AccScience Publishing / IJB / Volume 9 / Issue 5 / DOI: 10.18063/ijb.761
Cite this article
72
Download
1237
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Advances in 3D printing techniques for cartilage regeneration of temporomandibular joint disc and mandibular condyle

Shoushan Hu1,2 Yating Yi1,2 Chengxinyue Ye1,2 Jin Liu1* Jun Wang2*
Show Less
1 Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041
2 State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
Submitted: 12 February 2023 | Accepted: 31 March 2023 | Published: 25 May 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Temporomandibular joint (TMJ) osteoarthritis causes fibrocartilage damage to the TMJ disc and mandibular condyle, resulting in local pain and functional impairment that further reduces patients’ quality of life. Tissue engineering offers a potential treatment for fibrocartilage regeneration of the TMJ disc and mandibular condyle. However, the heterogeneous structure of TMJ fibrocartilage tissue poses significant challenges for the fabrication of biomimetic scaffolds. Over the past two decades, some researchers have attempted to adopt three-dimensional (3D) printing techniques to fabricate biomimetic scaffolds for TMJ fibrocartilage regeneration, but publications on such attempts are limited and rarely report satisfactory results, indicating an urgent need for further development. This review outlines several popular 3D printing techniques and the significant elements of tissue-engineered scaffolds: seed cells, scaffold materials, and bioactive factors. Current research progress on 3D-printed scaffolds for fibrocartilage regeneration of the TMJ disc and mandibular condyle is reviewed. The current challenges in TMJ tissue engineering are mentioned along with some emerging tissue-engineering strategies, such as machine learning, stimuli-responsive delivery systems, and extracellular vesicles, which are considered as potential approaches to improve the performance of 3D-printed scaffolds for TMJ fibrocartilage regeneration. This review is expected to inspire the further development of 3D printing techniques for TMJ fibrocartilage regeneration.

Keywords
3D printing
Cartilage regeneration
Temporomandibular joint disc
Mandibular condyle
References

Alomar X, Medrano J, Cabratosa J, et al., 2007, Anatomy of the temporomandibular joint. Semin Ultrasound CT MR, 28(3): 170–183. http://doi.org/10.1053/j.sult.2007.02.002

de Souza RF, Lovato da Silva CH, Nasser M, et al., 2012, Interventions for the management of temporomandibular joint osteoarthritis. Cochrane Database Syst Rev, 2012(4): Cd007261. http://doi.org/10.1002/14651858.CD007261.pub2

Valesan LF, Da-Cas CD, Réus JC, et al., 2021, Prevalence of temporomandibular joint disorders: A systematic review and meta-analysis. Clin Oral Investig, 25(2): 441–53 http://doi.org/10.1007/s00784-020-03710-w

Tanaka E, Detamore MS, Mercuri LG, 2008, Degenerative disorders of the temporomandibular joint: Etiology, diagnosis, and treatment. J Dent Res, 87(4): 296–307 http://doi.org/10.1177/154405910808700406

Fang L, Ye Y, Tan X, et al., 2021, Overloading stress-induced progressive degeneration and self-repair in condylar cartilage. Ann N Y Acad Sci, 1503(1): 72–87 http://doi.org/10.1111/nyas.14606

Lee KS, Kwak HJ, Oh JM, et al., 2020, Automated detection of TMJ osteoarthritis based on artificial intelligence. J Dent Res, 99(12): 1363–7 http://doi.org/10.1177/0022034520936950

Wang XD, Zhang JN, Gan YH, et al., 2015, Current understanding of pathogenesis and treatment of TMJ osteoarthritis. J Dent Res, 94(5): 666–73 http://doi.org/10.1177/0022034515574770

 

Resnick CM, 2018, Temporomandibular joint reconstruction in the growing child. Oral Maxillofac Surg Clin North Am, 30(1): 109–21 http://doi.org/10.1016/j.coms.2017.08.006

 

Haene R, Qamirani E, Story RA, et al., 2012, Intermediate outcomes of fresh talar osteochondral allografts for treatment of large osteochondral lesions of the talus. J Bone Joint Surg Am, 94(12): 1105–10 http://doi.org/10.2106/jbjs.J.02010

Johnson NR, Roberts MJ, Doi SA, et al., 2017, Total temporomandibular joint replacement prostheses: A systematic review and bias-adjusted meta-analysis. Int J Oral Maxillofac Surg, 46(1): 86–92 http://doi.org/10.1016/j.ijom.2016.08.022

Armiento AR, Stoddart MJ, Alini M, et al., 2018, Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomater, 65: 1–20. http://doi.org/10.1016/j.actbio.2017.11.021

 

O’Shea DG, Curtin CM, O’Brien FJ, 2022, Articulation inspired by nature: A review of biomimetic and biologically active 3D printed scaffolds for cartilage tissue engineering. Biomater Sci, 10(10): 2462–83. http://doi.org/10.1039/d1bm01540k

Van Bellinghen X, Idoux-Gillet Y, Pugliano M, et al., 2018, Temporomandibular joint regenerative medicine. Int J Mol Sci, 19(2): 446. http://doi.org/10.3390/ijms19020446

Trindade D, Cordeiro R, José HC, et al., 2021, Biological treatments for temporomandibular joint disc disorders: Strategies in tissue engineering. Biomolecules, 11(7): 933. http://doi.org/10.3390/biom11070933

Perera K, Ivone R, Natekin E, et al., 2021, 3D bioprinted implants for cartilage repair in intervertebral discs and knee menisci. Front Bioeng Biotechnol, 9: 754113. http://doi.org/10.3389/fbioe.2021.754113

Doyle SE, Snow F, Duchi S, et al., 2021, 3D printed multiphasic scaffolds for osteochondral repair: Challenges and opportunities. Int J Mol Sci, 22(22): 12420. http://doi.org/10.3390/ijms222212420

Wang S, Zhao S, Yu J, et al., 2022, Advances in translational 3D printing for cartilage, bone, and osteochondral tissue engineering. Small, 18(36): e2201869. http://doi.org/10.1002/smll.202201869

McMillan A, McMillan N, Gupta N, et al., 2023, 3D bioprinting in otolaryngology: A review. Adv Healthc Mater, e2203268. http://doi.org/10.1002/adhm.202203268

Yang Z, Yi P, Liu Z, et al., 2022, Stem cell-laden hydrogel-based 3D bioprinting for bone and cartilage tissue engineering. Front Bioeng Biotechnol, 10: 865770. http://doi.org/10.3389/fbioe.2022.865770

Zub K, Hoeppener S, Schubert US, 2022, Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications. Adv Mater, 34(31): e2105015. http://doi.org/10.1002/adma.202105015

 

Gudapati H, Dey M, Ozbolat I, 2016, A comprehensive review on droplet-based bioprinting: Past, present and future. Biomaterials, 102: 20–42. http://doi.org/10.1016/j.biomaterials.2016.06.012

Sohrabi S, Liu Y, 2018, Modeling thermal inkjet and cell printing process using modified pseudopotential and thermal lattice Boltzmann methods. Phys Rev E, 97(3–1): 033105. http://doi.org/10.1103/PhysRevE.97.033105

Mandrycky C, Wang Z, Kim K, et al., 2016, 3D bioprinting for engineering complex tissues. Biotechnol Adv, 34(4): 422–34. http://doi.org/10.1016/j.biotechadv.2015.12.011

Guo Q, Su X, Zhang X, et al., 2021, A review on acoustic droplet ejection technology and system. Soft Matter, 17(11): 3010–21. http://doi.org/10.1039/d0sm02193h

Derakhshanfar S, Mbeleck R, Xu K, et al., 2018, 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact Mater, 3(2): 144–56. http://doi.org/10.1016/j.bioactmat.2017.11.008

Zhang YS, Haghiashtiani G, Hübscher T, et al., 2021, 3D extrusion bioprinting. Nat Rev Methods Primers, 1(1): 75. http://doi.org/10.1038/s43586-021-00073-8

Liu H, Zhou H, Lan H, et al., 2018, Multinozzle multichannel temperature deposition system for construction of a blood vessel. SLAS Technol, 23(1): 64–9. http://doi.org/10.1177/2472630317712221

 

Hong S, Kim JS, Jung B, et al., 2019, Coaxial bioprinting of cell-laden vascular constructs using a gelatin-tyramine bioink. Biomater Sci, 7(11): 4578–87. http://doi.org/10.1039/c8bm00618k

Daly AC, Freeman FE, Gonzalez-Fernandez T, et al., 2017, 3D bioprinting for cartilage and osteochondral tissue engineering. Adv Healthc Mater, 6(22): 1700298. http://doi.org/10.1002/adhm.201700298

Li M, Sun D, Zhang J, et al., 2022, Application and development of 3D bioprinting in cartilage tissue engineering. Biomater Sci, 10(19):5430–58. http://doi.org/10.1039/d2bm00709f

Ozbolat IT, Hospodiuk M, 2016, Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 76: 321–43. http://doi.org/10.1016/j.biomaterials.2015.10.076

Heinrich MA, Liu W, Jimenez A, et al., 2019, 3D bioprinting: From benches to translational applications. Small, 15(23): e1805510. http://doi.org/10.1002/smll.201805510

Kačarević ŽP, Rider PM, Alkildani S, et al., 2018, An introduction to 3D bioprinting: Possibilities, challenges and future aspects. Materials (Basel), 11(11): 2199. http://doi.org/10.3390/ma11112199

Bohandy JB, Kim BF, Adrian FJ, 1986, Metal deposition from a supported metal film using an excimer laser. J Appl Phys, 60(4): 1538–9. http://doi.org/10.1063/1.337287

Li J, Chen M, Fan X, et al., 2016, Recent advances in bioprinting techniques: Approaches, applications and future prospects. J Transl Med, 14: 271. http://doi.org/10.1186/s12967-016-1028-0

Catros S, Guillotin B, BacÁková M, et al., 2011, Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by laser-assisted bioprinting. Appl Surf Sci, 257(12): 5142–7. http://doi.org/10.1016/j.apsusc.2010.11.049

Su X, Wang T, Guo S, 2021, Applications of 3D printed bone tissue engineering scaffolds in the stem cell field. Regen Ther, 16: 63–72. http://doi.org/10.1016/j.reth.2021.01.007

Zhang J, Hu Q, Wang S, et al., 2020, Digital light processing based three-dimensional printing for medical applications. Int J Bioprint, 6(1): 242. http://doi.org/10.18063/ijb.v6i1.242

 

Wu Y, Su H, Li M, et al., 2022, Digital light processing-based multi-material bioprinting: Processes, applications, and perspectives. J Biomed Mater Res A, 111(4): 527–42. http://doi.org/10.1002/jbm.a.37473

 

Kadry H, Wadnap S, Xu C, et al., 2019, Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets. Eur J Pharm Sci, 135: 60–7. http://doi.org/10.1016/j.ejps.2019.05.008

Ravanbakhsh H, Karamzadeh V, Bao G, et al., 2021, Emerging technologies in multi-material bioprinting. Adv Mater, 33(49): e2104730. http://doi.org/10.1002/adma.202104730

 

Godbey WT, Hindy SB, Sherman ME, et al., 2004, A novel use of centrifugal force for cell seeding into porous scaffolds. Biomaterials, 25(14): 2799–2805. http://doi.org/10.1016/j.biomaterials.2003.09.056

Griffon DJ, Abulencia JP, Ragetly GR, et al., 2011, A comparative study of seeding techniques and three-dimensional matrices for mesenchymal cell attachment. J Tissue Eng Regen Med, 5(3): 169–179. http://doi.org/10.1002/term.302

Collon K, Bell JA, Chang SW, et al., 2022, Effects of cell seeding technique and cell density on BMP-2 production in transduced human mesenchymal stem cells. J Biomed Mater Res A, 110(12): 1944–1952. http://doi.org/10.1002/jbm.a.37430

Anderson DE, Athanasiou KA, 2009, A comparison of primary and passaged chondrocytes for use in engineering the temporomandibular joint. Arch Oral Biol, 54(2): 138–145. http://doi.org/10.1016/j.archoralbio.2008.09.018

Anderson DE, Athanasiou KA, 2008, Passaged goat costal chondrocytes provide a feasible cell source for temporomandibular joint tissue engineering. Ann Biomed Eng, 36(12): 1992–2001. http://doi.org/10.1007/s10439-008-9572-2

Vapniarsky N, Huwe LW, Arzi B, et al., 2018, Tissue engineering toward temporomandibular joint disc regeneration. Sci Transl Med, 10(446): eaaq1802. http://doi.org/10.1126/scitranslmed.aaq1802

Kalpakci KN, Kim EJ, Athanasiou KA, 2011, Assessment of growth factor treatment on fibrochondrocyte and chondrocyte co-cultures for TMJ fibrocartilage engineering. Acta Biomater, 7(4): 1710–1718. http://doi.org/10.1016/j.actbio.2010.12.015

Cui D, Li H, Xu X, et al., 2017, Mesenchymal stem cells for cartilage regeneration of TMJ osteoarthritis. Stem Cells Int, 2017: 5979741. http://doi.org/10.1155/2017/5979741

 

Bousnaki M, Bakopoulou A, Papadogianni D, et al., 2018, Fibro/chondrogenic differentiation of dental stem cells into chitosan/alginate scaffolds towards temporomandibular joint disc regeneration. J Mater Sci Mater Med, 29(7): 97.http://doi.org/10.1007/s10856-018-6109-6

Park YB, Ha CW, Lee CH, et al., 2017, Restoration of a large osteochondral defect of the knee using a composite of umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel: A case report with a 5-year follow-up. BMC Musculoskelet Disord, 18(1): 59. http://doi.org/10.1186/s12891-017-1422-7

Liu J, Nie H, Xu Z, et al., 2014, The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects. PLoS One, 9(11): e111566. http://doi.org/10.1371/journal.pone.0111566

Zhang J, Guo F, Mi J, et al., 2014, Periodontal ligament mesenchymal stromal cells increase proliferation and glycosaminoglycans formation of temporomandibular joint derived fibrochondrocytes. Biomed Res Int, 2014: 410167. http://doi.org/10.1155/2014/410167

Ogasawara N, Kano F, Hashimoto N, et al., 2020, Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental temporomandibular joint osteoarthritis. Osteoarthr Cartil, 28(6): 831–841. http://doi.org/10.1016/j.joca.2020.03.010

Sun AX, Lin H, Fritch MR, et al., 2017, Chondrogenesis of human bone marrow mesenchymal stem cells in 3-dimensional, photocrosslinked hydrogel constructs: Effect of cell seeding density and material stiffness. Acta Biomater, 58: 302–311. http://doi.org/10.1016/j.actbio.2017.06.016

Sophia Fox AJ, Bedi A, Rodeo SA, 2009, The basic science of articular cartilage: Structure, composition, and function. Sports Health, 1(6): 461–468. http://doi.org/10.1177/1941738109350438

Hunziker EB, Quinn TM, Häuselmann HJ, 2002, Quantitative structural organization of normal adult human articular cartilage. Osteoarthr Cartil, 10(7): 564–572. http://doi.org/10.1053/joca.2002.0814

Ren X, Wang F, Chen C, et al., 2016, Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient. BMC Musculoskelet Disord, 17: 301. http://doi.org/10.1186/s12891-016-1130-8

Talukdar S, Nguyen QT, Chen AC, et al., 2011, Effect of initial cell seeding density on 3D-engineered silk fibroin scaffolds for articular cartilage tissue engineering. Biomaterials, 32(34): 8927–8937. http://doi.org/10.1016/j.biomaterials.2011.08.027

Lam T, Dehne T, Krüger JP, et al., 2019, Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue-engineered cartilage. J Biomed Mater Res B Appl Biomater, 107(8): 2649–2657. http://doi.org/10.1002/jbm.b.34354

Li X, Teng Y, Liu J, et al., 2017, Chondrogenic differentiation of BMSCs encapsulated in chondroinductive polysaccharide/ collagen hybrid hydrogels. J Mater Chem B, 5(26): 5109–5119. http://doi.org/10.1039/c7tb01020f

Kim M, Erickson IE, Huang AH, et al., 2018, Donor variation and optimization of human mesenchymal stem cell chondrogenesis in hyaluronic acid. Tissue Eng Part A, 24(21-22): 1693–1703. http://doi.org/10.1089/ten.TEA.2017.0520

 

Wang D, Qi Y, Wang Z, et al., 2022, Recent advances in animal models, diagnosis, and treatment of temporomandibular joint osteoarthritis. Tissue Eng Part B Rev, 29(1): 62–77. http://doi.org/10.1089/ten.TEB.2022.0065

Yang X, Lu Z, Wu H, et al., 2018, Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl, 83: 195–201. http://doi.org/10.1016/j.msec.2017.09.002

 

Huber F, Vollmer D, Vinke J, et al., 2022, Influence of 3D printing parameters on the mechanical stability of PCL scaffolds and the proliferation behavior of bone cells. Materials (Basel), 15(6): 2091. http://doi.org/10.3390/ma15062091

 

Lu J, Huang J, Jin J, et al., 2022, The design and characterization of a strong bio-ink for meniscus regeneration. Int J Bioprint, 8(4): 600. http://doi.org/10.18063/ijb.v8i4.600

Li P, Fu L, Liao Z, et al., 2021, Chitosan hydrogel/3D-printed poly(ε-caprolactone) hybrid scaffold containing synovial mesenchymal stem cells for cartilage regeneration based on tetrahedral framework nucleic acid recruitment. Biomaterials, 278: 121131. http://doi.org/10.1016/j.biomaterials.2021.121131

Shen H, Hu X, 2021, Growth factor loading on aliphatic polyester scaffolds. RSC Adv, 11(12): 6735–6747. http://doi.org/10.1039/d0ra10232f

Acri TM, Shin K, Seol D, et al., 2019, Tissue engineering for the temporomandibular joint. Adv Healthc Mater, 8(2): e1801236. http://doi.org/10.1002/adhm.201801236

Luo C, Xie R, Zhang J, et al., 2020, Low-temperature three-dimensional printing of tissue cartilage engineered with gelatin methacrylamide. Tissue Eng Part C Methods, 26(6): 306–316. http://doi.org/10.1089/ten.TEC.2020.0053

Tarafder S, Koch A, Jun Y, et al., 2016, Micro-precise spatiotemporal delivery system embedded in 3D printing for complex tissue regeneration. Biofabrication, 8(2): 025003. http://doi.org/10.1088/1758-5090/8/2/025003

Dormer NH, Busaidy K, Berkland CJ, et al., 2011, Osteochondral interface regeneration of rabbit mandibular condyle with bioactive signal gradients. J Oral Maxillofac Surg, 69(6): e50–57. http://doi.org/10.1016/j.joms.2010.12.049

 

Kalpakci KN, Willard VP, Wong ME, et al., 2011, An interspecies comparison of the temporomandibular joint disc. J Dent Res, 90(2): 193–198. http://doi.org/10.1177/0022034510381501

Kuo J, Zhang L, Bacro T, et al., 2010, The region-dependent biphasic viscoelastic properties of human temporomandibular joint discs under confined compression. J Biomech, 43(7): 1316–1321. http://doi.org/10.1016/j.jbiomech.2010.01.020

 

Legemate K, Tarafder S, Jun Y, et al., 2016, Engineering human TMJ discs with protein-releasing 3D-printed scaffolds. J Dent Res, 95(7): 800–807. http://doi.org/10.1177/0022034516642404

Lee CH, Rodeo SA, Fortier LA, et al., 2014, Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci Transl Med, 6(266): 266ra171. http://doi.org/10.1126/scitranslmed.3009696

Moura C, Trindade D, Vieira M, et al., 2020, Multi-material implants for temporomandibular joint disc repair: Tailored additive manufacturing production. Front Bioeng Biotechnol, 8: 342. http://doi.org/10.3389/fbioe.2020.00342

Ângelo DF, Wang Y, Morouço P, et al., 2021, A randomized controlled preclinical trial on 3 interposal temporomandibular joint disc implants: TEMPOJIMS-Phase 2. J Tissue Eng Regen Med, 15(10): 852–868. http://doi.org/10.1002/term.3230

Jiang N, Yang Y, Zhang L, et al., 2021, 3D-printed polycaprolactone reinforced hydrogel as an artificial TMJ disc. J Dent Res, 100(8): 839–846. http://doi.org/10.1177/00220345211000629

Yi P, Liang J, Huang F, et al., 2021, Composite system of 3D-printed polymer and acellular matrix hydrogel to repair temporomandibular joint disc. Front Mater, 8: 621416. http://doi.org/10.3389/fmats.2021.621416

 

Wang L, Lazebnik M, Detamore MS, 2009, Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application. Osteoarthr Cartil, 17(3): 346–353. http://doi.org/10.1016/j.joca.2008.07.004

Stocum DL, Roberts WE, 2018, Part I: Development and physiology of the temporomandibular joint. Curr Osteoporos Rep, 16(4): 360–368. http://doi.org/10.1007/s11914-018-0447-7

Singh M, Detamore MS, 2009, Biomechanical properties of the mandibular condylar cartilage and their relevance to the TMJ disc. J Biomech, 42(4): 405–417. http://doi.org/10.1016/j.jbiomech.2008.12.012

 

Smith MH, Flanagan CL, Kemppainen JM, et al., 2007, Computed tomography-based tissue-engineered scaffolds in craniomaxillofacial surgery. Int J Med Robot, 3(3): 207–216. http://doi.org/10.1002/rcs.143

 

Abramowicz S, Crotts SJ, Hollister SJ, et al., 2021, Tissue-engineered vascularized patient-specific temporomandibular joint reconstruction in a Yucatan pig model. Oral Surg Oral Med Oral Pathol Oral Radiol, 132(2): 145–152. http://doi.org/10.1016/j.oooo.2021.02.002

Williams JM, Adewunmi A, Schek RM, et al., 2005, Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials, 26(23): 4817–4827. http://doi.org/10.1016/j.biomaterials.2004.11.057

Ciocca L, Donati D, Fantini M, et al., 2013, CAD-CAM-generated hydroxyapatite scaffold to replace the mandibular condyle in sheep: Preliminary results. J Biomater Appl, 28(2): 207–218. http://doi.org/10.1177/0885328212443296

Schek R, Taboas J, Hollister S, et al., 2005, Tissue engineering osteochondral implants for temporomandibular joint repair. Orthod Craniofac Res, 8(4): 313–319. http://doi. org/ht tps://doi. org/10.1111/j.1601- 6343.2005.00354.x

Wang F, Hu Y, He D, et al., 2017, Regeneration of subcutaneous tissue-engineered mandibular condyle in nude mice. J Craniomaxillofac Surg, 45(6): 855–861. http://doi.org/10.1016/j.jcms.2017.03.017

Helgeland E, Rashad A, Campodoni E, et al., 2021, Dual-crosslinked 3D printed gelatin scaffolds with potential for temporomandibular joint cartilage regeneration. Biomed Mater, 16(3): 035026. http://doi.org/10.1088/1748-605X/abe6d9

Helgeland E, Mohamed-Ahmed S, Shanbhag S, et al., 2021, 3D printed gelatin-genipin scaffolds for temporomandibular joint cartilage regeneration. Biomed Phys Eng Express, 7(5): 055025. http://doi.org/10.1088/2057-1976/ac1e68

Donahue RP, Hu JC, Athanasiou KA, 2019, Remaining hurdles for tissue-engineering the temporomandibular joint disc. Trends Mol Med, 25(3): 241–256. http://doi.org/10.1016/j.molmed.2018.12.007

Murphy SV, De Coppi P, Atala A, 2020, Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng, 4(4): 370–380. http://doi.org/10.1038/s41551-019-0471-7

Chuong R, Piper MA, 1992, Cerebrospinal fluid leak associated with proplast implant removal from the temporomandibular joint. Oral Surg Oral Med Oral Pathol, 74(4): 422–425. http://doi.org/10.1016/0030-4220(92)90286-y

Bielajew BJ, Donahue RP, Espinosa MG, et al., 2021, Knee orthopedics as a template for the temporomandibular joint. Cell Rep Med, 2(5): 100241. http://doi.org/10.1016/j.xcrm.2021.100241

She Y, Tang S, Zhu Z, et al., 2022, Comparison of temporomandibular joint disc, meniscus, and intervertebral disc in fundamental characteristics and tissue engineering. J Biomed Mater Res B Appl Biomater, 111(3): 717–729. http://doi.org/10.1002/jbm.b.35178

Malekpour A, Chen X, 2022, Printability and cell viability in extrusion-based bioprinting from experimental, computational, and machine learning views. J Funct Biomater, 13(2): 40. http://doi.org/10.3390/jfb13020040

Conev A, Litsa EE, Perez MR, et al., 2020, Machine learning-guided three-dimensional printing of tissue engineering scaffolds. Tissue Eng Part A, 26(23–24): 1359–1368. http://doi.org/10.1089/ten.TEA.2020.0191

Ruberu K, Senadeera M, Rana S, et al., 2021, Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing. Appl Mater Today, 22: 100914. http://doi.org/10.1016/j.apmt.2020.100914

Reina-Romo E, Mandal S, Amorim P, et al., 2021, Towards the experimentally-informed in silico nozzle design optimization for extrusion-based bioprinting of shear-thinning hydrogels. Front Bioeng Biotechnol, 9: 701778. http://doi.org/10.3389/fbioe.2021.701778

Caballero Aguilar LM, Silva SM, Moulton SE, 2019, Growth factor delivery: Defining the next generation platforms for tissue engineering. J Control Release, 306: 40–58. http://doi.org/10.1016/j.jconrel.2019.05.028

 

Zhang M, Hu W, Cai C, et al., 2022, Advanced application of stimuli-responsive drug delivery system for inflammatory arthritis treatment. Materials Today Bio, 14: 100223. http://doi.org/10.1016/j.mtbio.2022.100223

Azagarsamy MA, Anseth KS, 2013, Wavelength-controlled photocleavage for the orthogonal and sequential release of multiple proteins. Angew Chem Int Ed Engl, 52(51): 13803–13807. http://doi.org/10.1002/anie.201308174

 

Chen P, Zheng L, Wang Y, et al., 2019, Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics, 9(9): 2439–2459. http://doi.org/10.7150/thno.31017

Ng CY, Chai JY, Foo JB, et al., 2021, Potential of exosomes as cell-free therapy in articular cartilage regeneration: A review. Int J Nanomed, 16: 6749–6781. http://doi.org/10.2147/ijn.S327059

Feng ZY, Zhang QY, Tan J, et al., 2022, Techniques for increasing the yield of stem cell-derived exosomes: What factors may be involved? Sci China Life Sci, 65(7): 1325–1341. http://doi.org/10.1007/s11427-021-1997-2

Yuan W, Wu Y, Huang M, et al., 2022, A new frontier in temporomandibular joint osteoarthritis treatment: Exosome-based therapeutic strategy. Front Bioeng Biotechnol, 10: 1074536. http://doi.org/10.3389/fbioe.2022.1074536

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing