AccScience Publishing / MSAM / Volume 3 / Issue 1 / DOI: 10.36922/msam.2845
Cite this article
Journal Browser
Volume | Year
News and Announcements
View All

Effect of bioactive borate glass on printability and physical properties of hydrogels

Fateme Fayyazbakhsh1,2,3* Mehedi H. Tusar1 Yue-Wern Huang3,4 Ming C. Leu1,2,3
Show Less
1 Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri, United States of America
2 Intelligent System Center, Missouri University of Science and Technology, Rolla, Missouri, United States of America
3 Center for Biomedical Research, Missouri University of Science and Technology, Rolla, Missouri, United States of America
4 Department of Biological Sciences, Missouri University of Science and Technology, Rolla, Missouri, United States of America
Submitted: 30 January 2024 | Accepted: 11 March 2024 | Published: 22 March 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( )

Hydrogels are a key component in bioinks and biomaterial inks for bioprinting due to their biocompatibility and printability at room temperature. The research described in the present paper contributes to the advancement of bioprinting by studying the effect of bioactive borate glass (BBG) incorporated into hydrogels on printability and physical properties. In this study, we fabricated 3D-printed hydrogel scaffolds using gelatin and alginate hydrogel mixture incorporated with various amounts of BBG, a bioceramic rich in therapeutic ions including boron, calcium, copper, and zinc. We investigated the effect of incorporating BBG on the density, viscosity, physical interactions, chemical structure, and shear thinning behavior of gelatin-alginate hydrogel biomaterial ink at different temperatures. After 3D printing and crosslinking of scaffolds, we measured mechanical properties and printing outcomes. The near-optimal extrusion temperature and pressure for uniform extrusion of hydrogel filaments at various BBG contents were determined. We compared the printing outcomes by quantifying the uniformity of printed filaments and shape fidelity of printed scaffolds. The rheological analysis showed that the addition of BBG increased the viscosity of the biomaterial inks and Young’s modulus of the 3D-printed scaffolds. Biomaterial inks with a dynamic viscosity within the range of 4.5 – 6.5 Pa·s showed the best printability across all samples. In conclusion, the inclusion of BBG contributes to a substantial improvement in the physical properties and printability of 3D-printed gelatin-alginate hydrogels.

Bioactive glass
Shape fidelity
This work was funded by the Midwest Biomedical Accelerator Consortium (MBArC), an NIH Research Evaluation and Commercialization Hub (REACH) and by the Center for Biomedical Research.
  1. Theus AS, Ning L, Hwang B, et al. Bioprintability: Physiomechanical and biological requirements of materials for 3D bioprinting processes. Polymers (Basel). 2020;12(10):2262. doi: 10.3390/polym12102262
  2. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226:119536. doi: 10.1016/J.BIOMATERIALS.2019.119536
  3. Groll J, Burdick JA, Cho DW, et al. A definition of bioinks and their distinction from biomaterial inks. Biofabrication. 2019;11(1):013001. doi: 10.1088/1758-5090/aaec52
  4. Fatimi A, Okoro OV, Podstawczyk D, Siminska- Stanny J, Shavandi A. Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: A review. Gels. 2022;8(3):179. doi: 10.3390/gels8030179
