The role of large language models in induced pluripotent stem cell-derived cardiomyocytes research and clinical translation

Background: Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are redefining cardiovascular regenerative medicine, yet challenges in differentiation fidelity, functional maturation, and scalable production restrain their full clinical potential. Aim: This review evaluates the pioneering integration of large language models (LLMs)—including GPT-4, BioGPT, and BioMedLM—into iPSC-CM research and translational therapeutics, with a focus on advancing precision, efficiency, and patient-specific care. Methods: Structured searches across biomedical and artificial intelligence-focused databases were conducted to map how LLMs augment literature mining, experimental design, multi-omics integration, and clinical translation, including personalized therapy prediction and drug safety assessment. Results: LLMs demonstrably surpass traditional tools in identifying gene-phenotype links, refining clustered regularly interspaced short palindromic repeats-based differentiation protocols, and merging patient-level datasets with iPSC-CM outputs. Limitations include model interpretability, reproducibility across genetically diverse populations, and ethical considerations regarding data privacy and bias. Conclusion: Despite these barriers, early translational applications demonstrate that LLMs can accelerate hypothesis generation, optimize laboratory-to-clinic pipelines, and enable high-fidelity, patient-specific cardiomyocyte modeling. Relevance for patients: The synergy of LLM intelligence and iPSC-CM biology has the potential to deliver safer, more effective, and deeply personalized regenerative cardiac therapies—moving the field closer to truly bespoke heart repair.
- Di Cesare M, Perel P, Taylor S, et al. The heart of the world. Global Heart. 2024;19(1):11. doi: 10.5334/gh.1288
- World Health Organization: WHO. Cardiovascular Diseases (CVDs); 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) [Last accessed on 2025 May 20].
- Hussain MA, Mamun AA, Peters SA, Woodward M, Huxley RR. The burden of cardiovascular disease attributable to major modifiable risk factors in Indonesia. J Epidemiol. 2016;26(10):515-521. doi: 10.2188/jea.je20150178
- Pratama DA, Anisah M, Marlianda SA. Real-Time changes of heart rhythm using MATLAB. Int J Res Vocat Stud. 2023;3(2):53-59. doi: 10.53893/ijrvocas.v3i2.202
- Maddox KEJ, Elkind MSV, Aparicio HJ, et al. Forecasting the burden of cardiovascular disease and stroke in the United States through 2050-Prevalence of Risk Factors and Disease: A Presidential advisory from the American Heart Association. Circulation. 2024;150(4):e65-e88. doi: 10.1161/cir.0000000000001256
- Zhu M, Jin W, He W, Zhang L. The incidence, mortality and disease burden of cardiovascular diseases in China: A comparative study with the United States and Japan based on the GBD 2019 time trend analysis. Front Cardiovasc Med. 2024;11:1408487. doi: 10.3389/fcvm.2024.1408487
- Singh R, Chandi SK, Sran S, et al. Emerging therapeutic strategies in cardiovascular diseases. Cureus. 2024;16:e64388. doi: 10.7759/cureus.64388
- Ullah A, Kumar M, Sayyar M, et al. Revolutionizing cardiac care: A comprehensive narrative review of cardiac rehabilitation and the evolution of cardiovascular medicine. Cureus. 2023;15:e46469. doi: 10.7759/cureus.46469
- World Heart Federation. CVD Prevention What we Do World Heart Federation. World Heart Federation; 2024. Available from: https://world-heart-federation.org/what-we-do/ prevention/#:~:text=The%20majority%20of%20deaths%20due,regular%20exercise%20and%20avoiding%20tobacco [Last accessed on 2025 May 20].
- Addissouky TA, Sayed IETE, Ali MMA, et al. Shaping the future of cardiac wellness: Exploring revolutionary approaches in disease management and prevention. J Clin Cardiol. 2024;5(1):6-29. doi: 10.33696/cardiology.5.048
- Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676. doi: 10.1016/j.cell.2006.07.024
- Sugiura T, Shahannaz DC, Ferrell BE, Yoshida T. Advancements in cardiac regenerative therapy: Scalable human iPSC-derived cardiomyocyte differentiation and maturation. Glob Transl Med. 2025;4(1):1-15. doi: 10.36922/gtm.5745
- Kaplan A, Haenlein M. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus Horiz. 2018;62(1):15-25. doi: 10.1016/j.bushor.2018.08.004
- Wang Z, Chu Z, Doan TV, Ni S, Yang M, Zhang W. History, Development, and Principles of Large Language Models: An Introductory Survey. AI and Ethics; 2024. doi: 10.1007/s43681-024-00583-7
- Olawade DB, Aderinto N, Olatunji G, Kokori E, David- Olawade AC, Hadi M. Advancements and applications of Artificial Intelligence in cardiology: Current trends and future prospects. J Med Surg Public Health. 2024;3:100109. doi: 10.1016/j.glmedi.2024.100109
- Tolu-Akinnawo OZ, Ezekwueme F, Omolayo O, Batheja S, Awoyemi T. Advancements in artificial intelligence in noninvasive cardiac imaging: A comprehensive review. Clin Cardiol. 2025;48(1):e70087. doi: 10.1002/clc.70087
- Kasartzian DI, Tsiampalis T. Transforming cardiovascular risk prediction: A review of machine learning and artificial intelligence innovations. Life. 2025;15(1):94. doi: 10.3390/life15010094
- Leivaditis V, Beltsios E, Papatriantafyllou A, et al. Artificial intelligence in Cardiac surgery: Transforming outcomes and shaping the future. Clin Pract. 2025;15(1):17. doi: 10.3390/clinpract15010017
- Wangsa K, Karim S, Gide E, Elkhodr M. A systematic review and comprehensive analysis of pioneering AI chatbot models from education to healthcare: ChatGPT, Bard, Llama, Ernie and Grok. Future Internet. 2024;16(7):219. doi: 10.3390/fi16070219
- Iqbal U, Tanweer A, Rahmanti AR, Greenfield D, Lee LTJ, Li YCJ. Impact of large language model (ChatGPT) in healthcare: An umbrella review and evidence synthesis. J Biomed Sci. 2025;32(1):45. doi: 10.1186/s12929-025-01131-z
- Chen H, Zhang S, Zhang L, et al. Multi role ChatGPT framework for transforming medical data analysis. Sci Rep. 2024;14(1):13930. doi: 10.1038/s41598-024-64585-5
- Neha F, Bhati D, Shukla DK, Amiruzzaman M. ChatGPT: Transforming healthcare with AI. AI. 2024;5(4):2618-2650. doi: 10.3390/ai5040126
- Liu S, Wright AP, Patterson BL, et al. Using AI-generated suggestions from ChatGPT to optimize clinical decision support. J Am Med Inform Assoc. 2023;30(7):1237-1245. doi: 10.1093/jamia/ocad072
- Salihu A, Meier D, Noirclerc N, et al. A study of ChatGPT in facilitating Heart Team decisions on severe aortic stenosis. EuroIntervention. 2024;20(8):e496-e503. doi: 10.4244/eij-d-23-00643
- Ahmed SK, Hussein S, Essa RA. The role of ChatGPT in cardiothoracic surgery. Indian J Thorac Cardiovasc Surg. 2023;39(5):562-563. doi: 10.1007/s12055-023-01568-7
- Amacher SA, Arpagaus A, Sahmer C, et al. Prediction of outcomes after cardiac arrest by a generative artificial intelligence model. Resusc Plus. 2024;18:100587. doi: 10.1016/j.resplu.2024.100587
- Clark SC. Can ChatGPT transform cardiac surgery and heart transplantation? J Cardiothorac Surg. 2024;19(1):108. doi: 10.1186/s13019-024-02541-0
- Sharun K, Banu SA, Pawde AM, et al. ChatGPT and artificial hallucinations in stem cell research: Assessing the accuracy of generated references – a preliminary study. Ann Med Surg. 2023;85(10):5275-5278. doi: 10.1097/ms9.0000000000001228
- Yap L, Adusumalli S, Lim S, et al. Spatiotemporal transcriptomics of human cardiovascular progenitors in pig hearts identifies MIDKINE as a positive regulator of neovascularization. Research Square. 2025. doi: 10.21203/rs.3.rs-5837914/v1
- Murphy SA, Chen EZ, Tung L, Boheler KR, Kwon C. Maturing heart muscle cells: Mechanisms and transcriptomic insights. Semin Cell Dev Biol. 2021;119:49-60. doi: 10.1016/j.semcdb.2021.04.019
- Hao X, Zhao J, Rodriguez-Wallberg KA. Comprehensive atlas of mitochondrial distribution and dynamics during oocyte maturation in mouse models. Biomark Res. 2024;12(1):125. doi: 10.1186/s40364-024-00672-z
- Talman V, Teppo J, Pöhö P, et al. Molecular atlas of postnatal mouse heart development. J Am Heart Assoc. 2018;7(20):e010378. doi: 10.1161/jaha.118.010378
- Hayat R. Dynamics of metabolism and regulation of epigenetics during cardiomyocytes maturation. Cell Biol Int. 2022;47(1):30-40. doi: 10.1002/cbin.11931
- Huang L, Wang Q, Gu S, Cao N. Integrated metabolic and epigenetic mechanisms in cardiomyocyte proliferation. J Mol Cell Cardiol. 2023;181:79-88. doi: 10.1016/j.yjmcc.2023.06.002
- Rommel C, Hein L. Four dimensions of the cardiac myocyte epigenome: From fetal to adult heart. Curr Cardiol Rep. 2020;22(5):26. doi: 10.1007/s11886-020-01280-7
- Zamora-Dorta M, Laine-Menéndez S, Abia D, et al. Time-resolved mitochondrial screen identifies regulatory components of oxidative metabolism. EMBO Rep. 2025;26:3045-3074. doi: 10.1038/s44319-025-00459-9
- Liu B, Chang H, Yang D, et al. A deep learning framework assisted echocardiography with diagnosis, lesion localization, phenogrouping heterogeneous disease, and anomaly detection. Sci Rep. 2023;13:3. doi: 10.1038/s41598-022-27211-w
- Panahiazar M, Taslimitehrani V, Pereira N, Pathak J. Using EHRs and machine learning for heart failure survival analysis. Stud Health Technol Inform. 2015;216:40-44. doi: 10.3233/978-1-61499-564-7-40
- Pan J, Lee S, Cheligeer C, et al. Integrating large language models with human expertise for disease detection in electronic health records. Comput Biol Med. 2025;191:110161. doi: 10.1016/j.compbiomed.2025.110161
- Zhu Y, Huang R, Wu Z, et al. Deep learning-based predictive identification of neural stem cell differentiation. Nat Commun. 2021;12:2614. doi: 10.1038/s41467-021-22758-0
- Pickard J, Choi MA, Oliven N, et al. Bioinformatics Retrieval Augmentation Data (BRAD) Digital Assistant. New York: arXiv Cornell University; 2024. doi: 10.48550/arxiv.2409.02864
- Sapunov G. Deep Learning with JAX. United States: Simon and Schuster; 2024.
- Hao M, Wei L, Yang F, et al. Current opinions on large cellular models. Quant Biol. 2024;12(4):433-443. doi: 10.1002/qub2.65
- Hochstadt A, Barbhaiya C, Aizer A, et al. Performance of a protein language model for variant annotation in cardiac disease. J Am Heart Assoc. 2024;13(20):e036921. doi: 10.1161/jaha.124.036921
- Llm-Jp, Aizawa A, Aramaki E, et al. LLM-JP: A Cross- Organizational Project for the Research and Development of Fully Open Japanese LLMs. New York: arXiv Cornell University; 2024. doi: 10.48550/arxiv.2407.03963
- Cui H, Wang C, Maan H, et al. scGPT: Toward building a foundation model for single-cell multi-omics using generative AI. Nat Methods. 2024;21(8):1470-1480. doi: 10.1038/s41592-024-02201-0
- Hao M, Gong J, Zeng X, et al. Large Scale Foundation Model on Single-Cell Transcriptomics. bioRxiv New York: Cold Spring Harbor Laboratory; 2023. doi: 10.1101/2023.05.29.542705
- Li Y, Mamouei M, Khorshidi GS, et al. Hi-BEHRT: Hierarchical Transformer-based Model for Accurate Prediction of Clinical Events Using Multimodal Longitudinal Electronic Health Records. New York: arXiv Cornell University; 2021. doi: 10.48550/arxiv.2106.11360
- Ning Z, Jiang X, Huang H, et al. Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases. Sci Rep. 2025;15(1):12015. doi: 10.1038/s41598-025-96689-x
- Neyazi M, Bremer JP, Knorr MS, et al. Deep learning-based NT-proBNP prediction from the ECG for risk assessment in the community. Clin Chem Lab Med. 2023;62(4):740-752. doi: 10.1515/cclm-2023-0743
- Gunčar G, Kukar M, Smole T, et al. Differentiating viral and bacterial infections: A machine learning model based on routine blood test values. Heliyon. 2024;10(8):e29372. doi: 10.1016/j.heliyon.2024.e29372
- Maxwell YL. In HFREF, AI Shows Promise for Predicting Beta Blocker Response; 2021. Available from: https://www. tctmd.com/news/hfref-ai-shows-promise-predicting-beta-blocker-response [Last accessed on 2025 May 20].
- Kyro GW, Martin MT, Watt ED, Batista VS. CardioGenAI: A Machine Learning-Based Framework for Re-Engineering Drugs for Reduced HERG Liability. New York: arXiv Cornell University; 2024. doi: 10.48550/arxiv.2403.07632
- Chiu CE, Pinto AL, Chowdhury RA, Christensen K, Varela M. Characterisation of Anti-Arrhythmic Drug Effects on Cardiac Electrophysiology using Physics-Informed Neural Networks. New York: arXiv Cornell University; 2024. doi: 10.1109/isbi56570.2024.10635234
- Ouyang JF, Chothani S, Rackham OJL. Deep learning models will shape the future of stem cell research. Stem Cell Reports. 2023;18(1):6-12. doi: 10.1016/j.stemcr.2022.11.007
- Sen S, Hoff S, Bonomi M. BPS2025-Improving small-molecule docking using AlphaFold models with bAIes. Biophys J. 2025;124(3):224a.
- Wysocki O, Zhou Z, O’Regan P, et al. Transformers and the Representation of Biomedical Background Knowledge. New York: arXiv Cornell University; 2022. doi: 10.48550/arxiv.2202.02432
- Lee J, Yoon W, Kim S, et al. BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics. 2019;36(4):1234-1240. doi: 10.1093/bioinformatics/btz682
- Luo R, Sun L, Xia Y, et al. BioGPT: Generative pre-trained transformer for biomedical text generation and mining. Brief Bioinform. 2022;23(6):bbac409. doi: 10.1093/bib/bbac409
- Bolton E, Venigalla A, Yasunaga M, et al. BioMedLM: A 2.7B Parameter Language Model Trained on Biomedical Text; 2024. Available from: https://arxiv.org/abs/2403.18421v1 [Last accessed on 2025 May 20].
- Cronin L. Chemputer and Chemputation - a Universal Chemical Compound Synthesis Machine; 2024. Available from: https://arxiv.org/abs/2408.09171v2 [Last accessed on 2025 May 20].
- Peng C, Yang X, Chen A, et al. A study of generative large language model for medical research and healthcare. NPJ Digit Med. 2023;6(1):210. doi: 10.1038/s41746-023-00958-w
- Chen JH, Tseng YJ. A general optimization protocol for molecular property prediction using a deep learning network. Brief Bioinform. 2021;23(1):bbab367.
- Nosrati H, Nosrati M. Artificial intelligence in regenerative medicine: Applications and implications. Biomimetics (Basel). 2023;8(5):442. doi: 10.3390/biomimetics8050442
- Herson J, Krummenacker M, Spaulding A, O’Maille P, Karp PD. The genome explorer genome browser. mSystems. 2024;9(7):e0026724. doi: 10.1128/msystems.00267-24
- Forero DA, Bonilla DA, González-Giraldo Y, Patrinos GP. An overview of key online resources for human genomics: A powerful and open toolbox for in silico research. Brief Funct Genomics. 2024;23(6):754-764. doi: 10.1093/bfgp/elae029
- Nijkamp E, Ruffolo JA, Weinstein EN, Naik N, Madani A. ProGen2: Exploring the boundaries of protein language models. Cell Syst. 2023;14(11):968-978.e3. doi: 10.1016/j.cels.2023.10.002
- Kulkarni P, Porter L, Chou TF, et al. Evolving concepts of the protein universe. iScience. 2025;28(3):112012. doi: 10.1016/j.isci.2025.112012
- Clough E, Barrett T, Wilhite SE, et al. NCBI GEO: Archive for gene expression and epigenomics data sets: 23-year update. Nucleic Acids Res. 2023;52(D1):D138-D144. doi: 10.1093/nar/gkad965
- Stanescu L, Dinu G. TensorFlow vs. PyTorch in classifying medical images – preliminary results. In: 2022 26th International Conference on System Theory, Control and Computing (ICSTCC); 2023. p. 448-453. doi: 10.1109/icstcc59206.2023.10308472
- Novac OC, Chirodea MC, Novac CM, et al. Analysis of the application efficiency of TensorFlow and PyTorch in convolutional neural network. Sensors (Basel). 2022;22(22):8872. doi: 10.3390/s22228872
- Sugiura T, Shahannaz DC, Ferrell BE. Current status of cardiac regenerative therapy using induced pluripotent stem cells. Int J Mol Sci. 2024;25(11):5772. doi: 10.3390/ijms25115772
- Sugiura T, Nawaz S, Shahannaz DC, Ferrell BE, Yoshida T. From injury to repair: The therapeutic potential of induced pluripotent stem cells in heart failure. Regen Med Rep. 2025;2(1):22-30. doi: 10.4103/regenmed.regenmed-d-25-00002
- Shahannaz DC, Sugiura T, Ferrell BE. Enhancing mitochondrial maturation in IPSC-DerivedCardiomyocytes: Strategies for metabolic optimization. BioChem. 2025;5(3):23. doi: 10.3390/biochem5030023
- Shi Y, Yang J, Nai C, et al. Language-Enhanced representation learning for Single-Cell transcriptomics; 2025. Available from: https://arxiv.org/abs/2503.09427 [Last accessed on 2025 May 20].
- Wang Y, Chen X, Zheng Z, et al. scGREAT: Transformer-based deep-language model for gene regulatory network inference from single-cell transcriptomics. iScience. 2024;27(4):109352. doi: 10.1016/j.isci.2024.109352
- Mao Y, Mi Y, Liu P, Zhang M, Liu H, Gao Y. SCAgent: Universal Single-Cell Annotation via a LLM agent; 2025. Available from: https://arxiv.org/abs/2504.04698 [Last accessed on 2025 May 20].
- Collins RL, Glessner JT, Porcu E, et al. A cross-disorder dosage sensitivity map of the human genome. Cell. 2022;185(16):3041-3055.e25. doi: 10.1016/j.cell.2022.06.036
- Zhu Y, Ren C, Xie S, et al. REALM: RAG-Driven Enhancement of Multimodal Electronic Health Records Analysis via Large Language Models; 2024. Available from: https://arxiv.org/ abs/2402.07016v1 [Last accessed on 2025 May 20].
- Krishna R, Wang J, Ahern W, et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science. 2024;384(6693):eadl2528. doi: 10.1126/science.adl2528
- Bunne C, Roohani Y, Rosen Y, et al. How to build the virtual cell with artificial intelligence: Priorities and opportunities. Cell. 2024;187(25):7045-7063. doi: 10.1016/j.cell.2024.11.015
- Keshri R, Detraux D, Phal A, et al. Next-generation direct reprogramming. Front Cell Dev Biol. 2024;12:1343106. doi: 10.3389/fcell.2024.1343106
- Lam WY, Au SCL. From ChatGPT to DeepSeek: Potential uses of artificial intelligence in early symptom recognition for stroke care. J Acute Dis. 2025;14(1):6. doi: 10.4103/jad.jad_16_25
- Lavrov AV, Varenikov GG, Skoblov MY. Genome scale analysis of pathogenic variants targetable for single base editing. BMC Med Genom. 2020;13(Suppl 8):80. doi: 10.1186/s12920-020-00735-8
- Keio University. AI Model Developed by Brigham Researchers Could Help Screen for Heart Defect. Keio University; 2023. Available from: https://www.keio.ac.jp/en/press-releases/ files/2023/11/7/231107-1.pdf [Last accessed on 2025 May 27.
