Effects of aging heat treatment on the mechanical properties of NiTi triply periodic minimal surface
This study investigated the impact of aging heat treatment time on the mechanical properties of NiTi triply periodic minimal surface structures fabricated through laser powder bed fusion. X-ray diffraction analysis results indicate that with increasing aging time, the NiTi2 phase precipitates while the content of the B19’ phase decreases. At 10 h of aging time, the Ni4Ti3 phase becomes evident in the sample. The differential scanning calorimeter results show that R phase transformation occurs, and the phase transformation temperature increases when the aging time reaches 6 h. Microhardness increases with aging time, peaking at 477.8 HV after 10 h. Compression experiment results reveal a maximum elastic modulus of 1262.82 MPa for the gyroid sheet-shaped structure achieved after 2 h. In addition, the superelasticity test indicates the highest recoverable strains at 2%, 4%, and 6% compressive strain for the gyroid rod-shaped structure after aging for 10 h. In cyclic compression experiments, the ratio of shape memory recovery increases from 40% at 0 h to 97% at 6 h. Fracture analysis results show that the transition in the fracture mechanism from brittle fracture to quasi-cleavage fracture occurs after aging heat treatment.
- Mohamed OA, Masood SH, Xu W. Nickel-titanium shape memory alloys made by selective laser melting: A review on process optimisation. Adv Manuf. 2022;10(1):24-58. doi: 10.1007/s40436-021-00376-9
- Wei S, Zhang J, Zhang L, et al. Laser powder bed fusion additive manufacturing of NiTi shape memory alloys: A review Int J Extreme Manuf. 2023;5(3):032001. doi: 10.1088/2631-7990/acc7d9
- Zhang Y, Attarilar S, Wang L, Lu W, Yang J, Fu Y. A review on design and mechanical properties of additively manufactured NiTi implants for orthopedic applications. Int J Bioprint. 2021;7(2):340. doi: 10.18063/ijb.v7i2.340
- Feng J, Fu J, Yao X, He Y. Triply periodic minimal surface (TPMS) porous structures: From multi-scale design, precise additive manufacturing to multidisciplinary applications. Int J Extreme Manuf. 2022;4(2):022001. doi: 10.1088/2631-7990/ac5be6
- Farber E, Orlov A, Borisov E, et al. TiNi alloy lattice structures with negative Poisson’s ratio: Computer simulation and experimental results. Metals. 2022;12(9):1476. doi: 10.3390/met12091476
- Li S, Hassanin H, Attallah MM, Adkins NJ, Essa K. The development of TiNi-based negative Poisson’s ratio structure using selective laser melting. Acta Mater. 2016;105:75-83. doi: 10.1016/j.actamat.2015.12.017
- Pan C, Han Y, Lu J. Design and optimization of lattice structures: A review. Appl Sci. 2020;10(18):6374. doi: 10.3390/app10186374
- Maconachie T, Leary M, Lozanovski B, et al. SLM lattice structures: Properties, performance, applications and challenges. Mater Des. 2019;183:108137. doi: 10.1016/j.matdes.2019.108137
- Du Plessis A, Razavi SM, Benedetti M, et al. Properties and applications of additively manufactured metallic cellular materials: A review. Prog Mater Sci. 2022;125:100918. doi: 10.1016/j.pmatsci.2021.100918
- Elahinia M, Moghaddam NS, Andani MT, Amerinatanzi A, Bimber BA, Hamilton RF. Fabrication of NiTi through additive manufacturing: A review. Prog Mater Sci. 2016;83:630-663. doi: 10.1016/j.pmatsci.2016.08.001
- Bobbert FS, Lietaert K, Eftekhari AA, et al. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties. Acta Biomater. 2017;53:572-584. doi: 10.1016/j.actbio.2017.02.024
- Yuan B, Zhu M, Chung CY. Biomedical porous shape memory alloys for hard-tissue replacement materials. Materials (Basel). 2018;11(9):1716. doi: 10.3390/ma11091716
- Liu J, Xu MY, Zhang RD, Zhang X, Xi W. Progress of porous/ lattice structures applied in thermal management technology of aerospace applications. Aerospace. 2022;9(12):827. doi: 10.3390/aerospace9120827
- Riva L, Ginestra PS, Ceretti E. Mechanical characterization and properties of laser-based powder bed-fused lattice structures: A review. Int J Adv Manuf Technol. 2021;113(3-4):649-671. doi: 10.1007/s00170-021-06631-4
- Chen Z, Wang X, Tao Y, Wen S, Zhou Y, Shi Y. Volume fraction effect on the mechanical and shape memory properties of NiTi gyroid lattice structure fabricated by laser powder bed fusion. JOM. 2024;76(3):1715-1725. doi: 10.1007/s11837-024-06372-1
- Shi X, Liao W, Li P, et al. Comparison of compression performance and energy absorption of lattice structures fabricated by selective laser melting. Adv Eng Mater. 2020;22(11):2000453. doi: 10.1002/adem.202000453
- Alagha AN, Nguyen V, Zaki W. Effective phase transformation behavior of NiTi triply periodic minimal surface architectures. J Intell Mater Syst Struct. 2023;34(6):672-695. doi: 10.1177/1045389x221115704
- Zhang C, Jin J, He M, Yang L. Compressive mechanics and hyperelasticity of Ni-Ti lattice structures fabricated by selective laser melting. Crystals. 2022;12(3):408. doi: 10.3390/cryst12030408
- Jin J, Wu S, Yang L, et al. Ni-Ti multicell interlacing Gyroid lattice structures with ultra-high hyperelastic response fabricated by laser powder bed fusion. Int J Mach Tools Manuf. 2023;195:104099. doi: 10.1016/j.ijmachtools.2023.104099
- Speirs M, Van Hooreweder B, Van Humbeeck J, Kruth JP. Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design comparison. J Mech Behav Biomed Mater. 2017;70:53-59. doi: 10.1016/j.jmbbm.2017.01.016
- Zhang M, Liu C, Deng M, Li Y, Li J, Wang D. Graded minimal surface structures with high specific strength for broadband sound absorption produced by laser powder bed fusion. Coatings. 2023;13(11):1950. doi: 10.3390/coatings13111950
- Li Z, Zhou Y, Kong X, et al. Sound absorption performance of a micro-perforated plate sandwich structure based on selective laser melting. Virtual Phys Prototyp. 2024;19(1):386-400. doi: 10.1080/17452759.2024.2321607
- Kong XN, Bin L, Li ZH, Peng-Fei Z, Chao S. Research on sound absorption properties of tri-periodic minimal surface sandwich structure of selective laser melting titanium alloy. Mater Trans. 2023;64(4):861-888. doi: 10.2320/matertrans.MT-M2022164
- Catchpole-Smith S, Selo RR, Davis AW, Ashcroft I, John Tuck C, Clare AT. Thermal conductivity of TPMS lattice structures manufactured via laser powder bed fusion. Addit Manuf. 2019;30:100846. doi: 10.1016/j.addma.2019.100846
- Qu S, Ding J, Song X. Achieving triply periodic minimal surface thin-walled structures by micro laser powder bed fusion process. Micromachines. 2021;12(6):705. doi: 10.3390/mi12060705
- Dong L, Zhu Q, Liu X, et al. 3D printing Al porous metamaterials with triply periodic minimal surfaces (TPMS) for hydrogen generation from Al-water reaction. Int J Hydrogen Energy. 2024;49:1426-1435. doi: 10.1016/j.ijhydene.2023.10.047
- Lei HY, Li JR, Wang QH, et al. Feasibility of preparing additive manufactured porous stainless steel felts with mathematical micro pore structure as novel catalyst support for hydrogen production via methanol steam reforming. Int J Hydrogen Energy. 2019;44(45):24782-24791. doi: 10.1016/j.ijhydene.2019.07.187
- Khoo ZX, Liu Y, An J, Chua CK, Shen YF, Kuo CN. A review of selective laser melted NiTi shape memory alloy. Materials. 2018;11(4):519. doi: 10.3390/ma11040519
- Wang X, Kustov S, Van Humbeeck J. A short review on the microstructure, transformation behavior and functional properties of NiTi shape memory alloys fabricated by selective laser melting. Materials. 2018;11(9):1683. doi: 10.3390/ma11091683
- Gao B, Zhao H, Peng L, Sun Z. A review of research progress in selective laser melting (SLM). Micromachines. 2023;14(1):57. doi: 10.3390/mi14010057
- Jalali M, Mohammadi K, Movahhedy MR, et al. SLM additive manufacturing of NiTi porous implants: A review of constitutive models, finite element simulations, manufacturing, heat treatment, mechanical, and biomedical studies. Met Mater Int. 2023;29(9):2458-2491. doi: 10.1007/s12540-023-01401-1
- Speirs M, Wang X, Van Baelen S, et al. On the transformation behavior of NiTi shape-memory alloy produced by SLM. Shape Mem Superelasticity. 2016;2(4):310-316. doi: 10.1007/s40830-016-0083-y
- Haberland C, Elahinia M, Walker JM, Meier H, Jan F. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing. Smart Mater Struct. 2014;23(10):104002. doi: 10.1088/0964-1726/23/10/104002
- Ma J, Yu L, Yang Q, Liu J, Yang L. High-superelasticity NiTi shape memory alloy by directed energy deposition-arc and solution heat treatment. Acta Metall Sin (Eng Lett). 2024;37(1):132-44. doi: 10.1007/s40195-023-01659-9
- Saedi S, Turabi AS, Andani MT, Moghaddam NS, Elahinia M, Karaca H. Texture, aging, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys. Mater Sci Eng A. 2017;686:1-10. doi: 10.1016/j.msea.2017.01.008
- Lu HZ, Ma HW, Cai WS, et al. Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49.6 shape memory alloy fabricated via selective laser melting. Acta Mater. 2021;219:117261. doi: 10.1016/j.actamat.2021.117261
- Chen F, Lu J, Liu Y, Zhang H, Zhang C, Shen Q. Microstructure and mechanical properties of NiTi shape memory alloys by laser engineered net shaping. Adv Eng Mater. 2023;25(5):2200504. doi: 10.1002/adem.202200504
- Khoo ZX, An J, Chua CK, Shen YF, Kuo CN, Liu Y. Effect of heat treatment on repetitively scanned SLM NiTi shape memory alloy. Materials. 2018;12(1):77. doi: 10.3390/ma12010077
- Yan B, Zhang Y, Jiang S, Yu J, Sun D, Tang M. Mechanical properties and fracture mechanisms of martensitic NiTi shape memory alloy based on various thermomechanical-processing microstructures. J Alloys Compd. 2021;883:160797. doi: 10.1016/j.jallcom.2021.160797
- Ma C, Gu D, Setchi R, et al. A large compressive recoverable strain induced by heterogeneous microstructure in a Ni50.6Ti49.4 shape memory alloy via laser powder bed fusion and subsequent aging treatment. J Alloys Compd. 2022;918:165620. doi: 10.1016/j.jallcom.2022.165620
- Bayati P, Safaei K, Nematollahi M, et al. Toward understanding the effect of remelting on the additively manufactured NiTi. Int J Adv Manuf Technol. 2021;112(1):347-360. doi: 10.1007/s00170-020-06378-4
