis. Virtual Phys Prototyp. 2023;18:e2138463. doi: 10.1080/17452759.2022.2138463



Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing