3D printed organoids: From biomanufacturing to medical applications

The emergence of organoid technology has bridged critical gaps between conventional 2D cell cultures and in vivo systems, offering self-organized 3D microtissues that recapitulate organ-specific architecture, cellular heterogeneity, and functional dynamics. However, traditional organoid models face inherent limitations in structural precision, scalability, and physiological relevance, particularly in replicating vascular networks, mechanical microenvironments, and multicellular interactions. Recent advancements in 3D bioprinting have enabled unprecedented spatial control over cellular and extracellular matrix (ECM) organization, unlocking new frontiers in engineering organoids with enhanced biomimicry and functionality. This review systematically examines the integration of bioprinting technologies with organoid science, spanning biomaterial innovations, vascularization strategies, and dynamic microenvironmental cues that drive functional maturation. By synthesizing interdisciplinary advances in stem cell biology, materials science, and computational modeling, the work highlights applications across regenerative medicine, disease pathophysiology, and personalized drug screening. Key challenges, including immunogenicity, long-term stability, and clinical scalability, are critically evaluated alongside emerging solutions such as 4D bioprinting, organ-on-chip integration, and AI-driven bioink optimization. Through a comprehensive analysis of bioprinted organoids for physiology and 3D disease modeling, this review aims to establish a translational roadmap for leveraging spatially programmed organoids to address unmet clinical needs, revolutionize therapeutic development, and advance precision medicine.