Precision medicine and beyond: Evolving roles of targeted therapy, immunotherapy, and artificial intelligence in oncology

Precision medicine in oncology is an evolving therapeutic approach that leverages genetic, clinical, and biomarker data to tailor treatments to individual patients. This review explores the three core pillars of modern precision oncology: targeted therapy, immunotherapy, and the integration of artificial intelligence (AI) into clinical practice. Targeted therapies, including monoclonal antibodies and antibody-drug conjugates, selectively inhibit molecular pathways involved in tumor growth. While conventional chemotherapy remains the backbone of treatment and has improved remission rates, its cytotoxic nature limits broader applicability and increases the risk of comorbidities. Immunotherapies, particularly immune checkpoint inhibitors and chimeric antigen receptor T-cell therapies, have transformed treatment for hematologic malignancies and are now being adapted for solid tumors such as colorectal, pancreatic, and hepatocellular carcinomas through novel combination regimens. This review also highlights the therapeutic potential of modulating the tumor microenvironment and introduces emerging modalities such as neoantigen vaccines and microRNA-based therapies. Furthermore, we outline the expanding role of AI in enhancing cancer diagnosis, drug development, and clinical decision-making. By integrating computational tools with molecular therapies, precision medicine rapidly advances toward individualized data-driven care. This review provides an overview of established therapies in the current clinical practice, novel regimens, and emerging AI technologies. Despite ongoing challenges, such as resistance and toxicity, precision medicine demonstrates significant promise in improving oncologic outcomes and transforming cancer care.
- König IR, Fuchs O, Hansen G, von Mutius E, Kopp MV. What is precision medicine? Eur Respir J. 2017;50(4):1700391. doi: 10.1183/13993003.00391-2017
- Peters GJ. From “targeted therapy” to targeted therapy. Anticancer Res. 2019;39(7):3341-3345. doi: 10.21873/anticanres.13476
- Davis ID. An overview of cancer immunotherapy. Immunol Cell Biol. 2000;78(3):179-195. doi: 10.1046/j.1440-1711.2000.00906.x
- Mao X, Wu S, Huang D, Li C. Complications and comorbidities associated with antineoplastic chemotherapy: Rethinking drug design and delivery for anticancer therapy. Acta Pharm Sin B. 2024;14(7):2901-2926. doi: 10.1016/j.apsb.2024.03.006
- Sterner RC, Sterner RM. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021;11(4):69. doi: 10.1038/s41408-021-00459-7
- Martín M, Pandiella A, Vargas-Castrillón E, et al. Trastuzumab deruxtecan in breast cancer. Crit Rev Oncol Hematol. 2024;198:104355. doi: 10.1016/j.critrevonc.2024.104355
- Reck M, Rodríguez-Abreu D, Robinson AG, et al. Five-year outcomes with pembrolizumab versus chemotherapy for metastatic non-small-cell lung cancer with PD-L1 Tumor proportion score 50%. J Clin Oncol. 2021;39(21):2339-2349. doi: 10.1200/jco.21.00174
- Soria JC, Ohe Y, Vansteenkiste J, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018;378(2):113-125. doi: 10.1056/NEJMoa1713137
- Turner NC, Ro J, André F, et al. Palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med. 2015;373(3):209-219. doi: 10.1056/NEJMoa1505270
- Ingle JN, Tu D, Pater JL, et al. Intent-to-treat analysis of the placebo-controlled trial of letrozole for extended adjuvant therapy in early breast cancer: NCIC CTG MA.17. Ann Oncol. 2008;19(5):877-882. doi: 10.1093/annonc/mdm566
- Cristofanilli M, Turner NC, Bondarenko I, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): Final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016;17(4):425-439. doi: 10.1016/s1470-2045(15)00613-0
- Planchard D, Smit EF, Groen HJM, et al. Dabrafenib plus trametinib in patients with previously untreated BRAFV600E-mutant metastatic non-small-cell lung cancer: An open-label, phase 2 trial. Lancet Oncol. 2017;18(10):1307- 1316. doi: 10.1016/S1470-2045(17)30679-4
- Salama AKS, Kim KB. Trametinib (GSK1120212) in the treatment of melanoma. Expert Opin Pharmacother. 2013;14(5):619-627. doi: 10.1517/14656566.2013.770475
- Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Eng J Med. 2008;359(4):378-390. doi: 10.1056/NEJMoa0708857
- Feng J, Lu PZ, Zhu GZ, et al. ACSL4 is a predictive biomarker of sorafenib sensitivity in hepatocellular carcinoma. Acta Pharmacol Sin. 2021;42(1):160-170. doi: 10.1038/s41401-020-0439-x
- Zhu K, Yang X, Tai H, Zhong X, Luo T, Zheng H. HER2- targeted therapies in cancer: A systematic review. Biomarker Res. 2024;12(1):16. doi: 10.1186/s40364-024-00565-1
- Modi S, Jacot W, Yamashita T, et al. Trastuzumab deruxtecan in previously treated HER2-Low advanced breast cancer. N Engl J Med. 2022;387(1):9-20. doi: 10.1056/NEJMoa2203690
- Curigliano G, Hu X, Dent RA, et al. Trastuzumab deruxtecan (T-DXd) vs physician’s choice of chemotherapy (TPC) in patients (pts) with hormone receptor-positive (HR+), human epidermal growth factor receptor 2 (HER2)-low or HER2-ultralow metastatic breast cancer (mBC) with prior endocrine therapy (ET): Primary results from DESTINY-Breast06 (DB-06). J Clin Oncol. 2024;42(17 suppl):LBA1000. doi: 10.1200/JCO.2024.42.17_suppl.LBA1000
- Goto K, Goto Y, Kubo T, et al. Trastuzumab deruxtecan in patients with HER2-mutant metastatic non-small-cell lung cancer: Primary results from the randomized, phase II DESTINY-Lung02 trial. J Clin Oncol. 2023;41(31):4852-4863. doi: 10.1200/jco.23.01361
- Cortés J, Kim SB, Chung WP, et al. LBA1 Trastuzumab deruxtecan (T-DXd) vs trastuzumab emtansine (T-DM1) in patients (Pts) with HER2+ metastatic breast cancer (mBC): Results of the randomized phase III DESTINY-Breast03 study. Ann Oncol. 2021;32:S1287-S1288. doi: 10.1016/j.annonc.2021.08.2087
- Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016;107(7):1039-1046. doi: 10.1111/cas.12966
- Yang T, Li W, Huang T, Zhou J. Immunotherapy targeting PD-1/PD-L1 in early-stage triple-negative breast cancer. J Pers Med. 2023;13(3):526. doi: 10.3390/jpm13030526
- Verma V, Shrimali RK, Ahmad S, et al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nat Immunol. 2019;20(9):1231-1243. doi: 10.1038/s41590-019-0441-y
- Mok TSK, Wu YL, Kudaba I, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet. 2019;393(10183):1819-1830. doi: 10.1016/S0140-6736(18)32409-7
- Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378(22):2078- 2092. doi: 10.1056/NEJMoa1801005
- Paz-Ares L, Luft A, Vicente D, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 2018;379(21):2040-2051. doi: 10.1056/NEJMoa1810865
- Jiang Y, Ming C, Hong N, Yuan Y. PD-1 and PD-L1 in cancer immunotherapy: Clinical implications and future considerations. Hum Vaccines Immunother. 2019;15(5):1111- 1122. doi: 10.1080/21645515.2019.1571892
- Ramagopalan S, Gupta A, Arora P, Thorlund K, Ray J, Subbiah V. Comparative effectiveness of atezolizumab, nivolumab, and docetaxel in patients with previously treated non-small cell lung cancer. JAMA Netw Open. 2021;4(11):e2134299. doi: 10.1001/jamanetworkopen.2021.34299
- Lindeman NI, Cagle PT, Beasley MB, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: Guideline from the College of American Pathologists, International association for the study of lung cancer, and association for molecular pathology. J Thorac Oncol. 2013;8(7):823-859. doi: 10.1097/JTO.0b013e318290868f
- Gomatou G, Syrigos N, Kotteas E. Osimertinib resistance: Molecular mechanisms and emerging treatment options. Cancers. 2023;15(3):841. doi: 10.3390/cancers15030841
- Le X, Patel JD, Shum E, et al. A multicenter open-label randomized phase II study of osimertinib with and without ramucirumab in tyrosine kinase inhibitor-naïve EGFR-mutant metastatic non-small cell lung cancer (RAMOSE trial). J Clin Oncol. 2025;43(4):403-411. doi: 10.1200/jco.24.00533
- United State Food & Drug. FDA approves osimertinib with chemotherapy for EGFR-mutated non-small cell lung cancer. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-osimertinib-chemotherapy-egfr-mutated-non-small-cell-lung-cancer [Last accessed on 2025 Mar 15].
- Lu S, He X, Ni D, Zhang J. Allosteric modulator discovery: From serendipity to structure-based design. J Med Chem. 2019;62:6405-6421. doi: 10.1021/acs.jmedchem.8b01749
- Cutsem EV, Köhne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360(14):1408-1417. doi: 10.1056/NEJMoa0805019
- Douillard JY, Oliner KS, Siena S, et al. Panitumumab- FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013;369(11):1023-1034. doi: 10.1056/NEJMoa1305275
- Van Cutsem E, Cervantes A, Adam R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol. 2016;27(8):1386-1422. doi: 10.1093/annonc/mdw235
- Pietrantonio F, Cremolini C, Petrelli F, et al. First-line anti-EGFR monoclonal antibodies in panRAS wild-type metastatic colorectal cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol. 2015;96(1):156-166. doi: 10.1016/j.critrevonc.2015.05.016
- Wander S, O’Brien N, Litchfield LM, et al. Targeting CDK4 and 6 in cancer therapy: Emerging preclinical insights related to abemaciclib. Oncologist. 2022;27(10):811-821. doi: 10.1093/oncolo/oyac138
- Gelbert LM, Cai S, Lin X, et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219: In-vivo cell cycle-dependent/independent anti-tumor activities alone/ in combination with gemcitabine. Invest New Drugs. 2014;32(5):825-837. doi: 10.1007/s10637-014-0120-7
- Chin YM, Shibayama T, Chan HT, et al. Serial circulating tumor DNA monitoring of CDK4/6 inhibitors response in metastatic breast cancer. Cancer Sci. 2022;113(5):1808-1820. doi: 10.1111/cas.15304
- O’Keefe K, Desai NV, Tan AR. Practical guidance on abemaciclib in combination with adjuvant endocrine therapy for treating hormone receptor-positive, human epidermal growth factor receptor 2-negative high-risk early breast cancer. Breast Cancer (Dove Med Press). 2024;16:517-527. doi: 10.2147/bctt.S271441
- Goetz MP, Hamilton EP, Campone M, et al. Landscape of baseline and acquired genomic alterations in circulating tumor DNA with abemaciclib alone or with endocrine therapy in advanced breast cancer. Clin Cancer Res. 2024;30(10):2233-2244. doi: 10.1158/1078-0432.Ccr-22-3573
- Brett JO, Dubash TD, Johnson GN, et al. A gene panel associated with abemaciclib utility in ESR1-mutated breast cancer after prior cyclin-dependent kinase 4/6-inhibitor progression. JCO Precis Oncol. 2023;7:e2200532. doi: 10.1200/po.22.00532
- Cristofanilli M, Rugo HS, Im SA, et al. Overall survival with palbociclib and fulvestrant in women with HR+/ HER2− ABC: Updated exploratory analyses of PALOMA-3, a double-blind, phase III randomized study. Clin Cancer Res. 2022;28(16):3433-3442. doi: 10.1158/1078-0432.Ccr-22-0305
- Im SA, Mukai H, Park IH, et al. Palbociclib plus letrozole as first-line therapy in postmenopausal asian women with metastatic breast cancer: Results from the phase III, randomized PALOMA-2 study. J Glob Oncol. 2019;5:1-19. doi: 10.1200/jgo.18.00173
- Slamon DJ, Diéras V, Rugo HS, et al. Overall survival with palbociclib plus letrozole in advanced breast cancer. J Clin Oncol. 2024;42(9):994-1000. doi: 10.1200/jco.23.00137
- Harbeck N, Dieras V, Gelmon KA, et al. Effect of palbociclib plus letrozole on patient-reported health-related quality of life: Extended follow-up of the PALOMA-2 trial. ESMO Open. 2025;10(4):104497. doi: 10.1016/j.esmoop.2025.104497
- Odogwu L, Mathieu L, Blumenthal G, et al. FDA approval summary: Dabrafenib and trametinib for the treatment of metastatic non‐small cell lung cancers harboring BRAF V600E mutations. Oncologist. 2018;23(6):740-745. doi: 10.1634/theoncologist.2017-0642
- El-Deiry WS, Goldberg RM, Lenz HJ, et al. The current state of molecular testing in the treatment of patients with solid tumors, 2019. CA Cancer J Clin. 2019;69(4):305-343. doi: 10.3322/caac.21560
- Li Z, Caron de Fromentel C, Kim W, et al. RNA helicase DDX5 modulates sorafenib sensitivity in hepatocellular carcinoma via the Wnt/β-catenin-ferroptosis axis. Cell Death Dis. 2023;14(11):786. doi: 10.1038/s41419-023-06302-0
- Kudo M. Regorafenib as second-line systemic therapy may change the treatment strategy and management paradigm for hepatocellular carcinoma. Liver Cancer. 2016;5(4):235-244. doi: 10.1159/000449335
- Parvaresh H, Roozitalab G, Golandam F, Behzadi P, Jabbarzadeh Kaboli P. Unraveling the potential of ALK-targeted therapies in non-small cell lung cancer: Comprehensive insights and future directions. Biomedicines. 2024;12(2):297. doi: 10.3390/biomedicines12020297
- Beardslee T, Lawson J. Alectinib and brigatinib: New second-generation ALK inhibitors for the treatment of non-small cell lung cancer. J Adv Pract Oncol. 2018;9(1):94-101.
- Drilon A, Oxnard GR, Tan DSW, et al. Efficacy of selpercatinib in RET fusion-positive non-small-cell lung cancer. N Engl J Med. 2020;383(9):813-824. doi: 10.1056/NEJMoa2005653
- Wirth LJ, Sherman E, Robinson B, et al. Efficacy of selpercatinib in RET-altered thyroid cancers. N Engl J Med. 2020;383(9):825-835. doi: 10.1056/NEJMoa2005651
- Drilon A, Laetsch TW, Kummar S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med. 2018;378(8):731-739. doi: 10.1056/NEJMoa1714448
- Doebele RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020;21(2):271-282. doi: 10.1016/s1470-2045(19)30691-6
- Awasthi R, Maier HJ, Zhang J, Lim S. Kymriah® (tisagenlecleucel) – An overview of the clinical development journey of the first approved CAR-T therapy. Hum Vaccin Immunother. 2023;19(1):2210046. doi: 10.1080/21645515.2023.2210046
- King AC, Orozco JS. Axicabtagene ciloleucel: The first FDA-approved CAR T-cell therapy for relapsed/refractory large B-cell lymphoma. J Adv Pract Oncol. 2019;10(8):878-882. doi: 10.6004/jadpro.2019.10.8.9
- Anderson LD Jr. Idecabtagene vicleucel (ide-cel) CAR T-cell therapy for relapsed and refractory multiple myeloma. Future Oncol. 2022;18(3):277-289. doi: 10.2217/fon-2021-1090
- Sanoyan DA, Seipel K, Bacher U, et al. Real-life experiences with CAR T-cell therapy with idecabtagene vicleucel (ide-cel) for triple-class exposed relapsed/refractory multiple myeloma patients. BMC Cancer. 2023;23(1):345. doi: 10.1186/s12885-023-10824-3
- Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6. doi: 10.1038/s41572-020-00240-3
- Housini M, Dariya B, Ahmed N, et al. Colorectal cancer: Genetic alterations, novel biomarkers, current therapeutic strategies and clinical trials. Gene. 2024;892:147857. doi: 10.1016/j.gene.2023.147857
- Li B, Zhang Q, Castaneda C, Cook S. Targeted therapies in pancreatic cancer: A new era of precision medicine. Biomedicines. 2024;12(10):2175. doi: 10.3390/biomedicines12102175
- Hong DS, Fakih MG, Strickler JH, et al. KRASG12C inhibition with sotorasib in advanced solid tumors. N Engl J Med. 2020;383(13):1207-1217. doi: 10.1056/NEJMoa1917239
- Ou SI, Jänne PA, Leal TA, et al. First-in-human phase I/IB dose-finding study of adagrasib (MRTX849) in patients with advanced KRAS(G12C) solid tumors (KRYSTAL-1). J Clin Oncol. 2022;40(23):2530-2538. doi: 10.1200/jco.21.02752
- Chen N, Pu C, Zhao L, et al. Chimeric antigen receptor T cells targeting CD19 and GCC in metastatic colorectal cancer: A nonrandomized clinical trial. JAMA Oncol. 2024;10(11):1532-1536. doi: 10.1001/jamaoncol.2024.3891
- Wang F, He MM, Yao YC, et al. Regorafenib plus toripalimab in patients with metastatic colorectal cancer: A phase Ib/II clinical trial and gut microbiome analysis. Cell Rep Med. 2021;2(9):100383. doi: 10.1016/j.xcrm.2021.100383
- Mai HQ, Chen QY, Chen D, et al. Toripalimab or placebo plus chemotherapy as first-line treatment in advanced nasopharyngeal carcinoma: A multicenter randomized phase 3 trial. Nat Med. 2021;27(9):1536-1543. doi: 10.1038/s41591-021-01444-0
- Strickler JH, Rushing CN, Uronis HE, et al. Cabozantinib and panitumumab for RAS wild-type metastatic colorectal cancer. Oncologist. 2021;26(6):e465-e917. doi: 10.1002/onco.13678
- Fakih MG, Salvatore L, Esaki T, et al. Sotorasib plus panitumumab in refractory colorectal cancer with mutated KRAS G12C. N Engl J Med. 2023;389(23):2125-2139. doi: 10.1056/NEJMoa2308795
- Abedi Kiasari B, Abbasi A, Ghasemi Darestani N, et al. Combination therapy with nivolumab (anti-PD-1 monoclonal antibody): A new era in tumor immunotherapy. Int Immunopharmacol. 2022;113:109365. doi: 10.1016/j.intimp.2022.109365
- Xu RH, Luo H, Lu J, et al. ESCORT-1st: A randomized, double-blind, placebo-controlled, phase 3 trial of camrelizumab plus chemotherapy versus chemotherapy in patients with untreated advanced or metastatic esophageal squamous cell carcinoma (ESCC). J Clin Oncol. 2021;39(15 suppl):4000. doi: 10.1200/JCO.2021.39.15_suppl.4000
- Qin S, Chan SL, Gu S, et al. Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): A randomised, open-label, international phase 3 study. Lancet. 2023;402(10408):1133-1146. doi: 10.1016/s0140-6736(23)00961-3
- Wu X, Sun Y, Yang H, et al. Cadonilimab plus platinum-based chemotherapy with or without bevacizumab as first-line treatment for persistent, recurrent, or metastatic cervical cancer (COMPASSION-16): A randomised, double-blind, placebo-controlled phase 3 trial in China. Lancet. 2024;404(10463):1668-1676. doi: 10.1016/S0140-6736(24)02135-4
- Vergote I, Van Nieuwenhuysen E, O’Cearbhaill RE, %. Tisotumab vedotin in combination with carboplatin, pembrolizumab, or bevacizumab in recurrent or metastatic cervical cancer: Results from the innovaTV 205/GOG-3024/ENGOT-cx8 study. J Clin Oncol. 2023;41(36):5536-5549. doi: 10.1200/jco.23.00720
- Oaknin A, Gladieff L, Martínez-García J, et al. Atezolizumab plus bevacizumab and chemotherapy for metastatic, persistent, or recurrent cervical cancer (BEATcc): A randomised, open-label, phase 3 trial. Lancet. 2024;403(10421):31-43. doi: 10.1016/S0140-6736(23)02405-4
- Zhang L, Mai W, Jiang W, Geng Q. Sintilimab: A promising anti-tumor PD-1 antibody. Mini review. Front Oncol. 2020;10:594558. doi: 10.3389/fonc.2020.594558
- Al-Salama ZT. Durvalumab: A review in extensive-stage SCLC. Targeted Oncol. 2021;16(6):857-864. doi: 10.1007/s11523-021-00843-0
- Kelley RK, Sangro B, Harris W, et al. Safety, efficacy, and pharmacodynamics of tremelimumab plus durvalumab for patients with unresectable hepatocellular carcinoma: Randomized expansion of a phase I/II study. J Clin Oncol. 2021;39(27):2991-3001. doi: 10.1200/jco.20.03555
- Taïeb J, Sayah L, Heinrich K, et al. Efficacy of immune checkpoint inhibitors in microsatellite unstable/mismatch repair-deficient advanced pancreatic adenocarcinoma: An AGEO European Cohort. Eur J Cancer. 2023;188:90-97. doi: 10.1016/j.ejca.2023.04.012
- Yang X, Yang C, Zhang S, et al. Precision treatment in advanced hepatocellular carcinoma. Cancer Cell. 2024;42(2):180-197. doi: 10.1016/j.ccell.2024.01.007
- Ikeda M, Morizane C, Ueno M, Okusaka T, Ishii H, Furuse J. Systemic therapy for hepatocellular carcinoma, from the early to the advanced stage: A Japanese perspective. Jpn J Clin Oncol. 2025;55:465-476. doi: 10.1093/jjco/hyaf017
- Cheng SL, Wu CH, Tsai YJ, et al. CXCR4 antagonist-loaded nanoparticles reprogram the tumor microenvironment and enhance immunotherapy in hepatocellular carcinoma. J Control Release. 2025;379:967-981. doi: 10.1016/j.jconrel.2025.01.066
- Weiss GJ, Blaydorn L, Beck J, et al. Phase Ib/II study of gemcitabine, nab-paclitaxel, and pembrolizumab in metastatic pancreatic adenocarcinoma. Invest New Drugs. 2018;36(1):96-102. doi: 10.1007/s10637-017-0525-1
- Yang C, Zhang H, Zhang L, et al. Evolving therapeutic landscape of advanced hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2023;20(4):203-222. doi: 10.1038/s41575-022-00704-9
- Zhu AX, Abbas AR, de Galarreta MR, et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat Med. 2022;28(8):1599-1611. doi: 10.1038/s41591-022-01868-2
- Chen X, Xu H, Chen X, et al. First-line camrelizumab (a PD-1 inhibitor) plus apatinib (an VEGFR-2 inhibitor) and chemotherapy for advanced gastric cancer (SPACE): A phase 1 study. Signal Transduct Target Ther. 2024;9(1):73. doi: 10.1038/s41392-024-01773-9
- Ren Z, Xu J, Bai Y, et al. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): A randomised, open-label, phase 2-3 study. Lancet Oncol. 2021;22(7):977-990. doi: 10.1016/s1470-2045(21)00252-7
- Sha D, Jin Z, Budczies J, Kluck K, Stenzinger A, Sinicrope FA. Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov. 2020;10(12):1808-1825. doi: 10.1158/2159-8290.Cd-20-0522
- Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020;21(10):1353-1365. doi: 10.1016/s1470-2045(20)30445-9
- Zhang L, Xu J, Zhou S, et al. Endothelial DGKG promotes tumor angiogenesis and immune evasion in hepatocellular carcinoma. J Hepatol. 2024;80(1):82-98. doi: 10.1016/j.jhep.2023.10.006
- Aglietta M, Barone C, Sawyer MB, et al. A phase I dose escalation trial of tremelimumab (CP-675,206) in combination with gemcitabine in chemotherapy-naive patients with metastatic pancreatic cancer. Ann Oncol. 2014;25(9):1750-1755. doi: 10.1093/annonc/mdu205
- O’Reilly EM, Oh DY, Dhani N, et al. Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma: A phase 2 randomized clinical trial. JAMA Oncol. 2019;5(10):1431-1438. doi: 10.1001/jamaoncol.2019.1588
- Wu AA, Bever KM, Ho WJ, et al. A phase II study of allogeneic GM-CSF-transfected pancreatic tumor vaccine (GVAX) with ipilimumab as maintenance treatment for metastatic pancreatic cancer. Clin Cancer Res. 2020;26(19):5129-5139. doi: 10.1158/1078-0432.Ccr-20-1025
- van den Eertwegh AJM, Versluis J, van den Berg HP, et al. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: A phase 1 dose-escalation trial. Lancet Oncol. 2012;13(5):509-517. doi: 10.1016/S1470-2045(12)70007-4
- Watson MM, Lea D, Gudlaugsson E, Skaland I, Hagland HR, Søreide K. Prevalence of PD-L1 expression is associated with EMAST, density of peritumoral T-cells and recurrence-free survival in operable non-metastatic colorectal cancer. Cancer Immunol Immunother. 2020;69(8):1627-1637. doi: 10.1007/s00262-020-02573-0
- Yu W, Tao Q, Zhang Y, Yi F, Feng L. Efficacy and safety of regorafenib combined with toripalimab in the third-line and beyond treatment of advanced colorectal cancer. J Oncol. 2021;2021:9959946. doi: 10.1155/2021/9959946
- Zhang C, Wang Z, Yang Z, et al. Phase I escalating-dose trial of CAR-T therapy targeting CEA(+) metastatic colorectal cancers. Mol Ther. 2017;25(5):1248-1258. doi: 10.1016/j.ymthe.2017.03.010
- Ouladan S, Orouji E. Chimeric antigen receptor-T cells in colorectal cancer: Pioneering new avenues in solid tumor immunotherapy. J Clin Oncol. 2025;43(8):994-1005. doi: 10.1200/jco-24-02081
- Zhu Y, Zuo D, Wang K, et al. Mesothelin-targeted CAR-T therapy combined with irinotecan for the treatment of solid cancer. J Cancer Res Clin Oncol. 2023;149(16):15027-15038. doi: 10.1007/s00432-023-05279-9
- Buscail L, Bournet B, Cordelier P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2020;17(3):153-168. doi: 10.1038/s41575-019-0245-4
- Tew BY, Durand JK, Bryant KL, et al. Genome-wide DNA methylation analysis of KRAS mutant cell lines. Sci Rep. 2020;10(1):10149. doi: 10.1038/s41598-020-66797-x
- Strickler JH, Satake H, George TJ, et al. Sotorasib in KRAS p.G12C-mutated advanced pancreatic cancer. N Engl J Med. 2023;388(1):33-43. doi: 10.1056/NEJMoa2208470
- Cilliers C, Howgate E, Jones HM, Rahbaek L, Tran JQ. Clinical and physiologically based pharmacokinetic model evaluations of adagrasib drug-drug interactions. Clin Pharmacol Ther. 2025;117(3):732-741. doi: 10.1002/cpt.3506
- Peng TR, Wu TW, Yi TY, Wu AJ. Comparative efficacy of adagrasib and sotorasib in KRAS G12C-mutant NSCLC: Insights from pivotal trials. Cancers. 2024;16(21):3676.
- Kaufman B, Shapira-Frommer R, Schmutzler RK, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33(3):244-250. doi: 10.1200/jco.2014.56.2728
- Javle M, Shacham-Shmueli E, Xiao L, et al. Olaparib monotherapy for previously treated pancreatic cancer with DNA damage repair genetic alterations other than germline BRCA variants: Findings from 2 phase 2 nonrandomized clinical trials. JAMA Oncol. 2021;7(5):693-699. doi: 10.1001/jamaoncol.2021.0006
- Litton JK, Rugo HS, Ettl J, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med. 2018;379(8):753-763. doi: 10.1056/NEJMoa1802905
- Bruin MAC, Sonke GS, Beijnen JH, Huitema ADR. Pharmacokinetics and pharmacodynamics of PARP inhibitors in oncology. Clin Pharmacokinet. 2022;61(12):1649-1675. doi: 10.1007/s40262-022-01167-6
- Tung NM, Boughey JC, Pierce LJ, et al. Management of hereditary breast cancer: American society of clinical oncology, American Society for radiation oncology, and society of surgical oncology guideline. J Clin Oncol. 2020;38(18):2080-2106. doi: 10.1200/jco.20.00299
- Wang J, Zhang Y, Yuan L, Ren L, Zhang Y, Qi X. Comparative efficacy, safety, and acceptability of single-agent poly (ADP-ribose) polymerase (PARP) inhibitors in BRCA-mutated HER2-negative metastatic or advanced breast cancer: A network meta-analysis. Aging (Albany NY). 2020;13(1):450-459. doi: 10.18632/aging.202152
- Lu X, Deng S, Xu J, et al. Combination of AFP vaccine and immune checkpoint inhibitors slows hepatocellular carcinoma progression in preclinical models. J Clin Invest. 2023;133(11):e163291. doi: 10.1172/jci163291
- Zhong L, Gan L, Wang B, et al. Hyperacute rejection-engineered oncolytic virus for interventional clinical trial in refractory cancer patients. Cell. 2025;188(4):1119-1136.e23. doi: 10.1016/j.cell.2024.12.010
- Aggeletopoulou I, Pantzios S, Triantos C. Personalized immunity: Neoantigen-based vaccines revolutionizing hepatocellular carcinoma treatment. Cancers (Basel). 2025;17(3):376. doi: 10.3390/cancers17030376
- Xu Z, Ji G, Cui Y, Cui X. The impacts of non-coding RNAs and N(6)-methyladenosine on cancer: Past, present and future. Curr Cancer Drug Targets. 2021;21(5):375-385. doi: 10.2174/1568009621999210120193636
- Liu W, Gao X, Chen X, et al. miR-139-5p loss-mediated WTAP activation contributes to hepatocellular carcinoma progression by promoting the epithelial to mesenchymal transition. Front Oncol. 2021;11:611544. doi: 10.3389/fonc.2021.611544
- Ma JZ, Yang F, Zhou CC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6‐methyladenosine‐dependent primary MicroRNA processing. Hepatology. 2017;65(2):529-543. doi: 10.1002/hep.28885
- Wei J, Fang DL, Zhou W, He YF. N6-methyladenosine (m6A) regulatory gene divides hepatocellular carcinoma into three subtypes. J Gastrointest Oncol. 2021;12(4):1860-1872. doi: 10.21037/jgo-21-378
- Yankova E, Blackaby W, Albertella M, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021;593(7860):597-601. doi: 10.1038/s41586-021-03536-w
- Zhang ZW, Teng X, Zhao F, et al. METTL3 regulates m(6)A methylation of PTCH1 and GLI2 in Sonic hedgehog signaling to promote tumor progression in SHH-medulloblastoma. Cell Rep. 2022;41(4):111530. doi: 10.1016/j.celrep.2022.111530
- Haigh DB, Woodcock CL, Lothion-Roy J, et al. The METTL3 RNA methyltransferase regulates transcriptional networks in prostate cancer. Cancers (Basel). 2022;14(20):5148. doi: 10.3390/cancers14205148
- Xu QC, Tien YC, Shi YH, et al. METTL3 promotes intrahepatic cholangiocarcinoma progression by regulating IFIT2 expression in an m(6)A-YTHDF2-dependent manner. Oncogene. 2022;41(11):1622-1633. doi: 10.1038/s41388-022-02185-1
- Wang L, Yang Q, Zhou Q, et al. METTL3-m(6)A-EGFR-axis drives lenvatinib resistance in hepatocellular carcinoma. Cancer Lett. 2023;559:216122. doi: 10.1016/j.canlet.2023.216122
- Wang Z, Song S, Zhang L, Yang T, Yao W, Liang B. Hepatic arterial infusion chemotherapy combined with immune checkpoint inhibitors and molecular targeted therapies for advanced infiltrative hepatocellular carcinoma: A single-center experience. Front Immunol. 2024;15:1474442. doi: 10.3389/fimmu.2024.1474442
- Rezvantalab S, Drude NI, Moraveji MK, et al. PLGA-based nanoparticles in cancer treatment. Front Pharmacol. 2018;9:1260. doi: 10.3389/fphar.2018.01260
- Bao Y, Zhai J, Chen H, et al. Targeting m(6)A reader YTHDF1 augments antitumour immunity and boosts anti-PD-1 efficacy in colorectal cancer. Gut. 2023;72(8):1497-1509. doi: 10.1136/gutjnl-2022-328845