- Miura K, Yagi R, Miyama H, et al. Deep learning-based model detects atrial septal defects from electrocardiography: A cross-sectional multicenter hospital-based study. EClinicalMedicine. 2023;63:102141. doi: 10.1016/j.eclinm.2023.102141
- Batteux C, Haidar MA, Bonnet D. 3D-printed models for surgical planning in complex congenital heart diseases: A systematic review. Front Pediatr. 2019;7:23. doi: 10.3389/fped.2019.00023
- Sørensen TS, Beerbaum P, Mosegaard J, et al. Virtual cardiotomy based on 3-D MRI for preoperative planning in congenital heart disease. Pediatr Radiol. 2008; 38(12):1314-1322. doi: 10.1007/s00247-008-1032-5
- Staffa SJ, Zurakowski D. A basic machine learning primer for surgical research in congenital heart disease. World J Pediatr Congen Heart Surg. 2025;16:571-577. doi: 10.1177/21501351251335643
- Holt DB, El-Bokl A, Stromberg D, Taylor MD. Role of artificial intelligence in congenital heart disease and interventions. J Soc Cardiovasc Angiogr Interv. 2025;4(3):102567. doi: 10.1016/j.jscai.2025.102567
- Micheu MM, Rosca AM. Patient-specific induced pluripotent stem cells as “disease-in-a-dish” models for inherited cardiomyopathies and channelopathies – 15 years of research. World J Stem Cells. 2021;13(4):281-303. doi: 10.4252/wjsc.v13.i4.281
- Funakoshi S, Yoshida Y. Recent progress of iPSC technology in cardiac diseases. Arch Toxicol. 2021;95(12):3633-3650. doi: 10.1007/s00204-021-03172-3
- Hong L, Zhang M, Ly OT, et al. Human induced pluripotent stem cell-derived atrial cardiomyocytes carrying an SCN5A mutation identify nitric oxide signaling as a mediator of atrial fibrillation. Stem Cell Reports. 2021;16(6):1542-1554. doi: 10.1016/j.stemcr.2021.04.019
- Guven O, DeMirci H. Structural Analysis and Docking Studies of FK506-Binding Protein 1A. bioRxiv. New York: Cold Spring Harbor Laboratory; 2025. doi: 10.1101/2025.05.22.655516
- RIKEN-Max Planck Joint Research Center for Systems Chemical Biology. RIKEN. Available from: https://www. riken.jp/en/collab/research/riken_mpg/ [Last accessed on 2025 May 20].
- Xu X, Kaindl J, Clark MJ, et al. Binding pathway determines norepinephrine selectivity for the human β1AR over β2AR. Cell Res. 2020;31(5):569-579. doi: 10.1038/s41422-020-00424-2
- Numata G, Otsu Y, Nakamura S, et al. In vivo effects of Cardiomyocyte-Specific Beta-1 blockade on afterload- and frequency-dependent cardiac performance. Am J Physiol Heart Circ Physiol. 2025;328:H543-H549. doi: 10.1152/ajpheart.00795.2024
- Cantwell CD, Mohamied Y, Tzortzis KN, et al. Rethinking multiscale cardiac electrophysiology with machine learning and predictive modelling. Comput Biol Med. 2018;104:339-351. doi: 10.1016/j.compbiomed.2018.10.015
- Fatkin D, Calkins H, Elliott P, James CA, Peters S, Kovacic JC. Contemporary and future approaches to precision medicine in inherited cardiomyopathies. J Am Coll Cardiol. 2021;77(20):2551-2572. doi: 10.1016/j.jacc.2020.12.072
- Grafton F, Ho J, Ranjbarvaziri S, et al. Deep learning detects cardiotoxicity in a high-content screen with induced pluripotent stem cell-derived cardiomyocytes. eLife. 2021;10:e68714. doi: 10.7554/elife.68714
- Li L, Zhou J, Gao Z, et al. A Scoping Review of Using Large Language Models (LLMs) to Investigate Electronic Health Records (EHRs); 2024. Available from: https://arxiv.org/ abs/2405.03066v2 [Last accessed on 2025 May 20].
- Tsai M, Chen K, Chen P. Harnessing electronic health records and artificial intelligence for enhanced cardiovascular Risk Prediction: A Comprehensive review. J Am Heart Assoc. 2025;14:e036946. doi: 10.1161/jaha.124.036946
- Kucharska-Newton AM, Loop MS, Bullo M, et al. Use of troponins in the classification of myocardial infarction from electronic health records. The Atherosclerosis Risk in Communities (ARIC) Study. Int J Cardiol. 2021;348:152-156. doi: 10.1016/j.ijcard.2021.12.022
- Johnson AEW, Bulgarelli L, Shen L, et al. MIMIC-IV, a freely accessible electronic health record dataset. Sci Data. 2023;10(1):1. doi: 10.1038/s41597-022-01899-x
- Nagamine T, Gillette B, Kahoun J, Burghaus R, Lippert J, Saxena M. Data-driven identification of heart failure disease states and progression pathways using electronic health records. Sci Rep. 2022;12(1):7871. doi: 10.1038/s41598-022-22398-4
- Singhal P, Tan ALM, Drivas TG, Johnson KB, Ritchie MD, Beaulieu-Jones BK. Opportunities and challenges for biomarker discovery using electronic health record data. Trends Mol Med. 2023;29(9):765-776. doi: 10.1016/j.molmed.2023.06.006
- Bhasuran B, Manoharan S, Iyyappan OR, Murugesan G, Prabahar A, Raja K. Large language models and genomics for summarizing the role of microRNA in regulating mRNA expression. Biomedicines. 2024;12(7):1535. doi: 10.3390/biomedicines12071535
- Du X, Wang Y, Zhou Z, et al. Generative Large Language Models in Electronic Health Records for Patient Care Since 2023: A Systematic Review. medRxiv. New York: (Cold Spring Harbor Laboratory); 2024. doi: 10.1101/2024.08.11.24311828
- Wells QS, Gupta DK, Smith JG, et al. Accelerating biomarker discovery through electronic health records, automated biobanking, and proteomics. J Am Coll Cardiol. 2019;73(17):2195-2205. doi: 10.1016/j.jacc.2019.01.074
- Zhang J, Chen Z, Ma M, He Y. Soluble ST2 in coronary artery disease: Clinical biomarkers and treatment guidance. Front Cardiovasc Med. 2022;9:924461. doi: 10.3389/fcvm.2022.924461
- Pelletier AR, Ramirez J, Adam I, et al. Explainable Biomedical Hypothesis Generation via Retrieval Augmented Generation enabled Large Language Models; 2024. Available from: https://arxiv.org/abs/2407.12888v1 [Last accessed on 2025 May 20].
- Raza MZ, Xu J, Lim T, et al. LLM-TA: An LLM-Enhanced Thematic Analysis Pipeline for Transcripts from Parents of Children with Congenital Heart Disease; 2025. Available from: https://arxiv.org/abs/2502.01620v1 [Last accessed on 2025 May 20].
- Kong F, Stocker S, Choi PS, Ma M, Ennis DB, Marsden A. SDF4CHD: Generative Modeling of Cardiac Anatomies with Congenital Heart Defects; 2023. Available from: https://arxiv. org/abs/2311.00332v2 [Last accessed on 2025 May 20].
- Simon ST, Mandair D, Tiwari P, Rosenberg MA. Prediction of drug-induced long QT Syndrome using machine learning applied to harmonized electronic health record data. J Cardiovasc Pharmacol Ther. 2021;26(4):335-340. doi: 10.1177/1074248421995348
- Zhang H, Tarabanis C, Jethani N, et al. QTNet: Predicting drug-induced QT prolongation with artificial intelligence-enabled electrocardiograms. JACC Clin Electrophysiol. 2024;10(5):956-966. doi: 10.1016/j.jacep.2024.01.022
- Zaka A, Mutahar D, Gorcilov J, et al. Machine-learning approaches for risk prediction after percutaneous coronary intervention: A systematic review and meta-analysis. Eur Heart J Digit Health. 2024;6(1):23-44. doi: 10.1093/ehjdh/ztae074
- Tremamunno G, Vecsey-Nagy M, Schoepf UJ, et al. Artificial intelligence improves prediction of major adverse cardiovascular events in patients undergoing transcatheter aortic valve replacement planning CT. Acad Radiol. 2024;32(2):702-711. doi: 10.1016/j.acra.2024.09.046
- Chung P, Fong CT, Walters AM, Aghaeepour N, Yetisgen M, O’Reilly-Shah VN. Large language model capabilities in perioperative risk prediction and prognostication. JAMA Surg. 2024;159(8):928. doi: 10.1001/jamasurg.2024.1621
- Kazaki N, Hattori K, Shota H, et al. Building a Large Japanese Web Corpus for Large Language Models. Available from: https://arxiv.org/html/2404.17733v1 [Last accessed on 2025 May 20].
- Singhal K, Azizi S, Tu T, et al. Large language models encode clinical knowledge. Nature. 2023;620(7972):172-180. doi: 10.1038/s41586-023-06291-2
- Yang H, Stebbeds W, Francis J, et al. Deriving waveform parameters from calcium transients in human iPSC-derived cardiomyocytes to predict cardiac activity with machine learning. Stem Cell Reports. 2022;17(3):556-568. doi: 10.1016/j.stemcr.2022.01.009
- Yang H, Obrezanova O, Pointon A, et al. Prediction of inotropic effect based on calcium transients in human iPSC-derived cardiomyocytes and machine learning. Toxicol Appl Pharmacol. 2022;459:116342. doi: 10.1016/j.taap.2022.116342
- Martin CH, Oved A, Chowdhury RA, et al. EP-PINNs: Cardiac Electrophysiology Characterisation using Physics- Informed Neural Networks; 2021. Available from: https:// arxiv.org/abs/2112.07703v1 [Last accessed on 2025 May 20].
- Árpádffy-Lovas T, Nagy N. ActionPytential: An open source tool for analyzing and visualizing cardiac action potential data. Heliyon. 2023;9(3):e14440. doi: 10.1016/j.heliyon.2023.e14440
- Hoang P, Jacquir S, Lemus S, Ma Z. Quantification of contractile dynamic complexities exhibited by human stem Cell-Derived cardiomyocytes using nonlinear dimensional analysis. Sci Rep. 2019;9(1):14714. doi: 10.1038/s41598-019-51197-7
- Naghavi E, Wang H, Fan L, et al. Rapid estimation of left ventricular contractility with a physics-informed neural network inverse modeling approach. Artif Intell Med. 2024;157:102995. doi: 10.1016/j.artmed.2024.102995
- Lieber A, Kiem HP. Prospects and challenges of in vivo hematopoietic stem cell genome editing for hemoglobinopathies. Mol Ther. 2023;31(10):2823-2825. doi: 10.1016/j.ymthe.2023.09.006
- Shim JV, Xiong Y, Dhanan P, et al. Predicting individual-specific cardiotoxicity responses induced by tyrosine kinase inhibitors. Front Pharmacol. 2023;14:1158222. doi: 10.3389/fphar.2023.1158222
- Sang L, Zhou Z, Luo S, et al. An in silico platform to predict cardiotoxicity risk of anti-tumor drug combination with hiPSC-CMs based in vitro study. Pharm Res. 2023;41(2):247-262. doi: 10.1007/s11095-023-03644-4
- Nam Y, Kim J, Jung SH, et al. Harnessing Artificial intelligence in multimodal Omics Data Integration: Paving the path for the next frontier in precision medicine. Annu Rev Biomed Data Sci. 2024;7(1):225-250. doi: 10.1146/annurev-biodatasci-102523-103801
- Khera R, Asnani AH, Krive J, et al. Artificial intelligence to enhance precision medicine in cardio-oncology: A scientific statement from the American Heart Association. Circ Genom Precis Med. 2025;18:e000097. doi: 10.1161/hcg.0000000000000097
- Pinero SL, Li X, Zhang J, et al. Omics-Based Computational Approaches for Biomarker Identification, Prediction, and Treatment of Long COVID. MedRxIV; 2025. doi: 10.1101/2025.04.01.25324942
- Pramudito MA, Fuadah YN, Qauli AI, Marcellinus A, Lim KM. Explainable artificial intelligence (XAI) to find optimal in-silico biomarkers for cardiac drug toxicity evaluation. Sci Rep. 2024;14(1):24045. doi: 10.1038/s41598-024-71169-w
- Simon ST, Trinkley KE, Malone DC, Rosenberg MA. Interpretable machine learning prediction of drug-induced QT prolongation: Electronic health record analysis. J Med Internet Res. 2022;24(12):e42163. doi: 10.2196/42163
- Research C for DEA. Cardiomyocytes for Mechanistic Cardiovascular Safety Liabilities. U.S. Food And Drug Administration; 2019. Available from: https://www.fda.gov/ drugs/news-events-human-drugs/cardiomyocytes-mechanistic-cardiovascular-safety-liabilities [Last accessed on 2025 May 20].
- Tan WLW, Seow WQ, Zhang A, et al. Current and future perspectives of single-cell multi-omics technologies in cardiovascular research. Nat Cardiovasc Res. 2023;2(1): 20-34. doi: 10.1038/s44161-022-00205-7
- Yang C, Jin Y, Yin Y. Integration of single-cell transcriptome and chromatin accessibility and its application on tumor investigation. Life Med. 2024;3(2):lnae015. doi: 10.1093/lifemedi/lnae015
- Pierce SE, Granja JM, Greenleaf WJ. High-throughput single-cell chromatin accessibility CRISPR screens enable unbiased identification of regulatory networks in cancer. Nat Commun. 2021;12(1):2969. doi: 10.1038/s41467-021-23213-w
- Song M, Wen J, Kuang Y, Xie M. EPI-RMDL: Prediction of enhancer-promoter interactions based on ROFormer mechanism and deep learning. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2024. p. 357-362. doi: 10.1109/bibm62325.2024.10821931
- Zhang T, Zhao X, Sun H, Gao B, Liu X. GATv2EPI: Predicting enhancer-promoter interactions with a dynamic graph attention network. Genes. 2024;15(12):1511. doi: 10.3390/genes15121511
- Klattenhoff CA, Scheuermann JC, Surface LE, et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell. 2013;152(3):570-583. doi: 10.1016/j.cell.2013.01.003
- Xue Z, Hennelly S, Doyle B, et al. A G-Rich Motif in the lncRNA Braveheart interacts with a zinc-finger transcription factor to specify the cardiovascular lineage. Mol Cell. 2016;64(1):37-50. doi: 10.1016/j.molcel.2016.08.010
- Maurya SS, Yang W, Zhang Q, et al. KDM6A Knockout in Human iPSCs Alters the Genome-wide Histone Methylation Profile at Active and Poised Enhancers, Activating Expression of Ectoderm Gene Expression Pathways. bioRxiv. New York: Cold Spring Harbor Laboratory; 2021. doi: 10.1101/2021.03.09.434633
- Hayashi H, Ko T, Dai Z, et al. TRAITER: Transformer-guided diagnosis and prognosis of heart failure using cell nuclear morphology and DNA damage marker. Bioinformatics. 2024;40(11):btae610. doi: 10.1093/bioinformatics/btae610
- Cyganek L, Tiburcy M, Sekeres K, et al. Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes. JCI Insight. 2018;3(12):e99941. doi: 10.1172/jci.insight.99941
- Yang D, Gomez-Garcia J, Funakoshi S, et al. Modeling human multi-lineage heart field development with pluripotent stem cells. Cell Stem Cell. 2022;29(9):1382-1401.e8. doi: 10.1016/j.stem.2022.08.007
- Rahman S, Jiang LY, Gabriel S, Aphinyanaphongs Y, Oermann EK, Chunara R. Generalization in Healthcare AI: Evaluation of a Clinical Large Language Model; 2024. Available from: https://arxiv.org/abs/2402.10965v2 [Last accessed on 2025 May 20].
