AccScience Publishing / ITPS / Volume 4 / Issue 1 / DOI: 10.36922/itps.v4i1.1037
Cite this article
72
Download
2105
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Coronavirus Disease 2019: An Overview of the Complications and Management

Huimin Shao1† Hany Sadek Ayoub Ghaly1† Pegah Varamini11,2*
Show Less
1 School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
2 Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
†These authors contributed equally to this work.

†These authors contributed equally to this work.

INNOSC Theranostics and Pharmacological Sciences 2021, 4(1), 1037 https://doi.org/10.36922/itps.v4i1.1037
Received: 3 February 2021 | Accepted: 6 April 2021 | Published online: 3 May 2021
© 2021 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Since the first report of COVID-19 emerging in Wuhan, China, authorities in 216 countries and territories have reported about 47.3 million COVID-19 cases and 1.2 million deaths. The WHO guidelines for the management of COVID-19 are very limited to recommendations for managing symptoms and advice on careful management of pediatric patients, pregnant women, and patients with underlying comorbidities. There is no approved treatment for COVID-19 and guidelines vary between countries. In this review, first, a brief overview is provided on the basic knowledge about the virus, clinical features of the disease, and different diagnostic methods. Then, the relationship between COVID-19, various body systems, and other complications is discussed. Finallly, different management strategies are discussed, including those drawn on computational chemistry analyses, pre-clinical investigations, and clinical trials which involve pharmacological and non-pharmacological interventions. In conclusion, despite the recent approval of different vaccine candidates, more virological characteristics of SARS-CoV-2 are required to be explored, which may result in the discovery of more potential therapeutic targets leading to safer and more effective treatment to COVID-19.

Keywords
Coronavirus disease 2019
Viral infectio
Coronavirus
Severe acute respiratory syndrome coronavirus-2
Vaccine
Antiviral agents
Funding
We would like to acknowledge the National Breast Cancer Foundation Research fellowship and grant to Dr. Pegah Varamini (PF-16-007).
Conflict of interest
Authors have no conflict of interest to declare.
References
[1]

Yang, F.; Shi, S.; Zhu, J.; Shi, J.; Dai, K.; Chen, X. Analysis of 92 Deceased Patients with COVID-19. J. Med. Virol., 2020, 11, 2511–5.

[2]

Zhu, J.; Ji, P.; Pang, J.; Zhong, Z.; Li, H.; He, C.; Zhang, J.; Zhao, C. Clinical Characteristics of 3,062 COVID-19 Patients: A Meta-analysis. J. Med. Virol., 2020, 92, 1902–14.

[3]

Zhu, F.C.; Guan, X.H.; Li, Y.H.; Huang, J.Y.; Jiang, T.; Hou, L.H.; Li, J.X.; Yang, B.F.; Wang, L.; Wang, W.J.; Wu, S.P.; Wang, Z.; Wu, X.H.; Xu, J.J.; Zhang, Z.; Jia, S.Y.; Wang, B.S.; Hu, Y.; Liu, J.J.; Zhang, J.; Qian, X.A.; Li, Q.; Pan, H.X.; Jiang, H.D.; Deng, P.; Gou, J.B.; Wang, X.W.; Wang, X.H.; Chen, W. Immunogenicity and Safety of a Recombinant Adenovirus Type-5-vectored COVID-19 Vaccine in Healthy Adults Aged 18 Years or Older: A Randomised, Double-blind, Placebo-controlled, Phase 2 Trial. Lancet, 2020, 396(10249), 479–88.

[4]

Chen, Y.; Liu, Q.; Guo, D. Emerging Coronaviruses: Genome Structure, Replication, and Pathogenesis. J. Med. Virol. 2020, 92(4), 418–23.

[5]

Fan, C.; Li, K.; Ding, Y.; Lu, W.; Wang, J. ACE2 Expression in Kidney and Testis May Cause Kidney and Testis Damage After 2019-nCoV Infection. medRxiv, 2020.

[6]

Wan, S.; Xiang, Y.; Fang, W.; Zheng, Y.; Li, B.; Hu, Y.; Lang, C.; Huang, D.; Sun, Q.; Xiong, Y.; Huang, X.; Lv, J.; Luo, Y.; Shen, L.; Yang, H.; Huang, G.; Yang, R. Clinical features and treatment of COVID-19 patients in northeast Chongqing. J. Med. Virol., 2020, 92(7), 797–806.

[7]

Wong, C.K.; Lam, C.W.; Wu, A.K.; Ip, W.K.; Lee, N.L.; Chan, I.H.; Lit, L.C.; Hui, D.S.; Chan, M.H.; Chung, S.S.; Sung, J.J. Plasma Inflammatory Cytokines and Chemokines in Severe Acute Respiratory Syndrome. Clin. Exp. Immunol., 2004, 136(1), 95–103.

[8]

Zhang, H.; Kang, Z.; Gong, H.; Xu, D.; Wang, J.; Li, Z.; Cui, X.; Xiao, J.; Meng, T.; Zhou, W.; Liu, J.; Xu, H. The Digestive System is a Potential Route of 2019-nCov Infection: A Bioinformatics Analysis Based on Single-Cell Transcriptomes. bioRxiv, 2020.

[9]

Guan, W.J.; Liang, W.H.; Zhao, Y.; Liang, H.R.; Chen, Z.S.; Li, Y.M.; Liu, X.Q.; Chen, R.C.; Tang, C.L.; Wang, T.; Ou, C.Q.; Li, L.; Chen, P.Y.; Sang, L.; Wang, W.; Li, J.F.; Li, C.C.; Ou, L.M.; Cheng, B.; Xiong, S.; Ni, Z.Y.; Xiang, J.; Hu, Y.; Liu, L.; Shan, H.; Lei, C.L.; Peng, Y.X.; Wei, L.; Liu, Y.; Hu, Y.H.; Peng, P.; Wang, J.M.; Liu, J.Y.; Chen, Z.; Li, G.; Zheng, Z.J.; Qiu, S.Q.; Luo, J.; Ye, C.J.; Zhu, S.Y.; Cheng, L.L.; Ye, F.; Li, S.Y.; Zheng, J.P.; Zhang, N.F.; Zhong, N.S.; He, J.X.; China Medical Treatment Expert Group for COVIS-19. Comorbidity and its Impact on 1590 Patients with Covid-19 in China: A Nationwide Analysis. Eur. Respir. J., 2020, 55(5), 2000547.

[10]

General Office of the National Health and Health Commission. Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 8). Available from:  http://www.nhc.gov.cn/yzygj/s7653p/202008/0a7bdf12bd4b46e5bd28ca7f9a7f5e5a.shtml. [Last accessed on 2020 Oct 01].

[11]

Xue, H.; Jin, Z. The Appropriate Position of Radiology in COVID-19 Diagnosis and Treatment-Current Status and Opinion from China. Chin. J. Acad. Radiol, 2020, 2020, 1-3.

