AccScience Publishing / MSAM / Volume 3 / Issue 1 / DOI: 10.36922/msam.2264
Cite this article
69
Download
511
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ORIGINAL RESEARCH ARTICLE

Effects of carbon content on precipitate evolution and crack susceptibility in additively manufactured IN738LC

Zhongji Sun1* Verner Soh1 Coryl Lee1 Delvin Wuu1 Desmond Lau1 Siyuan Wei1 Chee Koon Ng1 Swee Leong Sing2 Dennis Tan1 Pei Wang1,3*
Show Less
1 Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
2 Department of Mechanical Engineering, National University of Singapore, Singapore, Republic of Singapore
3 Engineering Cluster, Singapore Institute of Technology, Singapore, Republic of Singapore
Submitted: 16 November 2023 | Accepted: 8 January 2024 | Published: 19 February 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Hot cracking is a major bottleneck preventing the additive manufacturing community from adopting precipitation-strengthened nickel-base superalloys, such as the IN738LC. Prior literature demonstrates the beneficial outcome of increasing the carbon content within IN738LC to alleviate its hot cracking problem. However, the effect of carbon content on the gamma prime precipitation and grain recrystallization was not fully addressed. Here, we fabricated five sample sets of IN738LC with different carbon contents and subjected these samples to two separate heat treatment processes. The precipitate and grain evolution were monitored under the backscattered electron imaging and electron backscattered diffraction studies. While the carbon addition could assist in addressing the hot cracking problem, horizontal delamination cracks were detected during the fabrication of large samples when the overall carbon content was above 0.4 wt.%, highlighting the need for care when introducing carbon for the purpose of resolving hot cracking.

Keywords
Additive manufacturing
Cracking
Nickel-base superalloy
Carbon
Funding
Z. Sun acknowledges financial support from the Career Development Fund (grant reference no.: C222812017), Young Individual Research Grant (Grant reference no.: M22K3c0096); and P. Wang acknowledges the financial support from the Individual Research Grant (grant reference no.: A20E7c0109) from the Agency for Science, Technology and Research of Singapore.
References
  1. Guo C, Yu Z, Hu X, et al. Y2O3 nanoparticles decorated IN738LC superalloy manufactured by laser powder bed fusion: Cracking inhibition, microstructures and mechanical properties. Compos Part B Eng. 2022;230:109555. doi: 10.1016/j.compositesb.2021.109555

 

  1. Xu J, Ding Y, Gao Y, et al. Improving high-temperature mechanical properties of laser powder bed-fused Inconel 738 alloy by hot isostatic pressing: Tailoring precipitates and healing defects. Mater Sci Eng A. 2023;862:144285. doi: 10.1016/j.msea.2022.144285

 

  1. Zhang L, Li Y, Zhang Q, Zhang S. Microstructure evolution, phase transformation and mechanical properties of IN738 superalloy fabricated by selective laser melting under different heat treatments. Mater Sci Eng A. 2022;844:142947. doi: 10.1016/j.msea.2022.142947

 

  1. Sotov AV, Agapovichev AV, Smelov VG, et al. Investigation of the IN-738 superalloy microstructure and mechanical properties for the manufacturing of gas turbine engine nozzle guide vane by selective laser melting. Int J Adv Manuf Technol. 2020;107(5-6):2525-2535. doi: 10.1007/s00170-020-05197-x

 

  1. Rickenbacher L, Etter T, Hövel S, Wegener K. High temperature material properties of IN738LC processed by selective laser melting (SLM) technology. Rapid Prototyp J. 2013;19(4):282-290. doi: 10.1108/13552541311323281

 

  1. Vilanova M, Garciandia F, Sainz S, Jorge-Badiola D, Guraya T, San Sebastian M. The limit of hot isostatic pressing for healing cracks present in an additively manufactured nickel superalloy. J Mater Process Technol. 2022;300:117398. doi: 10.1016/j.jmatprotec.2021.117398

 

  1. Mostafaei A, Ghiaasiaan R, Ho IT, et al. Additive Manufacturing of Nickel-based superalloys: A state-of-the-art review on process-structure-defect-property relationship. Prog Mater Sci. 2023;136:101108. doi: 10.1016/j.pmatsci.2023.101108

 

  1. Han C, Fang Q, Shi Y, Tor SB, Chua CK, Zhou K. Recent advances on high-entropy alloys for 3D printing. Adv Mater. 2020;32(26):e1903855. doi: 10.1002/adma.201903855

 

  1. Zhao D, Liang H, Han C, et al. 3D printing of a titanium-tantalum Gyroid scaffold with superb elastic admissible strain, bioactivity and in-situ bone regeneration capability. Addit Manuf. 2021;47:102223. doi: 10.1016/j.addma.2021.102223

 

  1. DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components - process, structure and properties. Prog Mater Sci. 2018;92:112-224. doi: 10.1016/j.pmatsci.2017.10.001

 

  1. Xu J, Lin X, Guo P, et al. The initiation and propagation mechanism of the overlapping zone cracking during laser solid forming of IN-738LC superalloy. J Alloys Compd. 2018;749:859-870. doi: 10.1016/j.jallcom.2018.03.366

 

  1. Zhang X, Chen H, Xu L, Xu J, Ren X, Chen X. Cracking mechanism and susceptibility of laser melting deposited Inconel 738 superalloy. Mater Des. 2019;183:108105. doi: 10.1016/j.matdes.2019.108105

 

  1. Sun Z, Ma Y, Ponge D, et al. Thermodynamics-guided alloy and process design for additive manufacturing. Nat Commun. 2022;13(1):4361. doi: 10.1038/s41467-022-31969-y

 

  1. Chen QZ, Jones N, Knowles DM. The microstructures of base/modified RR2072 SX superalloys and their effects on creep properties at elevated temperatures. Acta Mater. 2002;50(5):1095-1112. doi: 10.1016/S1359-6454(01)00410-4

 

  1. Wei CN, Bor HY, Chang L. The effects of carbon content on the microstructure and elevated temperature tensile strength of a nickel-base superalloy. Mater Sci Eng A. 2010;527(16- 17):3741-3747. doi: 10.1016/j.msea.2010.03.053

 

  1. Wei CN, Bor HY, Chang L. The influence of carbon addition on carbide characteristics and mechanical properties of CM-681LC superalloy using fine-grain process. J Alloys Compd. 2011;509(18):5708-5714. doi: 10.1016/j.jallcom.2011.02.146

 

  1. Li XW, Liu T, Wang L, Liu XG, Lou LH, Zhang J. Effect of carbon content on the microstructure and creep properties of a 3rd generation single crystal nickel-base superalloy. Mater Sci Eng A. 2015;639:732-738. doi: 10.1016/j.msea.2015.05.039

 

  1. Zhou W, Tian Y, Tan Q, et al. Effect of carbon content on the microstructure, tensile properties and cracking susceptibility of IN738 superalloy processed by laser powder bed fusion. Addit Manuf. 2022;58:103016. doi: 10.1016/j.addma.2022.103016

 

  1. Kontis P, Collins DM, Wilkinson AJ, Reed RC, Raabe D, Gault B. Microstructural degradation of polycrystalline superalloys from oxidized carbides and implications on crack initiation. Scr Mater. 2018;147:59-63. doi: 10.1016/j.scriptamat.2017.12.028

 

  1. Yao J, Cahoon JR. Discussion of “hydrogen induced grain boundary fracture in high purity nickel and its alloys-enhanced hydrogen diffusion along grain boundaries. Scr Metall. 1988;22(11):1817-1820. doi: 10.1016/S0036-9748(88)80291-6

 

  1. Kontis P, Kostka A, Raabe D, Gault B. Influence of composition and precipitation evolution on damage at grain boundaries in a crept polycrystalline Ni-based superalloy. Acta Mater. 2019;166:158-167. doi: 10.1016/j.actamat.2018.12.039

 

  1. Furrer DU. Application of phase-field modeling to industrial materials and manufacturing processes. Curr Opin Solid State Mater Sci. 2011;15(3):134-140. doi: 10.1016/j.cossms.2011.03.001

 

  1. Chen J, Xue L. Process-induced microstructural characteristics of laser consolidated IN-738 superalloy. Mater Sci Eng A. 2010;527(27-28):7318-7328. doi: 10.1016/j.msea.2010.08.003

 

  1. Messé OMDM, Muñoz-Moreno R, Illston T, Baker S, Stone HJ. Metastable carbides and their impact on recrystallisation in IN738LC processed by selective laser melting. Addit Manuf. 2018;22:394-404. doi: 10.1016/j.addma.2018.05.030

 

  1. Balikci E, Mirshams RA, Raman A. Tensile strengthening in the nickel-base superalloy IN738LC. J Mater Eng Perform. 2000;9(3):324-329. doi: 10.1361/105994900770345999

 

  1. Balikci E, Raman A, Mirshams RA. Influence of various heat treatments on the microstructure of polycrystalline IN738LC. Metall Mater Trans A Phys Metall Mater Sci. 1997;28(10):1993-2003. doi: 10.1007/s11661-997-0156-9

 

  1. Bettge D, Oesterle W, Ziebs J. Temperature dependence of yield strength and elongation of the nickel-base superalloy IN 738 LC and the corresponding microstructural evolution. Zeitschrift fuer Met Res Adv Tech. 1995;86(3):190-197. doi: 10.1515/ijmr-1995-860309

 

  1. Hariharan A, Lu L, Risse J, et al. Misorientation-dependent solute enrichment at interfaces and its contribution to defect formation mechanisms during laser additive manufacturing of superalloys. Phys Rev Mater. 2019;3(12):123602. doi: 10.1103/PhysRevMaterials.3.123602

 

  1. Godec M, Zaefferer S, Podgornik B, Šinko M, Tchernychova E. Quantitative multiscale correlative microstructure analysis of additive manufacturing of stainless steel 316L processed by selective laser melting. Mater Charact. 2020;160:110074. doi: 10.1016/j.matchar.2019.110074

 

  1. Starink MJ, Cama H, Thomson RC. MC carbides in the Hf containing Ni based superalloy MarM002. Scr Mater. 1997;38(1):73-80. doi: 10.1016/S1359-6462(97)00409-0

 

  1. Kang SG, Gainov R, Heußen D, et al. Green laser powder bed fusion based fabrication and rate-dependent mechanical properties of copper lattices. Mater Des. 2023;231:112023. doi: 10.1016/j.matdes.2023.112023

 

  1. Sun Z, Tsai SP, Konijnenberg P, Wang JY, Zaefferer S. A large-volume 3D EBSD study on additively manufactured 316L stainless steel. Scr Mater. 2024;238:115723. doi: 10.1016/j.scriptamat.2023.115723

 

  1. Wang L, Xie G, Zhang J, Lou LH. On the role of carbides during the recrystallization of a directionally solidified nickel-base superalloy. Scr Mater. 2006;55(5):457-460. doi: 10.1016/j.scriptamat.2006.05.013

 

  1. Zhou Y, Volek A. Effect of carbon additions on hot tearing of a second generation nickel-base superalloy. Mater Sci Eng A. 2008;479(1-2):324-332. doi: 10.1016/j.msea.2007.06.076

 

  1. Tin S, Pollock TM. Stabilization of thermosolutal convective instabilities in Ni-based single-crystal superalloys: Carbide precipitation and Rayleigh numbers. Metall Mater Trans A Phys Metall Mater Sci. 2003;34A(9):1953-1967. doi: 10.1007/s11661-003-0160-7

 

  1. Sun Z, Tan X, Tor SB. Effects of Chamber Oxygen Concentration on Microstructure and Mechanical Properties of Stainless Steel 316L Parts by Selective Laser Melting. In: Proceedings of the International Conference on Progress in Additive Manufacturing; 2018. p. 470-5. doi: 10.25341/D4CS38

 

  1. Zhang L, Li Y, Zhang S, Zhang Q. Selective laser melting of IN738 superalloy with a low Mn+Si content: Effect of energy input on characteristics of molten pool, metallurgical defects, microstructures and mechanical properties. Mater Sci Eng A. 2021;826:141985. doi: 10.1016/j.msea.2021.141985

 

  1. Xu J, Gruber H, Boyd R, Jiang S, Peng RL, Moverare JJ. On the strengthening and embrittlement mechanisms of an additively manufactured Nickel-base superalloy. Materialia. 2020;10:100657. doi: 10.1016/j.mtla.2020.100657

 

  1. Liu F, Kirchheim R. Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J Cryst Growth. 2004;264(1-3):385-391. doi: 10.1016/j.jcrysgro.2003.12.021

 

  1. Collins DM, Conduit BD, Stone HJ, Hardy MC, Conduit GJ, Mitchell RJ. Grain growth behaviour during near-γ' solvus thermal exposures in a polycrystalline nickel-base superalloy. Acta Mater. 2013;61(9):3378-3391. doi: 10.1016/j.actamat.2013.02.028

 

  1. Platl J, Bodner S, Hofer C, et al. Cracking mechanism in a laser powder bed fused cold-work tool steel: The role of residual stresses, microstructure and local elemental concentrations. Acta Mater. 2022;225:117570. doi: 10.1016/j.actamat.2021.117570

 

  1. Yang K, Wang Y, Guo M, et al. Recent development of advanced precipitation-strengthened Cu alloys with high strength and conductivity: A review. Prog Mater Sci. 2023;138:101141. doi: 10.1016/j.pmatsci.2023.101141

 

  1. Xie D, Lv F, Yang Y, et al. A Review on distortion and residual stress in additive manufacturing. Chin J Mech Eng Addit Manuf Front. 2022;1(3):100039. doi: 10.1016/j.cjmeam.2022.100039

 

  1. Risse J. Additive Manufacturing of Nickel-Base Superalloy IN738LC by Laser Powder Bed Fusion. Germany: Lehrstuhl für Lasertechnik; 2019. doi: 10.18154/RWTH-2019-06822
Conflict of interest
No potential competing interests.
Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing