AccScience Publishing / IJB / Volume 9 / Issue 2 / DOI: 10.18063/ijb.v9i2.667
Cite this article
69
Download
719
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Methodology for characterizing the printability of hydrogels

Jesús M. Rodríguez-Rego1* Laura Mendoza-Cerezo1 Antonio Macías-García2 Juan P. Carrasco-Amador1 Alfonso C. Marcos-Romero1
Show Less
1 Department of Graphic Expression, School of Industrial Engineering, University of Extremadura, Avenida de Elvas, s/n. 06006-Badajoz, Spain
2 Department of Mechanical, Energy and Materials Engineering, School of Industrial Engineering, University of Extremadura, Avenida de Elvas, s/n. 06006-Badajoz, Spain
Submitted: 6 September 2022 | Accepted: 12 October 2022 | Published: 10 January 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Currently, the characterization techniques for hydrogels used in bioprinting are extensive, and they could provide data on the physical, chemical, and mechanical properties of hydrogels. While characterizing the hydrogels, the analysis of their printing properties is of great importance in the determination of their potential for bioprinting. The study of printing properties provides data on their capacity to reproduce biomimetic structures and maintain their integrity after the process, as it also relates them to the possible cell viability after the generation of the structures. Current hydrogel characterization techniques require expensive measuring instrument that is not readily available in many research groups. Therefore, it would be interesting to propose a methodology to characterize and compare the printability of different hydrogels in a fast, simple, reliable, and inexpensive way. The aim of this work is to propose a methodology for extrusion-based bioprinters that allows determining the printability of hydrogels that are going to be loaded with cells, by analyzing cell viability with the sessile drop method, molecular cohesion with the filament collapse test, adequate gelation with the quantitative evaluation of the gelation state, and printing precision with the printing grid test. The data obtained after performing this work allow the comparison of different hydrogels or different concentrations of the same hydrogel to determine which one has the most favorable properties to carry out bioprinting studies.

Keywords
Hydrogel
Bioprinting
Printability
Biofabrication window
Characterization
References

1. Derby B, 2012, Printing and prototyping of tissues and scaffolds. Science, 338(6109):921–926. https://doi.org/10.1126/SCIENCE.1226340
 
2. Reddi AH, 2004, Morphogenesis and tissue engineering of bone and cartilage: Inductive signals, stem cells, and biomimetic biomaterials. Tissue Eng, 6(4):351–359. https://doi.org/10.1089/107632700418074
 
3. Ghorbani F , Li D , Zhong Z, et al., 2021, Bioprinting a cell-laden matrix for bone regeneration: A focused review. J Appl Polym Sci, 138(8):49888. https://doi.org/10.1002/APP.49888 

4. Li X, Cai J, Lois K, et al., 2022, Current trends in biomedical hydrogels: From traditional crosslinking to plasma-assisted synthesis. Polymers, 14(13):2560. https://doi.org/10.3390/POLYM14132560 

5. Naghieh S, Chen X, 2021, Printability—A key issue in extrusion-based bioprinting. J Pharm Anal, 11(5):564–579. https://doi.org/10.1016/J.JPHA.2021.02.001 

6. Cha J, Kim P, 2017, Biomimetic strategies for the glioblastoma microenvironment. Front Mater, 4:45. https://doi.org/10.3389/FMATS.2017.00045/XML/NLM 

7. Shokrani H, Shokrani A, Saeb MR, 2022, Methods for biomaterials printing: A short review and perspective. Methods, 206:1–7. https://doi.org/10.1016/J.YMETH.2022.07.016 

8. Jia L , Hua Y, Zeng J, et al., 2022, Bioprinting and regeneration of auricular cartilage using a bioactive bioink based on microporous photocrosslinkable acellular cartilage matrix. Bioact Mater, 16:66–81. https://doi.org/10.1016/J.BIOACTMAT.2022.02.032

9. Fatimi A, Okoro OV, Podstawczyk D, et al., 2022, Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: A review. Gels, 8(3):179. https://doi.org/10.3390/GELS8030179 

10. Bai X, Gao M, Syed S, et al., 2018, Bioactive hydrogels for bone regeneration. Bioact Mater, 3(4):401–417. https://doi.org/10.1016/J.BIOACTMAT.2018.05.006 

11. Cheng Y, Shi X, Jiang X, et al., 2020, Printability of a cellulose derivative for extrusion-based 3D printing: The application on a biodegradable support material. Front Mater, 7:86. https://doi.org/10.3389/FMATS.2020.00086/BIBTEX 

12. Guan X , Avci-Adali M, Alarçin E , et al., 2017, Development of hydrogels for regenerative engineering. Biotechnol J, 12(5). https://doi.org/10.1002/BIOT.201600394 