[12]

Pata, D.; Valentini, P.; De Rose, C.; De Santis, R.; Morello, R.; Buonsenso, D. Chest Computed Tomography and Lung Ultrasound Findings in COVID-19 Pneumonia: A Pocket Review for Nonradiologists. Front. Med. (Lausanne), 2020, 7, 375.

[13]

Lijia, S.; Lihong, S.; Huabin, W.; Xiaoping, X.; Xiaodong, L.; Yixuan, Z.; Pin, H.; Yina, X.; Xiaoyun, S.; Junqi, W. Serological Chemiluminescence Immunoassay for the Diagnosis of SARSCoV-2 Infection. J. Clin. Lab. Anal., 2020, 34(10), e23466.

[14]

Huang, Z.; Jiang, Y.; Chen, J.; Zhou, Y. Inhibitors of the Reninangiotensin System: The Potential Role in the Pathogenesis of COVID-19. Cardiol. J., 2020, 27(2), 171–4.

[15]

Imai, Y.; Kuba, K.; Rao, S.; Huan, Y.; Guo, F.; Guan, B.; Yang, P.; Sarao, R.; Wada, T.; Leong-Poi, H.; Crackower, M.A.; Fukamizu, A.; Hui, C.C.; Hein, L.; Uhlig, S.; Slutsky, A.S.; Jiang, C.; Penninger, J.M. Angiotensin-converting Enzyme 2 Protects from Severe Acute Lung Failure. Nature, 2005, 436(7047), 112–6.

[16]

Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; Bao, L.; Zhang, B.; Liu, G.; Wang, Z.; Chappell, M.; Liu, Y.; Zheng, D.; Leibbrandt, A.; Wada, T.; Slutsky, A.S.; Liu, D.; Qin, C.; Jiang, C.; Penninger, J.M. A Crucial Role of Angiotensin Converting Enzyme 2 (ACE2) in SARS Coronavirus-induced Lung Injury. Nat. Med., 2005, 11(8), 875–9.

[17]

Crackower, M.A.; Sarao, R.; Oudit, G.Y.; Yagil, C.; Kozieradzki, I.; Scanga, S.E.; Oliveira-dos-Santos, A.J.; da Costa, J.; Zhang, L.; Pei, Y.; Scholey, J.; Ferrario, C.M.; Manoukian, A.S.; Chappell, M.C.; Backx, P.H.; Yagil, Y.; Penninger, J.M. Angiotensin-converting Enzyme 2 is an Essential Regulator of Heart Function. Nature, 2002, 417(6891), 822–8.

[18]

Xu, X.; Chen, P.; Wang, J.; Feng, J.; Zhou, H.; Li, X.; Zhong, W.; Hao, P. Evolution of the Novel Coronavirus from the Ongoing Wuhan Outbreak and Modeling of its Spike Protein for Risk of Human Transmission. Sci. Chin. Life Sci., 2020, 63(3), 457–60.

[19]

Wevers, B.A.; van der Hoek, L. Renin-angiotensin System in Human Coronavirus Pathogenesis. Future Virol., 2010, 5(2), 145–61.

[20]

Huentelman, M.J.; Zubcevic, J.; Hernandez Prada, J.A.; Xiao, X.; Dimitrov, D.S.; Raizada, M.K.; Ostrov, D.A. Structure-based Discovery of a Novel Angiotensin-converting Enzyme 2 Inhibitor. Hypertension (Dallas, Tex. : 1979), 2004, 44(6), 903–6.

[21]

Bonow, R.O.; Fonarow, G.C.; O’Gara, P.T.; Yancy, C.W. Association of Coronavirus Disease 2019 (COVID-19) With Myocardial Injury and Mortality. JAMA Cardiol., 2020, 5(7), 751–3.

[22]

Kwong, J.C.; Schwartz, K.L.; Campitelli, M.A. Acute Myocardial Infarction after Laboratory-Confirmed Influenza Infection. N. Engl. J. Med., 2018, 378(26), 2540–1.

[23]

Oudit, G.Y.; Kassiri, Z.; Jiang, C.; Liu, P.P.; Poutanen, S.M.; Penninger, J.M.; Butany, J. SARS-coronavirus Modulation of Myocardial ACE2 Expression and Inflammation in Patients with SARS. Eur. J. Clin. Investig., 2009, 39(7), 618–25.

[24]

Liu, P.P.; Blet, A.; Smyth, D.; Li, H. The Science Underlying COVID-19: Implications for the Cardiovascular System. Circulation, 2020, 142(1), 68–78.

[25]

Drucker, D.J. Coronavirus Infections and Type 2 Diabetes-shared Pathways with Therapeutic Implications. Endocr. Rev., 2020, 41(3), bnaa011.

[26]

Yang, J.K.; Lin, S.S.; Ji, X.J.; Guo, L.M. Binding of SARS Coronavirus to its Receptor Damages Islets and Causes Acute Diabetes. Acta Diabetol., 2010, 47(3), 193–9.

[27]

Booth, C.M.; Matukas, L.M.; Tomlinson, G.A.; Rachlis, A.R.;Rose, D.B.; Dwosh, H.A.; Walmsley, S.L.; Mazzulli, T.;Avendano, M.; Derkach, P.; Ephtimios, I.E.; Kitai, I.;Mederski, B.D.; Shadowitz, S.B.; Gold, W.L.; Hawryluck, L.A.;Rea, E.; Chenkin, J.S.; Cescon, D.W.; Poutanen, S.M.; Detsky,A.S.Clinical Features and Short-term Outcomes of 144 Patients with SARS in the Greater Toronto Area. JAMA, 2003, 289(21), 2801–9.

[28]

Alqahtani, F.Y.; Aleanizy, F.S.; Ali El Hadi Mohamed, R.; Alanazi, M.S.; Mohamed, N.; Alrasheed, M.M.; Abanmy, N.; Alhawassi, T. Prevalence of Comorbidities in Cases of Middle East Respiratory Syndrome Coronavirus: A Retrospective Study. Epidemiol. Infect., 2018, 47, 1–5.

[29]

Guo, W.; Li, M.; Dong, Y.; Zhou, H.; Zhang, Z.; Tian, C.; Qin, R.; Wang, H.; Shen, Y.; Du, K.; Zhao, L.; Fan, H.; Luo, S.; Hu, D. Diabetes is a Risk Factor for the Progression and Prognosis of COVID-19. Diabetes Metab. Res. Rev., 2020, 2020, e3319.

[30]

Chow, N.; Fleming-Dutra, K.; Gierke, R.; Hall, A.; Hughes, M.; Pilishvili, T.; Ritchey, M.; Roguski, K.; Skoff, T.; Ussery, E. Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019 United States, February 12-March 28, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69(13), 382–6.

[31]

Seshasai, S.R.K.; Kaptoge, S.; Thompson, A.; Di Angelantonio, E.; Gao, P.; Sarwar, N.; Whincup, P.H.; Mukamal, K.J.; Gillum, R.F.; Holme, I.; Njolstad, I.; Fletcher, A.; Nilsson, P.; Lewington, S.; Collins, R.; Gudnason, V.; Thompson, S.G.; Sattar, N.; Selvin, E.; Hu, F.B.; Danesh, J. Diabetes Mellitus, Fasting Glucose, and Risk of Cause-specific Death. New Engl. J. Med., 2011, 364(9), 829–41.

[32]

Jin, X.; Lian, J.S.; Hu, J.H.; Gao, J.; Zheng, L.; Zhang, Y.M.; Hao, S.R.; Jia, H.Y.; Cai, H.; Zhang, X.L.; Yu, G.D.; Xu, K.J.; Wang, X.Y.; Gu, J.Q.; Zhang, S.Y.; Ye, C.Y.; Jin, C.L.; Lu, Y.F.; Yu, X.; Yu, X.P.; Huang, J.R.; Xu, K.L.; Ni, Q.; Yu, C.B.; Zhu, B.; Li, Y.T.; Liu, J.; Zhao, H.; Zhang, X.; Yu, L.; Guo, Y.Z.; Su, J.W.; Tao, J.J.; Lang, G.J.; Wu, X.X.; Wu, W.R.; Qv, T.T.; Xiang, D.R.; Yi, P.; Shi, D.; Chen, Y.; Ren, Y.; Qiu, Y.Q.; Li, L.J.; Sheng, J.; Yang, Y. Epidemiological, Clinical and Virological Characteristics of 74 Cases of Coronavirus-infected Disease 2019 (COVID-19) with Gastrointestinal Symptoms. Gut, 2020, 69(6), 1002–9.

[33]

Lighter, J.; Phillips, M.; Hochman, S.; Sterling, S.; Johnson, D.; Francois, F.; Stachel, A. Obesity in Patients Younger than 60 Years is a Risk Factor for Covid-19 Hospital Admission. Clin. Infect. Dis., 2020, 71(15), 896–7.

[34]

Porfidia, A.; Pola, R. Venous Thromboembolism in COVID-19 Patients. J. Thromb. Haemost., 2020, 18(6), 1516–7.

[35]

Tang, N.; Bai, H.; Chen, X.; Gong, J.; Li, D.; Sun, Z. Anticoagulant Treatment is Associated with Decreased Mortality in Severe Coronavirus Disease 2019 Patients with Coagulopathy. J. Thromb. Haemost., 2020, 18(5), 1094–9.

[36]

Li, X.; Dai, T.; Wang, H.; Shi, J.; Yuan, W.; Li, J.; Chen, L.; Zhang, T.; Zhang, S.; Kong, Y.; Yue, N.; Shi, H.; He, Y.; Hu, H.; Liu, F.; Yang, C. Clinical Analysis of Suspected Novel Coronavirus Pneumonia Patients with Anxiety and Depression. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2020, 49(1), 203–8.

[37]

Henry, B.M.; Lippi, G. Chronic Kidney Disease is Associated with Severe Coronavirus Disease 2019 (COVID-19) Infection. Int. Urol. Nephrol., 2020, 52(6), 1193–4.

[38]

Wong, S.H.; Lui, R.N.; Sung, J.J. Covid-19 and the Digestive System. J. Gastroenterol. Hepatol., 2020, 35(5), 744–8.

[39]

Cava, C.; Bertoli, G.; Castiglioni, I. In Silico Discovery of Candidate Drugs against Covid-19. Viruses, 2020, 12(4), 404.

[40]

Elfiky, A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA Dependent RNA Polymerase (RdRp): A Molecular Docking Study. Life Sci., 2020, 253, 117592.

[41]

Hall, D.C. Jr.; Ji, H.F. A Search for Medications to Treat COVID-19 via In Silico Molecular Docking Models of the SARS-CoV-2 Spike Glycoprotein and 3CL Protease. Travel Med. Infect. Dis., 2020, 35, 101646.

[42]

Liu, S.; Zheng, Q.; Wang, Z. Potential Covalent Drugs Targeting the Main Protease of the SARS-CoV-2 Coronavirus. Bioinformatics, 2020, 36(11), 3295–8.

[43]

Savarino, A.; Boelaert, J.R.; Cassone, A.; Majori, G.; Cauda, R. Effects of Chloroquine on Viral Infections: An Old Drug Against Today’s Diseases. Lancet Infect. Dis., 2003, 3(11), 722–7.

[44]

Zhou, D.; Dai, S.M.; Tong, Q. COVID-19: A Recommendation to Examine the Effect of Hydroxychloroquine in Preventing Infection and Progression. J. Antimicrob. Chemother., 2020, 75(7), 1667–70.

[45]

Devaux, C.A.; Rolain, J.M.; Colson, P.; Raoult, D. New Insights on the Antiviral Effects of Chloroquine Against Coronavirus: What to Expect for COVID-19? Int. J. Antimicrob. Agents, 2020, 105938.

[46]

Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 2020, 71(15), 732–9.

[47]

Rossignol, J.F. Nitazoxanide, a New Drug Candidate for the Treatment of Middle East Respiratory Syndrome Coronavirus. J. Infect. Public Health, 2016, 9(3), 227–30.

[48]

Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and Chloroquine Effectively Inhibit the Recently Emerged Novel Coronavirus (2019-nCoV) In Vitro. Cell Res., 2020, 30(3), 269–71.

[49]

Lu, C.C.; Chen, M.Y.; Chang, Y.L. Potential Therapeutic Agents Against COVID-19: What we know so Far. J. Chin. Med. Assoc., 2020, 83(6), 534–6.

[50]

Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Dupont, H.T.; Honore, S.; Colson, P.; Chabriere, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and Azithromycin as a Treatment of COVID-19: Results of an Open-label Non-randomized Clinical Trial. Int. J. Antimicrob. Agents, 2020, 56(1), 105949.

[51]

Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine Phosphate has Shown Apparent Efficacy in Treatment of COVID-19 Associated Pneumonia in Clinical Studies. Biosci. Trends, 2020, 14(1), 72–3.

[52]

Millan-Onate, J.; Millan, W.; Mendoza, L.A.; Sanchez, C.G.; Fernandez-Suarez, H.; Bonilla-Aldana, D.K.; RodriguezMorales, A.J. Successful Recovery of COVID-19 Pneumonia in a Patient from Colombia after Receiving Chloroquine and Clarithromycin. Ann. Clin. Microbiol. Antimicrob., 2020, 19(1), 16.

[53]

Tang, W.; Cao, Z.; Han, M.; Wang, Z.; Chen, J.; Sun, W.; Wu, Y.; Xiao, W.; Liu, S.; Chen, E.; Chen, W.; Wang, X.; Yang, J.; Lin, J.; Zhao, Q.; Yan, Y.; Xie, Z.; Li, D.; Yang, Y.; Liu, L.; Qu, J.; Ning, G.; Shi, G.; Xie, Q. Hydroxychloroquine in Patients with Mainly Mild to Moderate Coronavirus Disease 2019: Open Label, Randomised Controlled Trial. BMJ, 2020, 369, m1849.

[54]

Borba, M.G.S.; Val, F.F.A.; Sampaio, V.S.; Alexandre, M.A.A.; Melo, G.C.; Brito, M.; Mourao, M.P.G.; Brito-Sousa, J.D.; Baiada-Silva, D.; Guerra, M.V.F.; Hajjar, L.A.; Pinto, R.C.; Balieiro, A.A.S.; Pacheco, A.G.F.; Santos, J.D.O. Jr.; Naveca, F.G.; Xavier, M.S.; Siqueira, A.M.; Schwarzbold, A.; Croda, J.; Nogueira, M.L.; Romero, G.A.S.; Bassat, Q.; Fontes, C.J.; Albuquerque, B.C.; Daniel-Ribeiro, C.T.; Monteiro, W.M.; Lacerda, M.V.G.; CloroCovid, T. Effect of High vs Low Doses of Chloroquine Diphosphate as Adjunctive Therapy for Patients Hospitalized With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: A Randomized Clinical Trial. JAMA Netw Open, 2020, 3(4), e208857.

[55]

Jiang, S.; Li. L.; Ru, R.; Zhang, C.; Rao, Y.; Lin, B.; Wang, R.; Chen, N.; Wang, X.; Cai, H.; Sheng, J.; Zhou, J.; Lu, X.; Qiu, Y. Pharmaceutical Care for Severe and Critically Ill Patients with Corona Virus Disease 2019 (COVID-19). Zhejiang Da Xue Xue Bao Yi Xue Ban, 2020, 49(1), 158–69.

[56]

Singh, A.K.; Singh, A.; Shaikh, A.; Singh, R.; Misra, A. Chloroquine and Hydroxychloroquine in the Treatment of COVID-19 with or Without Diabetes: A Systematic Search and a Narrative Review with a Special Reference to India and Other Developing Countries. Diabetes Metab. Syndr., 2020, 14(3), 241–6.

[57]

Sheahan, T.P.; Sims, A.C.; Graham, R.L.; Menachery, V.D.; Gralinski, L.E.; Case, J.B.; Leist, S.R.; Pyrc, K.; Feng, J.Y.;Trantcheva, I.; Bannister, R.; Park, Y.; Babusis, D.; Clarke, M.O.; Mackman, R.L.; Spahn, J.E.; Palmiotti, C.A.; Siegel, D.; Ray, A.S.; Cihlar, T.; Jordan, R.; Denison, M.R.; Baric, R.S. Broadspectrum Antiviral GS-5734 Inhibits Both Epidemic and Zoonotic Coronaviruses. Sci. Transl. Med., 2017, 9(396), eaal3653.

[58]

Gordon, C.J.; Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Gotte, M. The Antiviral Compound Remdesivir Potently Inhibits RNAdependent RNA Polymerase from Middle East Respiratory Syndrome Coronavirus. J. Biol. Chem., 2020, 295(15), 4773–9.

[59]

Warren, T.K.; Jordan, R.; Lo, M.K.; Ray, A.S.; Mackman, R.L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H. C.; Larson, N.; Strickley, R.; Wells, J.; Stuthman, K.S.; Van Tongeren,S.A.; Garza, N.L.; Donnelly, G.; Shurtleff, A.C.; Retterer, C.J.; Gharaibeh, D.; Zamani, R.; Kenny, T.; Eaton, B.P.; Grimes, E.; Welch, L.S.; Gomba, L.; Wilhelmsen, C.L.; Nichols, D.K.; Nuss, J.E.; Nagle, E.R.; Kugelman, J.R.; Palacios, G.; Doerffler, E.; Neville, S.; Carra, E.; Clarke, M.O.; Zhang, L.; Lew, W.; Ross, B.; Wang, Q.; Chun, K.; Wolfe, L.; Babusis, D.; Park, Y.; Stray, K.M.; Trancheva, I.; Feng, J.Y.; Barauskas, O.; Xu, Y.; Wong, P.; Braun, M.R.; Flint, M.; McMullan, L.K.; Chen, S.S.; Fearns, R.; Swaminathan, S.; Mayers, D.L.; Spiropoulou, C.F.; Lee, W.A.; Nichol, S.T.; Cihlar, T.; Bavari, S. Therapeutic Efficacy of the Small Molecule GS-5734 against Ebola virus in Rhesus Monkeys. Nature, 2016, 531(7594), 381–5.

[60]

Sheahan, T.P.; Sims, A.C.; Leist, S.R.; Schäfer, A.; Won, J.; Brown, A.J.; Montgomery, S.A.; Hogg, A.; Babusis, D.; Clarke, M.O.; Spahn, J.E.; Bauer, L.; Sellers, S.; Porter, D.; Feng, J.Y.; Cihlar, T.; Jordan, R.; Denison, M.R.; Baric, R.S. Comparative Therapeutic Efficacy of Remdesivir and Combination Lopinavir, Ritonavir, and Interferon Beta Against MERS-CoV. Nat. Commun., 2020, 11(1), 222.

[61]

Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; Hu, Y.; Luo, G.; Wang, K.; Lu, Y.; Li, H.; Wang, S.; Ruan, S.; Yang, C.; Mei, C.; Wang, Y.; Ding, D.; Wu, F.; Tang, X.; Ye, X.; Ye, Y.; Liu, B.; Yang, J.; Yin, W.; Wang, A.; Fan, G.; Zhou, F.; Liu, Z.; Gu, X.; Xu, J.; Shang, L.; Zhang, Y.; Cao, L.; Guo, T.; Wan, Y.; Qin, H.; Jiang, Y.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Cao, B.; Wang, C. Remdesivir in Adults with Severe COVID-19: A Randomised, Double-blind, Placebo-controlled, Multicentre Trial. Lancet, 2020, 395, 1569–78.

[62]

Antinori, S.; Cossu, M.V.; Ridolfo, A.L.; Rech, R.; Bonazzetti, C.; Pagani, G.; Gubertini, G.; Coen, M.; Magni, C.; Castelli, A.; Borghi, B.; Colombo, R.; Giorgi, R.; Angeli, E.; Mileto, D.; Milazzo, L.; Vimercati, S.; Pellicciotta, M.; Corbellino, M.; Torre, A.; Rusconi, S.; Oreni, L.; Gismondo, M.R.; Giacomelli, A.; Meroni, L.; Rizzardini, G.; Galli, M. Compassionate Remdesivir Treatment of Severe Covid-19 Pneumonia in Intensive Care Unit (ICU) and Non-ICU Patients: Clinical Outcome and Differences in Post-treatment Hospitalisation Status. Pharmacol. Res., 2020, 158, 104899.

[63]

Dong, L.; Hu, S.; Gao, J. Discovering Drugs to Treat Coronavirus Disease 2019 (COVID-19). Drug Discov. Ther., 2020, 14(1), 58–60.

[64]

Zhu, Z.; Lu, Z.; Xu, T.; Chen, C.; Yang, G.; Zha, T.; Lu, J.; Xue, Y. Arbidol Monotherapy is Superior to Lopinavir/Ritonavir in Treating COVID-19. J. Infect., 2020, 81(1), e21–3.

[65]

Deng, L.; Li, C.; Zeng, Q.; Liu, X.; Li, X.; Zhang, H.; Hong, Z.; Xia, J. Arbidol Combined with LPV/r Versus LPV/r Alone Against Corona Virus Disease 2019: A Retrospective Cohort Study. J. Infect., 2020, 81(1), e1–5.

[66]

Xu, K.; Cai, H.; Shen, Y.; Ni, Q.; Chen, Y.; Hu, S.; Li, J.; Wang, H.; Yu, L.; Huang, H.; Qiu, Y.; Wei, G.; Fang, Q.; Zhou, J.; Sheng, J.; Liang, T.; Li, L. Management of Corona Virus Disease-19 (COVID-19): The Zhejiang Experience. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2020, 49(1), 147–57.

[67]

Chu, C.M.; Cheng, V.C.; Hung, I.F.; Wong, M.M.; Chan, K.H.; Chan, K.S.; Kao, R.Y.; Poon, L.L.; Wong, C.L.; Guan, Y.; Peiris, J.S.; Yuen, K.Y. Role of Lopinavir/Ritonavir in the Treatment of SARS: Initial Virological and Clinical Findings. Thorax, 2004, 59(3), 252–6.

[68]

de Wilde, A.H.; Jochmans, D.; Posthuma, C.C.; ZevenhovenDobbe, J.C.; van Nieuwkoop, S.; Bestebroer, T.M.; van den Hoogen, B.G.; Neyts, J.; Snijder, E.J. Screening of an FDAApproved Compound Library Identifies Four Small-Molecule Inhibitors of Middle East Respiratory Syndrome Coronavirus Replication in Cell Culture. Antimicrob. Agents Chemother., 2014, 58(8), 4875–84.

[69]

Yao, T.T.; Qian, J.D.; Zhu, W.Y.; Wang, Y.; Wang, G.Q. A Systematic Review of Lopinavir Therapy for SARS Coronavirus and MERS Coronavirus-A Possible Reference for Coronavirus Disease-19 Treatment Option. J. Med. Virol., 2020, 92(6), 556–63.

[70]

Choy, K.T.; Wong, A.Y.L.; Kaewpreedee, P.; Sia, S.F.; Chen, D.; Hui, K.P.Y.; Chu, D.K.W.; Chan, M.C.W.; Cheung, P.P.H.; Huang, X.; Peiris, M.; Yen, H.L. Remdesivir, Lopinavir, Emetine, and Homoharringtonine Inhibit SARS-CoV-2 Replication In Vitro. Antiviral Res., 2020, 178, 104786.

[71]

Jun, L.; Tao, Z.; Qibin, W.; Yongcheng, D.; Zizhong, Y. Safety Analysis of Lopinavir/Ritonavir Tablets in 40 Hospitalized Patients with Coronavirus Disease 2019. Chin. J. Hosp. Pharm., 2020, 40(10), 1086–8.

[72]

Nakamura, K.; Hikone, M.; Shimizu, H.; Kuwahara, Y.; Tanabe, M.; Kobayashi, M.; Ishida, T.; Sugiyama, K.; Washino, T.; Sakamoto, N.; Hamabe, Y. A Sporadic COVID-19 PneumoniaTreated with Extracorporeal Membrane Oxygenation in Tokyo, Japan: A Case Report. J. Infect. Chemother., 2020, 26(7), 756–61.

[73]

Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N. Engl. J. Med., 2020, 382(19), 1787–99.

[74]

Ford, N.; Vitoria, M.; Rangaraj, A.; Norris, S.L.; Calmy, A.; Doherty, M. Systematic Review of the Efficacy and Safety of Antiretroviral Drugs Against SARS, MERS or COVID-19: Initial Assessment. J. Int. AIDS Soc., 2020, 23(4), e25489.

[75]

Guo, W.; Ming, F.; Dong, Y.; Zhang, Q.; Zhang, X.; Mo, P.; Feng, Y.; Liang, K. A Survey for COVID-19 among HIV/AIDS Patients in Two Districts of Wuhan, China. SSRN, 2020, https://dx.doi.org/10.2139/ssrn.3550029.

[76]

Deeks, E.D. Darunavir/Cobicistat/Emtricitabine/Tenofovir Alafenamide: A Review in HIV-1 Infection. Drugs, 2018, 78(10), 1013–24.

[77]

Mingming S.; Hongming Z.; Jiu-yan C.; Y., Y., Rational use and Pharmaceutical Care of Lopinavir/Ritonavir in the Treatment of Patients with Corona Virus Disease 2019. Chin. J. Hosp. Pharm., 2020, 40(7), 753–6.

[78]

Stockman, L.J.; Bellamy, R.; Garner, P. SARS: Systematic Review of Treatment Effects. PLoS Med., 2006, 3(9), e343.

[79]

Schneider, W.M.; Chevillotte, M.D.; Rice, C.M. InterferonStimulated Genes: A Complex Web of Host Defenses. Annu. Rev. Immunol., 2014, 32, 513–45.

[80]

Sallard, E.; Lescure, F.X.; Yazdanpanah, Y.; Mentre, F.; PeifferSmadja, N. Type 1 Interferons as a Potential Treatment Against COVID-19. Antiviral Res., 2020, 178, 104791.

[81]

Tan, E.L.C.; Ooi, E.E.; Lin, C.Y.; Tan, H.C.; Ling, A.E.; Lim, B.; Stanton, L.W. Inhibition of SARS Coronavirus Infection In Vitro with Clinically Approved Antiviral Drugs. Emerg. Infect. Dis. 2004, 10(4), 581–6.

[82]

Zhou, Q.; Chen, V.; Shannon, C.P.; Wei, X.S.; Xiang, X.; Wang, X.; Wang, Z.H.; Tebbutt, S.J.; Kollmann, T.R.; Fish, E.N. Interferonalpha2b Treatment for COVID-19. Front. Immunol., 2020, 11, 1061.

[83]

Zhang, H.; Kang, Z.; Gong, H.; Xu, D.; Wang, J.; Li, Z.; Cui, X.; Xiao, J.; Meng, T.; Zhou, W.J.B. The Digestive System is a Potential Route of 2019-nCov Infection: A Bioinformatics Analysis Based on Single-cell Transcriptomes. bioRxiv, 2020, https://doi.org/10.1101/2020.01.30.927806.

[84]

Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet (London, England), 2020, 395(10223), 497–506.

[85]

Costanzo, M.; De Giglio, M.A.R.; Roviello, G.N. SARS-CoV-2: Recent Reports on Antiviral Therapies Based on Lopinavir/Ritonavir, Darunavir/Umifenovir, Hydroxychloroquine, Remdesivir, Favipiravir and Other Drugs for the Treatment of the New Coronavirus. Curr. Med. Chem., 2020, 27(27), 4536–41.

[86]

Zhou, Y.; Fu, B.; Zheng, X.; Wang, D.; Zhao, C.; qi, Y.; Sun, R.; Tian, Z.; Xu, X.; Wei, H. Aberrant Pathogenic GM-CSF+ T Cells and Inflammatory CD14+ CD16+ Monocytes in Severe Pulmonary Syndrome Patients of a New Coronavirus. bioRxiv 2020, 2020, 945576.

[87]

Aziz, M.; Fatima, R.; Assaly, R. Elevated Interleukin-6 and Severe COVID-19: A Meta-Analysis. J. Med. Virol., 2020, 92(11), 2283–5.

[88]

Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA, 2020, 323(18), 1824–36.

[89]

Luo, S.; Yang. L.; Wang, C.; Liu, C.; Li, D. Clinical Observation of 6 Severe COVID-19 Patients Treated with Plasma Exchange or Tocilizumab. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2020, 49(1), 227–31.

[90]

Radbel, J.; Narayanan, N.; Bhatt, P.J. Use of Tocilizumab for COVID-19 Infection-induced Cytokine Release Syndrome: A Cautionary Case Report. Chest, 2020, 158(1), e15–9.

[91]

Tian, X.; Li, C.; Huang, A.; Xia, S.; Lu, S.; Shi, Z.; Lu, L.; Jiang, S.; Yang, Z.; Wu, Y.; Ying, T. Potent Binding of 2019 Novel Coronavirus Spike Protein by a SARS Coronavirus-specific Human Monoclonal Antibody. Emerg. Microb. Infect., 2020, 9(1), 382–5.

[92]

Zheng, M.; Song, L. Novel Antibody Epitopes Dominate the Antigenicity of Spike Glycoprotein in SARS-CoV-2 Compared to SARS-CoV. Cell. Mol. Immunol., 2020,

[93]

Russell, C.D.; Millar, J.E.; Baillie, J.K. Clinical Evidence Does not Support Corticosteroid Treatment for 2019-nCoV Lung Injury. Lancet (London, England), 2020, 395(10223), 473–5.

[94]

Zhou, W.; Liu, Y.; Tian, D.; Wang, C.; Wang, S.; Cheng, J.; Hu, M.; Fang, M.; Gao, Y. Potential Benefits of Precise Corticosteroids Therapy for Severe 2019-nCoV Pneumonia. Signal Transduct. Target. Ther., 2020, 5(1), 18.

[95]

Xia, S.; Zhu, Y.; Liu, M.; Lan, Q.; Xu, W.; Wu, Y.; Ying, T.; Liu, S.; Shi, Z.; Jiang, S.; Lu, L. Fusion Mechanism of 2019-nCoV and Fusion Inhibitors Targeting HR1 Domain in Spike Protein. Cell. Mol. Immunol., 2020, 17(7), 765–7.

[96]

Nguyen, T.M.; Zhang, Y.; Pandolfi, P.P. Virus Against Virus: A Potential Treatment for 2019-nCov (SARS-CoV-2) and Other RNA Viruses. Cell Res., 2020, 30(3), 189–90.

[97]

Monteil, V.; Kwon, H.; Prado, P.; Hagelkruys, A.; Wimmer, R.A.; Stahl, M.; Leopoldi, A.; Garreta, E.; Del Pozo, C.H.; Prosper, F.; Romero, J.P.; Wirnsberger, G.; Zhang, H.; Slutsky, A.S.; Conder, R.; Montserrat, N.; Mirazimi, A.; Penninger, J.M. Inhibition of SARSCoV-2 Infections in Engineered Human Tissues Using ClinicalGrade Soluble Human ACE2. Cell,2020, 181(4), 905–13.e7.

[98]

Lei, C.; Qian, K.; Li, T.; Zhang, S.; Fu, W.; Ding, M.; Hu, S. Neutralization of SARS-CoV-2 Spike Pseudotyped Virus by Recombinant ACE2-Ig. Nat. Commun., 2020, 11(1), 2070.

[99]

Carr, A.C.; Rosengrave, P.C.; Bayer, S.; Chambers, S.; Mehrtens, J.; Shaw, G.M. Hypovitaminosis C and Vitamin C Deficiency in Critically Ill Patients Despite Recommended Enteral and Parenteral Intakes. Crit. Care, 2017, 21(1), 300.

[100]

Boretti, A.; Banik, B.K. Intravenous Vitamin C for Reduction of Cytokines Storm in Acute Respiratory Distress Syndrome. PharmaNutrition, 2020, 12, 100190.

[101]

Hernandez, A.; Papadakos, P.J.; Torres, A.; Gonzalez, D.A.; Vives, M.; Ferrando, C.; Baeza, J. Two Known Therapies Could be Useful as Adjuvant Therapy in Critical Patients Infected by COVID-19. Rev. Esp. Anestesiol. Reanim., 2020, 67(5), 245–52.

[102]

Iii, A.A.F.; Kim, C.; Lepler, L.; Malhotra, R.; Debesa, O.; Natarajan, R.; Fisher, B. J.; Syed, A.; DeWilde, C.; Priday, A.; Kasirajan, V. Intravenous Vitamin C as Adjunctive Therapy for Enterovirus/Rhinovirus Induced Acute Respiratory Distress Syndrome. World J. Crit. Care Med, 2017, 6(1), 85–90.

[103]

Linjie, H.; Fuchao, C.; Xueqiang, J.; Zhihao, L.; Wan, W. Clinical characteristics and therapy of novel corona virus pneumonia: 71 cases retrospective analysis. Central South Pharmacy 2020, 18(5), 739–42.

[104]

Hantoushzadeh, S.; Norooznezhad, A.H. Inappropriate Antibiotic Consumption as a Possible Cause of Inflammatory Storm and Septic Shock in Patients Diagnosed with Coronavirus Disease 2019 (COVID-19). Arch. Med. Res., 2020, 51(4), 347–348.

[105]

Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-Approved Drug Ivermectin Inhibits the Replication of SARS-CoV-2 In Vitro. Antiviral Res., 2020, 178, 104787.

[106]

Gharebaghi, R.; Heidary, F.; Moradi, M.; Parvizi, M. Metronidazole; a Potential Novel Addition to the COVID-19 Treatment Regimen. Arch. Acad. Emerg. Med., 2020, 8(1), e40.

[107]

Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and is Blocked by a Clinically Proven Protease Inhibitor. Cell, 2020, 181(2), 271–80.e8.

[108]

Rosa, S.G.V.; Santos, W.C. Clinical Trials on Drug Repositioning for COVID-19 Treatment. Rev. Pan Salud Publica, 2020, 44, e40.

[109]

Maggio, R.; Corsini, G.U. Repurposing the Mucolytic Cough Suppressant and TMPRSS2 Protease Inhibitor Bromhexine for the Prevention and Management of SARS-CoV-2 Infection. Pharmacol. Res., 2020, 157, 104837.

[110]

Clark, W.F.; Huang, S.S. Introduction to Therapeutic Plasma Exchange. Transfus. Apher. Sci., 2019, 58(3), 228–9.

[111]

Harzallah, I.; Debliquis, A.; Drenou, B. Lupus Anticoagulant is Frequent in Patients with Covid-19. J. Thromb. Haemost., 2020, 18(8), 2064–5.

[112]

Ma, J.; Xia, P.; Zhou, Y.; Liu, Z.; Zhou, X.; Wang, J.; Li, T.; Yan, X.; Chen, L.; Zhang, S.; Qin, Y.; Li, X. Potential Effect of Blood Purification Therapy in Reducing Cytokine Storm as a Late Complication of Critically Ill COVID-19. Clin. Immunol., 2020, 214, 108408.

[113]

Shi, H.; Zhou, C.; He, P.; Huang, S.; Duan, Y.; Wang, X.; Lin, K.; Zhou, C.; Zhang, X.; Zha, Y. Successful Treatment of Plasma Exchange Followed by Intravenous Immunogloblin in a Critically Ill Patient with 2019 Novel Coronavirus Infection. Int. J. Antimicrob. Agents, 2020, 56(2), 105974.

[114]

Bloch, E.M.; Shoham, S.; Casadevall, A.; Sachais, B.S.; Shaz, B.; Winters, J.L.; van Buskirk, C.; Grossman, B.J.; Joyner, M.; Henderson, J.P.; Pekosz, A.; Lau, B.; Wesolowski, A.; Katz, L.; Shan, H.; Auwaerter, P.G.; Thomas, D.; Sullivan, D.J.; Paneth, N.; Gehrie, E.; Spitalnik, S.; Hod, E.; Pollack, L.; Nicholson, W.T.; Pirofski, L.A.; Bailey, J.A.; Tobian, A.A. Deployment of Convalescent Plasma for the Prevention and Treatment of COVID-19. J. Clin. Invest., 2020, 130(6), 2757–65.

[115]

Ahn, J.Y.; Sohn, Y.; Lee, S.H.; Cho, Y.; Hyun, J.H.; Baek, Y.J.; Jeong, S.J.; Kim, J.H.; Ku, N.S.; Yeom, J.S.; Roh, J.; Ahn, M.Y.; Chin, B.S.; Kim, Y.S.; Lee, H.; Yong, D.; Kim, H.O.; Kim, S.; Choi, J.Y. Use of Convalescent Plasma Therapy in Two COVID-19 Patients with Acute Respiratory Distress Syndrome in Korea. J. Korean Med. Sci., 2020, 35(14), e149.

[116]

Ye, M.; Fu, D.; Ren, Y.; Wang, F.; Wang, D.; Zhang, F.; Xia, X.; Lv, T. Treatment with Convalescent Plasma for COVID-19 Patients in Wuhan, China. J. Med. Virol., 2020, 92(10), 1890–901.

[117]

Zhang, B.; Liu, S.; Tan, T.; Huang, W.; Dong, Y.; Chen, L.; Chen, Q.; Zhang, L.; Zhong, Q.; Zhang, X.; Zou, Y.; Zhang, S. Treatment With Convalescent Plasma for Critically Ill Patients With SARS-CoV-2 Infection. Chest, 2020, 158(1), e9–13.

[118]

Zeng, Q.L.; Yu, Z.J.; Gou, J.J.; Li, G.M.; Ma, S.H.; Zhang, G.F.; Xu, J.H.; Lin, W.B.; Cui, G.L.; Zhang, M.M.; Li, C.; Wang, Z.S.; Zhang, Z.H.; Liu, Z.S. Effect of Convalescent Plasma Therapy on Viral Shedding and Survival in COVID-19 Patients. J. Infect. Dis., 2020, 222(1), 38–43.

[119]

Calder, P.C.; Carr, A.C.; Gombart, A.F.; Eggersdorfer, M. Optimal Nutritional Status for a Well-Functioning Immune System is an Important Factor to Protect against Viral Infections. Nutrients, 2020, 12(4), 1181.

[120]

Zhang, J.; Zeng, H.; Gu, J.; Li, H.; Zheng, L.; Zou, Q. Progress and Prospects on Vaccine Development against SARS-CoV-2. Vaccines (Basel), 2020, 8(2), 153.

[121]

Ahn, D.G.; Shin, H.J.; Kim, M.H.; Lee, S.; Kim, H.S.; Myoung, J.; Kim, B.T.; Kim, S.J. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19). J. Microbiol. Biotechnol., 2020, 30(3), 313–24.

[122]

Feng-Cai, Z.; Li, Y.H.; Guan, X.H.; Hou, L.H.; Wang, W.J.; Li, J.X.; Wu, S.P.; Wang, B.S.; Wang, Z.; Wang, L.; Jia, S.Y.; Jiang, H.D.; Wang, L.; Jiang, T.; Hu, Y.; Gou, J.B.; Xu, S.B.; Xu, J.J.; Wang, X.W.; Wang, W.; Chen, W. Safety, Tolerability, and Immunogenicity of a Recombinant Adenovirus Type-5 Vectored COVID-19 Vaccine: A Dose-escalation, Open-label, Nonrandomised, First-in-human Trial. Lancet, 2020, 395(10240), 1845–54.

[123]

Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; BelijRammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; Dold, C.; Faust, S.N.; Finn, A.; Flaxman, A.L.; Hallis, B.; Heath, P.; Jenkin, D.; Lazarus, R.; Makinson, R.; Minassian, A.M.; Pollock, K.M.; Ramasamy, M.; Robinson, H.; Snape, M.; Tarrant, R.; Voysey, M.; Green, C.; Douglas, A.D.; Hill, A.V.S.; Lambe, T.; Gilbert, S.C.; Pollard, A.J.; Aboagye, J.; Adams, K.; Ali, A.; Allen, E.; Allison, J.L.; Anslow, R.; Arbe-Barnes, E.H.; Babbage, G.; Baillie, K.; Baker, M.; Baker, N.; Baker, P.; Baleanu, I.; Ballaminut, J.; Barnes, E.; Barrett, J.; Bates, L.; Batten, A.; Beadon, K.; Beckley, R.; Berrie, E.; Berry, L.; Beveridge, A.; Bewley, K.R.; Bijker, E.M.; Bingham, T.; Blackwell, L.; Blundell, C.L.; Bolam, E.; Boland, E.; Borthwick, N.; Bower, T.; Boyd, A.; Brenner, T.; Bright, P.D.; Brown-O’Sullivan, C.; Brunt, E.; Burbage, J.; Burge, S.; Buttigieg, K.R.; Byard, N.; Puig, I.C.; Calvert, A.; Camara, S.; Cao, M.; Cappuccini, F.; Carr, M.; Carroll, M.W.; Carter, V.; Cathie, K.; Challis, R.J.; Charlton, S.; Chelysheva, I.; Cho, J.S.; Cicconi, P.; Cifuentes, L.; Clark, H.; Clark, E.; Cole, T.; ColinJones, R.; Conlon, C.P.; Cook, A.; Coombes, N.S.; Cooper, R.; Cosgrove, C.A.; Coy, K.; Crocker, W.E.M.; Cunningham, C.J.; Damratoski, B.E.; Dando, L.; Datoo, M.S.; Davies, H.; De Graaf, H.; Demissie, T.; Di Maso, C.; Dietrich, I.; Dong, T.; Donnellan, F.R.; Douglas, N.; Downing, C.; Drake, J.; Drake-Brockman, R.; Drury, R.E.; Dunachie, S.J.; Edwards, N.J.; Edwards, F.D.L.; Edwards, C.J.; Elias, S.C.; Elmore, M.J.; Emary, K.R.W.; English, M.R.; Fagerbrink, S.; Felle, S.; Feng, S.; Field, S.; Fixmer, C.; Fletcher, C.; Ford, K.J.; Fowler, J.; Fox, P.; Francis, E.; Frater, J.; Furze, J.; Fuskova, M.; Galiza, E.; Gbesemete, D.; Gilbride, C.; Godwin, K.; Gorini, G.; Goulston, L.; Grabau, C.; Gracie, L.; Gray, Z.; Guthrie, L.B.; Hackett, M.; Halwe, S.; Hamilton, E.; Hamlyn, J.; Hanumunthadu, B.; Harding, I.; Harris, S.A.; Harris, A.; Harrison, D.; Harrison, C.; Hart, T.C.; Haskell, L.; Hawkins,S.; Head, I.; Henry, J.A.; Hill, J.; Hodgson, S.H.C.; Hou, M.M.;Howe, E.; Howell, N.; Hutlin, C.; Ikram, S.; Isitt, C.; Iveson, P.;Jackson, S.; Jackson, F.; James, S.W.; Jenkins, M.; Jones, E.; Jones,K.; Jones, C.E.; Jones, B.; Kailath, R.; Karampatsas, K.; Keen, J.;Kelly, S.; Kelly, D.; Kerr, D.; Kerridge, S.; Khan, L.; Khan, U.;Killen, A.; Kinch, J.; King, T.B.; King, L.; King, J.; Kingham-Page,L.; Klenerman, P.; Knapper, F.; Knight, J.C.; Knott, D.; Koleva, S.;Kupke, A.; Larkworthy, C.W.; Larwood, J.P.J.; Laskey, A.; Lawrie,A.M.; Lee, A.; Ngan Lee, K.Y.; Lees, E.A.; Legge, H.; Lelliott, A.;Lemm, N.M.; Lias, A.M.; Linder, A.; Lipworth, S.; Liu, X.; Liu, S.;Lopez Ramon, R.; Lwin, M.; Mabesa, F.; Madhavan, M.; Mallett,G.; Mansatta, K.; Marcal, I.; Marinou, S.; Marlow, E.; Marshall,J.L.; Martin, J.; McEwan, J.; McInroy, L.; Meddaugh, G.; Mentzer,A.J.; Mirtorabi, N.; Moore, M.; Moran, E.; Morey, E.; Morgan, V.;Morris, S.J.; Morrison, H.; Morshead, G.; Morter, R.; Mujadidi, Y.F.; Muller, J.; Munera-Huertas, T.; Munro, C.; Munro, A.; Murphy,S.; Munster, V.J.; Mweu, P.; Noé, A.; Nugent, F.L.; Nuthall, E.;O’Brien, K.; O’Connor, D.; Oguti, B.; Oliver, J.L.; Oliveira, C.;O’Reilly, P.J.; Osborn, M.; Osborne, P.; Owen, C.; Owens, D.;Owino, N.; Pacurar, M.; Parker, K.; Parracho, H.; Patrick-Smith,M.; Payne, V.; Pearce, J.; Peng, Y.; Peralta Alvarez, M.P.; Perring,J.; Pfafferott, K.; Pipini, D.; Plested, E.; Pluess-Hall, H.; Pollock,K.; Poulton, I.; Presland, L.; Provstgaard-Morys, S.; Pulido, D.;Radia, K.; Lopez, F.R.; Rand, J.; Ratcliffe, H.; Rawlinson, T.;Rhead, S.; Riddell, A.; Ritchie, A.J.; Roberts, H.; Robson, J.;Roche, S.; Rohde, C.; Rollier, C.S.; Romani, R.; Rudiansyah, I.;Saich, S.; Sajjad, S.; Salvador, S.; Sanchez Riera, L.; Sanders, H.;Sanders, K.; Sapaun, S.; Sayce, C.; Schofield, E.; Screaton, G.;Selby, B.; Semple, C.; Sharpe, H.R.; Shaik, I.; Shea, A.; Shelton,H.; Silk, S.; Silva-Reyes, L.; Skelly, D.T.; Smee, H.; Smith, C.C.;Smith, D.J.; Song, R.; Spencer, A.J.; Stafford, E.; Steele, A.;Stefanova, E.; Stockdale, L.; Szigeti, A.; Tahiri-Alaoui, A.; Tait,M.; Talbot, H.; Tanner, R.; Taylor, I.J.; Taylor, V.; Te Water Naude,R.; Thakur, N.; Themistocleous, Y.; Themistocleous, A.; Thomas,M.; Thomas, T. M.; Thompson, A.; Thomson-Hill, S.; Tomlins, J.;Tonks, S.; Towner, J.; Tran, N.; Tree, J.A.; Truby, A.; Turkentine,K.; Turner, C.; Turner, N.; Turner, S.; Tuthill, T.; Ulaszewska,M.;Varughese, R.; Van Doremalen, N.; Veighey, K.; Verheul, M.K.;Vichos, I.; Vitale, E.; Walker, L.; Watson, M.E.E.; Welham, B.;Wheat, J.; White, C.; White, R.; Worth, A.T.; Wright, D.; Wright,S.; Yao, X.L.; Yau, Y. Safety and Immunogenicity of the ChAdOx1nCoV-19 Vaccine Against SARS-CoV-2: A Preliminary Report of a Phase 1/2, Single-Blind, Randomised Controlled Trial. Lancet,2020, 396(10249), 467–78.

[124]

Logunov, D.Y.; Dolzhikova, I.V.; Zubkova, O.V.; Tukhvatullin, A.I.; Shcheblyakov, D.V.; Dzharullaeva, A.S.; Grousova, D.M.; Erokhova, A.S.; Kovyrshina, A.V.; Botikov, A.G.; Izhaeva, F.M.; Popova, O.; Ozharovskaya, T.A.; Esmagambetov, I.B.; Favorskaya, I.A.; Zrelkin, D.I.; Voronina, D.V.; Shcherbinin, D.N.; Semikhin, A.S.; Simakova, Y.V.; Tokarskaya, E.A.; Lubenets, N.L.; Egorova, D.A.; Shmarov, M.M.; Nikitenko, N.A.; Morozova, L.F.; Smolyarchuk, E.A.; Kryukov, E.V.; Babira, V.F.; Borisevich, S.V.; Naroditsky, B.S.; Gintsburg, A.L. Safety and Immunogenicity of an rAd26 and rAd5 Vector-based Heterologous Prime-boost COVID-19 Vaccine in Two Formulations: Two Open, Non-randomised Phase 1/2 Studies from Russia. Lancet, 2020, 396(10255), 887–97.

Share
Back to top
INNOSC Theranostics and Pharmacological Sciences, Electronic ISSN: 2705-0823 Print ISSN: 2705-0734, Published by AccScience Publishing