  5. Mancha Sánchez E, Gómez-Blanco JC, López Nieto E, et al. Hydrogels for bioprinting: A systematic review of hydrogels synthesis, bioprinting parameters, and bioprinted structures behavior. Front Bioeng Biotechnol. 2020;8:776. doi: 10.3389/fbioe.2020.00776
  6. Gillispie G, Prim P, Copus J, et al. Assessment methodologies for extrusion-based bioink printability. Biofabrication. 2020;12(2):022003. doi: 10.1088/1758-5090/ab6f0d
  7. Fayyazbakhsh F, Leu MC. A brief review on 3D bioprinted skin substitutes. Procedia Manuf. 2020;48:790-796. doi: 10.1016/j.promfg.2020.05.115
  8. Fayyazbakhsh F, Khayat MJ, Leu MC. 3D-printed gelatin-alginate hydrogel dressings for burn wound healing: A comprehensive study. Int J Bioprint. 2022;8(4):618. doi: 10.18063/ijb.v8i4.618
  9. Mantha S, Pillai S, Khayambashi P, et al. Smart hydrogels in tissue engineering and regenerative medicine. Materials (Basel). 2019;12(20):3323. doi: 10.3390/MA12203323
  10. Ho TC, Chang CC, Chan HP, et al. Hydrogels: Properties and applications in biomedicine. Molecules. 2022;27(9):2902. doi: 10.3390/MOLECULES27092902
  11. El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob Cardiol Sci Pract. 2013;2013(3):316-342. doi: 10.5339/gcsp.2013.38
  12. Lin X, Zhao X, Xu C, Wang L, Xia Y. Progress in the mechanical enhancement of hydrogels: Fabrication strategies and underlying mechanisms. J Polym Sci. 2022;60(17):2525-2542. doi: 10.1002/pol.20220154
  13. Maciel BR, Baki K, Oelschlaeger C, Willenbacher N. The influence of rheological and wetting properties of hydrogel-based bio-inks on extrusion-based bioprinting. Chem Ing Tech. 2022;94(3):393-401. doi: 10.1002/cite.202100139
  14. Unagolla JM, Jayasuriya AC. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Appl Mater Today. 2020;18:100479. doi: 10.1016/j.apmt.2019.100479
  15. Gillispie GJ, Copus J, Uzun-Per M, et al. The correlation between rheological properties and extrusion-based printability in bioink artifact quantification. Mater Des. 2023;233:112237. doi: 10.1016/j.matdes.2023.112237
  16. Lee SC, Gillispie G, Prim P, Lee SJ. Physical and chemical factors influencing the printability of hydrogel-based extrusion bioinks. Chem Rev. 2020;120(19):10834-10886. doi: 10.1021/acs.chemrev.0c00015
  17. He Y, Yang F, Zhao H, Gao Q, Xia B, Fu J. Research on the printability of hydrogels in 3D bioprinting. Sci Rep. 2016;6:29977. doi: 10.1038/srep29977
  18. Mondal A, Gebeyehu A, Miranda M, et al. Characterization and printability of sodium alginate-Gelatin hydrogel for bioprinting NSCLC co-culture. Sci Rep. 2019;9(1):19914. doi: 10.1038/s41598-019-55034-9 
  19. Pepelanova I, Kruppa K, Scheper T, Lavrentieva A. Gelatin-methacryloyl (GelMA) hydrogels with defined degree of functionalization as a versatile toolkit for 3D Cell culture and extrusion bioprinting. Bioengineering (Basel). 2018;5(3):55. doi: 10.3390/BIOENGINEERING5030055
  20. Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev. 2020;120(19):11028-11055. doi: 10.1021/acs.chemrev.0c00084
  21. Fayyazbakhsh F, Khayat MJ, Sadler C, Day D, Huang YW, Leu MC. 3D-printed hydrogels dressings with bioactive borate glass for continuous hydration and treatment of second-degree burns. Int J Bioprint. 2023;9(6):0118. doi: 10.36922/IJB.0118
  22. Simorgh S, Alasvand N, Khodadadi M, et al. Additive manufacturing of bioactive glass biomaterials. Methods. 2022;208:75-91. doi: 10.1016/J.YMETH.2022.10.010
  23. Kolan KCR, Semon JA, Bromet B, Day DE, Leu MC. Bioprinting with human stem cell-laden alginate-gelatin bioink and bioactive glass for tissue engineering. Int J Bioprint. 2019;5(2.2):204. doi: 10.18063/ijb.v5i2.2.204
  24. Heid S, Boccaccini AR. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Acta Biomater. 2020;113:1-22. doi: 10.1016/j.actbio.2020.06.040
  25. Herrada-Manchón H, Fernández MA, Aguilar E. Essential guide to hydrogel rheology in extrusion 3D printing: How to measure it and why it matters? Gels. 2023;9(7):517. doi: 10.3390/GELS9070517
  26. Han D, Lu Z, Chester SA, Lee H. Micro 3D printing of a temperature-responsive hydrogel using projection micro-stereolithography. Sci Rep. 2018;8(1):1963. doi: 10.1038/s41598-018-20385-2
  27. Fischer B, Schulz A, Gepp MM, Neubauer J, Gentile L, Zimmermann H. 3D printing of hydrogels in a temperature controlled environment with high spatial resolution. Curr Dir Biomed Eng. 2016;2(1):109-112. doi: 10.1515/cdbme-2016-0027
  28. Jo Y, Kim JY, Kim SY, et al. 3D-printable, highly conductive hybrid composites employing chemically-reinforced, complex dimensional fillers and thermoplastic triblock copolymers. Nanoscale. 2017;9(16):5072-5084. doi: 10.1039/c6nr09610g
  29. Julie Chandra CS, Sasi S, Bindu Sharmila TK. Material applications of gelatin. In: Handbook of Biopolymers. Singapore: Springer; 2023. doi: 10.1007/978-981-16-6603-2_28-1
  30. De Farias BS, Rizzi FZ, Ribeiro ES, et al. Influence of gelatin type on physicochemical properties of electrospun nanofibers. Sci Rep. 2023;13(1):15195. doi: 10.1038/s41598-023-42472-9
  31. Asim S, Tabish TA, Liaqat U, Ozbolat IT, Rizwan M. Advances in gelatin bioinks to optimize bioprinted cell functions. Adv Healthc Mater. 2023;12(17):2203148. doi: 10.1002/adhm.202203148
  32. Mu X, Agostinacchio F, Xiang N, et al. Recent advances in 3D printing with protein-based inks. Prog Polym Sci. 2021;115:101375. doi: 10.1016/j.progpolymsci.2021.101375
  33. Gregory T, Benhal P, Scutte A, et al. Rheological characterization of cell-laden alginate-gelatin hydrogels for 3D biofabrication. J Mech Behav Biomed Mater. 2022;136:105474. doi: 10.1016/j.jmbbm.2022.105474
  34. Abka‐khajouei R, Tounsi L, Shahabi N, Patel AK, Abdelkafi S, Michaud P. Structures, properties and applications of alginates. Mar Drugs. 2022;20(6):364. doi: 10.3390/md20060364
  35. Axpe E, Oyen ML. Applications of alginate-based bioinks in 3D bioprinting. Int J Mol Sci. 2016;17(12):1976. doi: 10.3390/ijms17121976 
  36. Piras CC, Smith DK. Multicomponent polysaccharide alginate-based bioinks. J Mater Chem B. 2020;8(36):8171-8188. doi: 10.1039/d0tb01005g
  37. Lou L, Rubinsky B. Temperature-controlled 3D cryoprinting inks made of mixtures of alginate and agar. Gels. 2023;9(9):689. doi: 10.3390/gels9090689
  38. Kolan KCR, Semon JA, Bindbeutel AT, Day DE, Leu MC. Bioprinting with bioactive glass loaded polylactic acid composite and human adipose stem cells. Bioprinting. 2020;18:e00075. doi: 10.1016/j.bprint.2020.e00075
  39. Kolan K, Liu Y, Baldridge J, et al. Solvent based 3D printing of biopolymer/bioactive glass composite and hydrogel for tissue engineering applications. Procedia CIRP. 2017;65:38-43. doi: 10.1016/j.procir.2017.04.022
  40. Caroline Murphy, Kolan K, Li W, Semon J, Day D, Leu M. 3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for bone tissue engineering. Int J Bioprint. 2017;3(1):005. doi: 10.18063/IJB.2017.01.005