- Quer G, Topol EJ. The potential for large language models to transform cardiovascular medicine. Lancet Digit Health. 2024;6(10):e767-e771. doi: 10.1016/s2589-7500(24)00151-1
- Gendler M, Nadkarni GN, Sudri K, et al. Large Language Models in Cardiology: A Systematic Review. medRxiv. New York: Cold Spring Harbor Laboratory; 2024. doi: 10.1101/2024.09.01.24312887
- Volpato V, Webber C. Addressing variability in iPSC-derived models of human disease: Guidelines to promote reproducibility. Dis Models Mech. 2020;13(1):dmm042317. doi: 10.1242/dmm.042317
- Kim K, Doi A, Wen B, et al. Epigenetic memory in induced pluripotent stem cells. Nature. 2010;467(7313):285-290. doi: 10.1038/nature09342
- Chai B, Efstathiou C, Yue H, Draviam VM. Opportunities and challenges for deep learning in cell dynamics research. Trends Cell Biol. 2023;34(11):955-967. doi: 10.1016/j.tcb.2023.10.010
- Li Z, Brittan M, Mills NL. A multimodal OMIcS framework to empower target discovery for cardiovascular regeneration. Cardiovasc Drugs Ther. 2023;38(2):223-236. doi: 10.1007/s10557-023-07484-7
- Reitz CJ, Kuzmanov U, Gramolini AO. Multi‐omic analyses and network biology in cardiovascular disease. Proteomics. 2023;23(21-22):e202200289. doi: 10.1002/pmic.202200289
- Alemu R, Sharew NT, Arsano YY, et al. Multi-omics approaches for understanding gene-environment interactions in noncommunicable diseases: Techniques, translation, and equity issues. Hum Genomics. 2025;19(1):8. doi: 10.1186/s40246-025-00718-9
- Isasi R, Bentzen HB, Fabbri M, et al. Dynamic governance: A new era for consent for stem cell research. Stem Cell Reports. 2024;19(9):1233-1241. doi: 10.1016/j.stemcr.2024.07.006
- Orzechowski M, Schochow M, Kühl M, Steger F. Content and method of information for participants in clinical studies with Induced Pluripotent stem cells (IPSCS). Front Cell Dev Biol. 2021;9:627816. doi: 10.3389/fcell.2021.627816
- Borziak K, Parvanova I, Finkelstein J. ReMeDy: A platform for integrating and sharing published stem cell research data with a focus on iPSC trials. Database. 2021;2021:baab038. doi: 10.1093/database/baab038
- Tian S, Jin Q, Yeganova L, et al. Opportunities and challenges for ChatGPT and large language models in biomedicine and health. Brief Bioinform. 2023;25(1):bbad493. doi: 10.1093/bib/bbad493
- Al-Janabi O, Alyasiri OM, Jebur EA, Nafl SM. Evaluating AI language models in news retrieval: A comparative study of ChatGPT-Plus and DeepSeek (R1). InfoTech Spectr Iraqi J Data Sci. 2024;2(2):14-20. doi: 10.51173/ijds.v2i2.33
- Wu J, Wang Z, Qin Y. Performance of Deepseek-R1 and ChatGPT-4O on the Chinese national medical licensing examination: A comparative study. J Med Syst. 2025;49(1):74. doi: 10.1007/s10916-025-02213-z
- Lin S, Duan Y, Zhou T, Liu X, Wang J. EHMQA-GPT: A knowledge Augmented large language model for personalized elderly health management. Information. 2025;16(6):467. doi: 10.3390/info16060467
- Kyro GW, Martin MT, Watt ED, Batista VS. CardioGenAI: A machine learning-based framework for re-engineering drugs for reduced hERG liability. J Cheminform. 2025;17(1):30. doi: 10.1186/s13321-025-00976-8
- Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583-589. doi: 10.1038/s41586-021-03819-2
- Baek M, DiMaio F, Anishchenko I, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science. 2021;373(6557):871-876. doi: 10.1126/science.abj8754
- Fang Y, Jiang Y, Wei L, et al. DeepProSite: Structure-aware protein binding site prediction using ESMFold and pretrained language model. Bioinformatics. 2023;39(12):btad718. doi: 10.1093/bioinformatics/btad718
- Lin Z, Akin H, Rao R, et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science. 2023;379(6637):1123-1130. doi: 10.1126/science.ade2574