- Xiao Z, Li T, Zheng X, et al. Nanodrug enhances post-ablation immunotherapy of hepatocellular carcinoma via promoting dendritic cell maturation and antigen presentation. Bioact Mater. 2023;21:57-68. doi: 10.1016/j.bioactmat.2022.07.027
- Hasan N, Aftab M, Ullah M, et al. Nanoparticle-based drug delivery system for oral cancer: Mechanism, challenges, and therapeutic potential. Results Chem. 2025;14:102068. doi: 10.1016/j.rechem.2025.102068
- Locatelli F, Zugmaier G, Rizzari C, et al. Effect of blinatumomab vs chemotherapy on event-free survival among children with high-risk first-relapse B-cell acute lymphoblastic leukemia: A randomized clinical trial. JAMA. 2021;325(9):843-854. doi: 10.1001/jama.2021.0987
- Yang X, Huang K, Yang D, Zhao W, Zhou X. Biomedical big data technologies, applications, and challenges for precision medicine: A review. Glob Chall. 2024;8(1):2300163 doi: 10.1002/gch2.202300163
- Shmatko A, Ghaffari Laleh N, Gerstung M, Kather JN. Artificial intelligence in histopathology: Enhancing cancer research and clinical oncology. Nat Cancer. 2022;3(9):1026- 1038. doi: 10.1038/s43018-022-00436-4
- Tizhoosh HR, Diamandis P, Campbell CJV, et al. Searching images for consensus: Can AI remove observer variability in pathology? Am J Pathol. 2021;191(10):1702-1708. doi: 10.1016/j.ajpath.2021.01.015
- van der Slot MA, Hollemans E, den Bakker MA, et al. Inter-observer variability of cribriform architecture and percent Gleason pattern 4 in prostate cancer: Relation to clinical outcome. Virchows Arch. 2021;478(2):249-256. doi: 10.1007/s00428-020-02902-9
- Geller BM, Nelson HD, Carney PA, et al. Second opinion in breast pathology: Policy, practice and perception. J Clin Pathol. 2014;67(11):955-960. doi: 10.1136/jclinpath-2014-202290
- Ko YS, Choi YM, Kim M, et al. Improving quality control in the routine practice for histopathological interpretation of gastrointestinal endoscopic biopsies using artificial intelligence. PLoS One. 2022;17(12):e0278542. doi: 10.1371/journal.pone.0278542
- Wulczyn E, Steiner DF, Xu Z, et al. Deep learning-based survival prediction for multiple cancer types using histopathology images. PLoS One. 2020;15(6):e0233678. doi: 10.1371/journal.pone.0233678
- Dong T, Wang L, Li R, et al. Development of a novel deep learning-based prediction model for the prognosis of operable cervical cancer. Computat Math Methods Med. 2022;2022(1):4364663. doi: 10.1155/2022/4364663
- Yang L, Fan X, Qin W, et al. A novel deep learning prognostic system improves survival predictions for stage III non-small cell lung cancer. Cancer Med. 2022;11(22):4246-4255. doi: 10.1002/cam4.4782
- McGenity C, Clarke EL, Jennings C, et al. Artificial intelligence in digital pathology: A systematic review and meta-analysis of diagnostic test accuracy. NPJ Digit Med. 2024;7(1):114. doi: 10.1038/s41746-024-01106-8
- Eisemann N, Bunk S, Mukama T, et al. Nationwide real-world implementation of AI for cancer detection in population-based mammography screening. Nat Med. 2025;31(3):917-924. doi: 10.1038/s41591-024-03408-6
- Saha A, Bosma JS, Twilt JJ, et al. Artificial intelligence and radiologists in prostate cancer detection on MRI (PI-CAI): An international, paired, non-inferiority, confirmatory study. Lancet Oncol. 2024;25(7):879-887. doi: 10.1016/s1470-2045(24)00220-1
- Skolnick J, Gao M, Zhou H, Singh S. AlphaFold 2: Why it works and its implications for understanding the relationships of protein sequence, structure, and function. J Chem Inf Model. 2021;61(10):4827-4831. doi: 10.1021/acs.jcim.1c01114
- Cunningham M, Pins D, Dezső Z, Torrent M, Vasanthakumar A, Pandey A. PINNED: Identifying characteristics of druggable human proteins using an interpretable neural network. J Cheminform. 2023;15(1):64. doi: 10.1186/s13321-023-00735-7
- Singhal K, Azizi S, Tu T, et al. Large language models encode clinical knowledge. Nature. 2023;620(7972):172-180. doi: 10.1038/s41586-023-06291-2
- Huang Y, Su X, Ullanat V, et al. Multimodal AI Predicts Clinical Outcomes of Drug Combinations from Preclinical Data. arXiv. 2025; arXiv:2503.02781. doi: 10.48550/arXiv.2503.02781
- Xu F, Sepúlveda MJ, Jiang Z, et al. Effect of an artificial intelligence clinical decision support system on treatment decisions for complex breast cancer. JCO Clin Cancer Inform. 2020;(4):824-838. doi: 10.1200/cci.20.00018
- Chandak P, Huang K, Zitnik M. Building a knowledge graph to enable precision medicine. Sci Data. 2023;10(1):67. doi: 10.1038/s41597-023-01960-3