  41. Zakeri Siavashani A, Haghbin Nazarpak M, Fayyazbakhsh F, Toliyat T, McInnes SJP, Solati-Hashjin M. Effect of amino-functionalization on insulin delivery and cell viability for two types of silica mesoporous structures. J Mater Sci. 2016;51(24):10897-10909. doi: 10.1007/s10853-016-0301-1
  42. Siavashani AZ, Nazarpak MH, Bakhsh FF, Toliyat T, Solati- Hashjin M. Preparation of mesoporous silica nanoparticles for insulin drug delivery. Adv Mat Res. 2014;829:251-257. doi: 10.4028/
  43. Mehrabi T, Mesgar AS, Mohammadi Z. Bioactive glasses: A promising therapeutic ion release strategy for enhancing wound healing. ACS Biomater Sci Eng. 2020;6(10):5399-5430. doi: 10.1021/acsbiomaterials.0c00528
  44. Solanki AK, Lali FV, Autefage H, et al. Bioactive glasses and electrospun composites that release cobalt to stimulate the HIF pathway for wound healing applications. Biomater Res. 2021;25(1):1. doi: 10.1186/s40824-020-00202-6
  45. Chen YH, Rao ZF, Liu YJ, et al. Multifunctional injectable hydrogel loaded with cerium-containing bioactive glass nanoparticles for diabetic wound healing. Biomolecules. 2021;11(5):702. doi: 10.3390/biom11050702
  46. Ege D, Zheng K, Boccaccini AR. Borate bioactive glasses (BBG): Bone regeneration, wound healing applications, and future directions. ACS Appl Bio Mater. 2022;5(8):3608-3622. doi: 10.1021/acsabm.2c00384
  47. Bi L, Rahaman MN, Day DE, et al. Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model. Acta Biomater. 2013;9(8):8015-8026. doi: 10.1016/j.actbio.2013.04.043
  48. Lin Y, Brown RF, Jung SB, Day DE. Angiogenic effects of borate glass microfibers in a rodent model. J Biomed Mater Res A. 2014;102(12):4491-4499. doi: 10.1002/jbm.a.35120
  49. Zhao S, Li L, Wang H, et al. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model. Biomaterials. 2015;53:379-391. doi: 10.1016/j.biomaterials.2015.02.112
  50. Homaeigohar S, Li M, Boccaccini AR. Bioactive glass-based fibrous wound dressings. Burns Trauma. 2022;10:tkac038. doi: 10.1093/burnst/tkac038
  51. Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8(3):035020. doi: 10.1088/1758-5090/8/3/035020
  52. Kyle S, Jessop ZM, Al-Sabah A, Whitaker IS. ‘Printability’ of candidate biomaterials for extrusion based 3D printing: State-of-the-art. Adv Healthc Mater. 2017;6(16):1700264. doi: 10.1002/adhm.201700264 
  53. Cano-Vicent A, Tuñón-Molina A, Bakshi H, et al. Biocompatible alginate film crosslinked with Ca2+ and Zn2+ possesses antibacterial, antiviral, and anticancer activities. ACS Omega. 2023;8(27):24396-24405. doi: 10.1021/acsomega.3c01935
  54. Matyash M, Despang F, Ikonomidou C, Gelinsky M. Swelling and mechanical properties of alginate hydrogels with respect to promotion of neural growth. Tissue Eng Part C Methods. 2014;20(5):401-411. doi: 10.1089/ten.tec.2013.0252
  55. Pailler-Mattei C, Bec S, Zahouani H. In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med Eng Phys. 2008;30(5):599-606. doi: 10.1016/j.medengphy.2007.06.011
  56. Khalil S, Sun W. Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Mater Sci Eng C. 2007;27(3):469-478. doi: 10.1016/j.msec.2006.05.023
  57. Loebel C, Rodell CB, Chen MH, Burdick JA. Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing. Nat Protoc. 2017;12(8):1521-1541. doi: 10.1038/nprot.2017.053
Conflict of interest
The authors declare they have no competing interests.
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing