FTO as an epigenetic regulator in metabolic and inflammatory diseases

Obesity has emerged as a global health crisis in the 21st century, driven by rising obesity rates and associated metabolic disorders. The genome-wide association studies led to the identification of a gene associated with obesity and thus named the fat mass and obesity-associated (FTO) gene. In humans, the FTO gene is expressed in various tissues, including the brain, liver, and adipose tissue. It is known to play a major role in regulating energy balance, appetite, and body fat mass. FTO encodes an N6-methyladenosine RNA demethylase that regulates key biological processes, including adipogenesis, energy homeostasis, and glucose metabolism, through a dynamic RNA modification process involving splicing, export, decay, and/or translation. Polymorphisms in the FTO gene, particularly within intron 1, are strongly associated with increased risk of body mass index and obesity. In addition, FTO has been implicated in the pathogenesis of type 2 diabetes mellitus, cardiovascular disease, chronic kidney disease, and various cancers, where it could function both as an oncogene and a tumor suppressor gene. Pre-clinical studies have established the functional relevance of FTO, where its overexpression promotes obesity, whereas its deletion allows maintenance of a normal body phenotype. This review covers the recent advances in the development of specific FTO inhibitors and highlights their potential as therapeutic agents for obesity and metabolic disorders, although their development is still in its early stages. Despite the significant progress made in understanding the role of FTO in metabolic diseases, further research is needed to elucidate the precise mechanisms linking FTO variants to specific pathological outcomes and to optimize targeted therapies.
- Muir LA, Neeley CK, Meyer KA, et al. Adipose tissue fibrosis, hypertrophy, and hyperplasia: Correlations with diabetes in human obesity. Obesity (Silver Spring). 2016;24(3):597-605. doi: 10.1002/oby.21377
- Poosri S, Boonyuen U, Chupeerach C, Soonthornworasiri N, Kwanbunjan K, Prangthip P. Association of FTO variants rs9939609 and rs1421085 with elevated sugar and fat consumption in adult obesity. Sci Rep. 2024;14(1):25618. doi: 10.1038/s41598-024-77004-6
- World Health Organization. Obesity and Overweight; 2024. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight [Last accessed on 2025 May 07].
- Hall KD, Farooqi IS, Friedman JM, et al. The energy balance model of obesity: Beyond calories in, calories out. Am J Clin Nutr. 2022;115(5):1243-1254. doi: 10.1093/ajcn/nqac031
- Yang M, Liu S, Zhang C. The related metabolic diseases and treatments of obesity. Healthcare (Basel). 2022;10(9):1616. doi: 10.3390/healthcare10091616
- Soll D, Gawron J, Pletsch-Borba L, Spranger J, Mai K. Long-term impact of the metabolic status on weight loss-induced health benefits. Nutr Metab (Lond). 2022;19(1):25. doi: 10.1186/s12986-022-00660-w
- Huang C, Chen W, Wang X. Studies on the fat mass and obesity-associated (FTO) gene and its impact on obesity-associated diseases. Genes Dis. 2022;10(6):2351-2365. doi: 10.1016/j.gendis.2022.04.014
- Dina C, Meyre D, Gallina S, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007;39(6):724-726. doi: 10.1038/ng2048
- Zheng QK, Ma C, Ullah I, et al. Roles of N6-methyladenosine demethylase FTO in malignant tumors progression. OncoTargets Ther. 2021;14:4837-4846. doi: 10.2147/OTT.S329232.eCollection2021
- Gao Z, Zha X, Li M, Xia X, Wang S. Insights into the m6A demethylases FTO and ALKBH5: Structural, biological function, and inhibitor development. Cell Biosci. 2024;14(1):108. doi: 10.1186/s13578-024- 01286-6
- Song H, Wang Y, Wang R, et al. SFPQ Is an FTO-binding protein that facilitates the demethylation substrate preference. Cell Chem Biol. 2020;27(3):283-291.e6. doi: 10.1016/j.chembiol.2020.01.002
- Chang JY, Park JH, Park SE, Shon J, Park YJ. The fat mass- and obesity-associated (FTO) gene to obesity: Lessons from mouse models. Obesity (Sliver Spring). 2018;26(11):1674-1686. doi: 10.1002/oby.22301
- Song Y, Wade H, Zhang B, et al. Polymorphisms of fat mass and obesity-associated gene in the pathogenesis of child and adolescent metabolic syndrome. Nutrients. 2023;15(12):2643. doi: 10.3390/nu15122643
- Lan N, Lu Y, Zhang Y, et al. FTO - a common genetic basis for obesity and cancer. Front Genet. 2020;11:559138. doi: 10.3389/fgene.2020.559138
- Chen J, Zhou X, Wu W, Wang X, Wang Y. FTO-dependent function of N6-methyladenosine is involved in the hepatoprotective effects of betaine on adolescent mice. J Physiol Biochem. 2015;71(3):405-413. doi: 10.1007/s13105-015-0420-1
- Zhang B, Xu Y, Cui X, et al. Alteration of m6A RNA methylation in heart failure with preserved ejection fraction. Front Cardiovasc Med. 2021;8:647806. doi: 10.3389/fcvm.2021.647806
- Peng S, Zhu Y, Xu F, Ren X, Li X, Lai M. FTO gene polymorphisms and obesity risk: A meta-analysis. BMC Med. 2011;9:71. doi: 10.1186/1741-7015-9-71
- Ashcroft FM, Rorsman P. Diabetes mellitus and the β cell: The last ten years. Cell. 2012;148(6):1160-1171. doi: 10.1016/j.cell.2012.02.010
- Benak D, Sevcikova A, Holzerova K, Hlavackova M. FTO in health and disease. Front Cell Dev Biol. 2024;12:1500394. doi: 10.3389/fcell.2024.1500394
- Klein S, Gastaldelli A, Yki-Järvinen H, Scherer PE. Why does obesity cause diabetes? Cell Metab. 2022;34(1):11-20. doi: 10.1016/j.cmet.2021.12.012
- Jin X, Qiu T, Li L, et al. Pathophysiology of obesity and its associated diseases. Acta Pharm Sin B. 2023;13(6):2403-2424. doi: 10.1016/j.apsb.2023.01.012
- Zhang JF, Choi SH, Li Q, et al. Overexpression of DGAT2 stimulates lipid droplet formation and triacylglycerol accumulation in bovine satellite cells. Animals (Basel). 2022;12(14):1847. doi: 10.3390/ani12141847
- Kim H, Kulkarni RN. Epigenetics in β-cell adaptation and type 2 diabetes. Curr Opin Pharmacol. 2020;55:125-131. doi: 10.1016/j.coph.2020.10.008
- Mezza T, Cinti F, Cefalo CMA, Pontecorvi A, Kulkarni RN, Giaccari A. β-cell fate in human insulin resistance and type 2 diabetes: A perspective on islet plasticity. Diabetes. 2019;68(6):1121-1129. doi: 10.2337/db18-0856
- Dong Z, Li S, Huang Y, Chen T, Ding Y, Tan Q. RNA N6-methyladenosine demethylase FTO promotes diabetic wound healing through TRIB3-mediated autophagy in an m6A-YTHDF2-dependent manner. Cell Death Dis. 2025;16(1):222. doi: 10.1038/s41419-025-07494-3
- Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in finns detects multiple susceptibility variants. Science. 2007;316(5829):1341-1345. doi: 10.1126/science.1142382
- Amine Ikhanjal M, Ali Elouarid M, Zouine C, et al. FTO gene variants (rs9939609, rs8050136 and rs17817449) and type 2 diabetes mellitus risk: A meta-analysis. Gene. 2023;887:147791. doi: 10.1016/j.gene.2023.147791
- Gholami M. FTO is a major genetic link between breast cancer, obesity, and diabetes. Breast Cancer Res Treat. 2024;204(1):159-169. doi: 10.1007/s10549-023-07188-4
- Hu F, Yan HJ, Gao CX, Sun WW, Long YS. Inhibition of hypothalamic FTO activates STAT3 signal through ERK1/2 associated with reductions in food intake and body weight. Neuroendocrinology. 2023;113(1):80-91. doi: 10.1159/000526752
- Wang X, Huang N, Yang M, et al. FTO is required for myogenesis by positively regulating mTOR-PGC-1α pathway-mediated mitochondria biogenesis. Cell Death Dis. 2017;8(3):e2702. doi: 10.1038/cddis.2017.122
- Tang Z, Sun C, Yan Y, et al. Aberrant elevation of FTO levels promotes liver steatosis by decreasing the m6A methylation and increasing the stability of SREBF1 and ChREBP mRNAs. J Mol Cell Biol. 2022;14(9):mjac061. doi: 10.1093/jmcb/mjac061
- Powell EE, Wong VWS, Rinella M. Non-alcoholic fatty liver disease. Lancet. 2021;397(10290):2212-2224. doi: 10.1016/S0140-6736(20)32511-3
- Amini-Salehi E, Letafatkar N, Norouzi N, et al. Global prevalence of nonalcoholic fatty liver disease: An updated review meta-analysis comprising a population of 78 million from 38 Countries. Arch Med Res. 2024;55:103043. doi: 10.1016/j.arcmed.2024.103043
- Syed-Abdul MM. Lipid metabolism in metabolic-associated steatotic liver disease (MASLD). Metabolites. 2023;14(1):12. doi: 10.3390/metabo14010012
- Da Silveira WA, Fazelinia H, Rosenthal SB, et al. Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact. Cell. 2020;183(5):1185-1201.e20. doi: 10.1016/j.cell.2020.11.002
- Linden AG, Li S, Choi HY, et al. Interplay between ChREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice. J Lipid Res. 2018;59(3):475-487. doi: 10.1194/jlr.M081836
- Lopez-Jimenez F, Almahmeed W, Bays H, et al. Obesity and cardiovascular disease: Mechanistic insights and management strategies. A joint position paper by the world heart federation and world obesity federation. Eur J Prev Cardiol. 2022;29(17):2218-2237. doi: 10.1093/eurjpc/zwac187
- Xu ZY, Jing X, Xiong XD. Emerging role and mechanism of the FTO gene in cardiovascular diseases. Biomolecules. 2023;13(5):850. doi: 10.3390/biom13050850
- Äijälä M, Ronkainen J, Huusko T, et al. The fat mass and obesity-associated (FTO) gene variant rs9939609 predicts long-term incidence of cardiovascular disease and related death independent of the traditional risk factors. Ann Med. 2015;47(8):655-663. doi: 10.3109/07853890.2015.1091088
- Sun J, Wang M, Jia F, Song J, Ren J, Hu B. FTO stabilizes MIS12 to inhibit vascular smooth muscle cell senescence in atherosclerotic plaque. J Inflamm Res. 2024;17:1857-1871. doi: 10.2147/JIR.S447379
- Min X, Zhou YL, Qu YF, et al. FTO rs1121980 polymorphism contributes to coronary artery disease susceptibility in a Chinese han population. Lipids Health Dis. 2025;24(1):1. doi: 10.1186/s12944-024-02417-1
- Nordheim E, Geir Jenssen T. Chronic kidney disease in patients with diabetes mellitus. Endocr Connect. 2021;10(5):R151-R159. doi: 10.1530/EC-21-0097
- Li Q, Mu S. FTO mediates the diabetic kidney disease progression through regulating the m6A modification of NLRP3. BMC Nephrol. 2024;25(1):345. doi: 10.1186/s12882-024-03741-5
- Chen J, Wang Y, Peng Y, et al. Demethylase FTO regulates P2X3R expression contributing to the mechanism of hyperalgesia in lumbar disc herniation. J Neurochem. 2025;169(4):e70058. doi: 10.1111/jnc.70058
- Feng G, Wu Y, Hu Y, et al. Small molecule inhibitors targeting m6A regulators. J Hematol Oncol. 2024;17(1):30. doi: 10.1186/s13045-024-01546-5
- Henamayee S, Banik K, Sailo BL, et al. Therapeutic emergence of rhein as a potential anticancer drug: A review of its molecular targets and anticancer properties. Molecules. 2020;25(10):2278. doi: 10.3390/molecules25102278
- Wu R, Yao Y, Jiang Q, et al. Epigallocatechin gallate targets FTO and inhibits adipogenesis in an mRNA m6A-YTHDF2- dependent manner. Int J Obes (Lond). 2018;42(7):1378-1388. doi: 10.1038/s41366-018-0082-5
- Huang Y, Yan J, Li Q, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 2015;43(1):373-384. doi: 10.1093/nar/gku1276
- Huang Y, Xia W, Dong Z, Yang CG. Chemical inhibitors targeting the oncogenic m6A modifying proteins. Acc Chem Res. 2023;56(21):3010-3022. doi: 10.1021/acs.accounts.3c00451
- Peng S, Xiao W, Ju D, et al. Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1. Sci Transl Med. 2019;11(488):eaau7116. doi: 10.1126/scitranslmed.aau7116