- Zhan JB, Lu YJ, Lin JX. On the martensitic transformation temperatures and mechanical properties of NiTi alloy manufactured by selective laser melting: Effect of remelting. Acta Metall Sin (Engl Lett). 2021;34(9):1223-1233. doi: 10.1007/s40195-021-01212-6
- Yuan L, Gu D, Lin K, et al. Electrically actuated shape recovery of NiTi components processed by laser powder bed fusion after regulating the dimensional accuracy and phase transformation behaviour. Chin J Mech Eng Addit Manuf Front. 2022;1(4):100056. doi: 10.1016/j.cjmeam.2022.100056
- Lu HZ, Liu LH, Yang C, et al Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting. J Mater Sci Technol. 2021;101:205-216. doi: 10.1016/j.jmst.2021.06.019
- Zhu J, Wu HH, Wu Y, et al. Influence of Ni4Ti3 precipitation on martensitic transformations in NiTi shape memory alloy: R phase transformation. Acta Mater. 2021;207:116665. doi: 10.1016/j.actamat.2021.116665
- Gu DD, Ma CL. In-situ formation of Ni4Ti3 precipitate and its effect on pseudoelasticity in selective laser melting additive manufactured NiTi-based composites. Appl Surf Sci. 2018;441:862-870. doi: 10.1016/j.apsusc.2018.01.317
- Yu H, Qiu Y, Young ML. Influence of Ni4Ti3 precipitate on pseudoelasticity of austenitic NiTi shape memory alloys deformed at high strain rate. Mater Sci Eng A. 2021;804:140753. doi: 10.1016/j.msea.2021.140753
- Liu G, Chen D, Tan F, et al. Effects of annealing on softening and hardening behaviors of 60NiTi alloy. J Mater Res Technol. 2022;21:3220-3234. doi: 10.1016/j.jmrt.2022.10.093
- Saedi S, Turabi AS, Taheri Andani M, Haberland C, Karaca H, Elahinia M. The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting. J Alloys Compd. 2016;677:204-210. doi: 10.1016/j.jallcom.2016.03.161
- Zhang M, Li J, Liao X, Xu M, Shi W. Influence of cycle number on the compression behavior of nonlinear periodically gradient porous structures produced by laser powder bed fusion. Mater Des. 2022;223:111257. doi: 10.1016/j.matdes.2022.111257
- Chen W, Yang Q, Huang S, Kruzic JJ, Li X. Compression behavior of graded NiTi gyroid-structures fabricated by laser powder bed fusion additive manufacturing under monotonic and cyclic loading. JOM. 2021;73(12):4154-4165. doi: 10.1007/s11837-021-04938-x
- Sun L, Chen K, Geng P, Zhou Y, Wen S, Shi Y. Mechanical and shape memory properties of NiTi triply periodic minimal surface structures fabricated by laser powder bed fusion. J Manuf Processes. 2023;101:1091-100. doi: 0.1016/j.jmapro.2023.06.034
- Bhardwaj A, Ojha M, Garudapalli A, Gupta AK. Microstructural, mechanical and strain hardening behaviour of NiTi alloy subjected to constrained groove pressing and ageing treatment. J Mater Process Technol. 2021;294:117132. doi: 10.1016/j.jmatprotec.2021.117132
- Sinha A, Rajak DK, Shaik NB, et al. A review on 4D printing of Nickel-Titanium smart alloy processing, the effect of major parameters and their biomedical applications. Proc Inst Mech Eng E J Process Mech Eng. 2023. doi: 10.1177/09544089231154416
- Mohd Jani J, Leary M, Subic A, Gibson G. A review of shape memory alloy research, applications and opportunities. Mater Des (1980-2015). 2014;56:1078-1113. doi: 10.1016/j.matdes.2013.11.084
- Yang X, Yang Q, Shi Y, et al. Effect of volume fraction and unit cell size on manufacturability and compressive behaviors of Ni-Ti triply periodic minimal surface lattices. Addit Manuf. 2022;54:102737. doi: 10.1016/j.addma.2022.102737