13. Klak M , Kowalska P, Dobrzański T, et al., 2021, Bionic organs: Shear forces reduce pancreatic islet and mammalian cell viability during the process of 3D bioprinting. Micromachines, 12(3):304. https://doi.org/10.3390/MI12030304 

14. Mancha E , Gómez JC, López E, et al., 2020, Hydrogels for bioprinting: A systematic review of hydrogels synthesis, bioprinting parameters, and bioprinted structures behavior. Front Bioeng Biotechnol, 8:776. https://doi.org/10.3389/FBIOE.2020.00776/BIBTEX 

15. Russo E, Qu X, Chwalik-Pilszyk G, et al., 2022, Influence of selected ophthalmic fluids on the wettability and hydration of hydrogel and silicone hydrogel contact lenses—In vitro study. Materials, 15(3):930. https://doi.org/10.3390/MA15030930 

16. González Yeguas L, Estudio de la bioimpresión de hidrogeles aplicados a la generación de piel artificial mediante impresión laser BA-LIFT [Study of the bioprinting of hydrogels applied to the generation of artificial skin by BA-LIFT laser printing]. Universidad Politécnica de Madrid, Madrid, 2020. [Article in Spanish] 

17. Castillo HE, Carballo SM, Alfaro ME, et al., 2021, Hidrogeles híbridos de quitosano y polietilenglicol (quit:peg) para potenciales aplicaciones biomédicas [Hydrogels chitosan and polyethylene glycol (quit:peg) hybrids for potential applications biomedical sciences]. Rev Iberoam Polim, 22(2):97–112. [Article in Spanish] 

18. Nakagawa M, Teraoka F, Fujimoto S, et al., 2006, Improvement of cell adhesion on poly(L-lactide) by atmospheric plasma treatment. J Biomed Mater Res A, 77(1):112–118. https://doi.org/10.1002/JBM.A.30521 

19. Rodríguez Rego JM, 2021, Estudio de la bioimpresión 3d con aplicación en odontología a partir de una nueva metodología [Study of 3D Bioprinting With Application in Dentistry Based on a New Methodology]. Universidad de Extremadura, Badajoz. [Article in Spanish]

20. Omrani MM , Kumar H, Mohamed MGA, et al., 2020, Polyether ether ketone surface modification with plasma and gelatin for enhancing cell attachment. J Biomed Mater Res B Appl Biomater, 109(5):622–629. https://doi.org/10.1002/JBM.B.34726 

21. Morello MC, 2019, Estudio del composite hidroxiapatita– acrílico como material de bioimpresión 3D [Study of the Hydroxyapatite-Acrylic Composite as a 3D Bioprinting Material]. Universidad Nacional de Córdoba, Córdoba. [Article in Spanish] 

22. Gillispie GJ, Han A, Uzun-Per M, et al., 2020, The influence of printing parameters and cell density on bioink printing outcomes. Tissue Eng Part A, 26(23–24):1349–1358. https://doi.org/10.1089/TEN.TEA.2020.0210 

23. He Y, Yang F, Zhao H, et al., 2016, Research on the printability of hydrogels in 3D bioprinting. Sci Rep, 6(1):1–13. https://doi.org/10.1038/srep29977 

24. Ouyang L, Yao R, Zhao Y, et al., 2016, Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication, 8(3). https://doi.org/10.1088/1758-5090/8/3/035020 

25. Kyle S, Jessop ZM, Al-Sabah A, et al., 2017, Printability of candidate biomaterials for extrusion based 3D printing: State-of-the-art. Adv Healthc Mater, 6(16). https://doi.org/10.1002/ADHM.201700264 

26. Habib MA, Khoda B, 2018, Development of clay based novel bio-ink for 3D bio-printing process. Procedia Manuf, 26:846–856. https://doi.org/10.1016/J.PROMFG.2018.07.105 

27. García Villegas C, Vidarte Pastrana MM, 2011, Informe 1. Estado del arte de la bioimpresión 3D [Report 1. State of the Art of 3D Bioprinting]. Bogotá. [Article in Spanish] 

28. Yang I, Salas F, Pomares G, et al., 2018, Bioimpresión de órganos y tejidos en tercera dimensión: técnicas, aplicaciones y limitaciones [3D organ and tissue bioprinting: Techniques, applications and limitations]. Rev Tecnol Marcha, 31(3):41–51. https://doi.org/10.18845/TM.V31I3.3900. [Article in Spanish] 

29. César ÁA, Olivos A, Landa C, et al., 2018, Use and application of 3D printing and bioimpression technology in medicine. Rev Facult Med, 61:9.
 
30. Therriault D, White SR, Lewis JA, 2007, Rheological behavior of fugitive organic inks for direct-write assembly. Appl Rheol, 17:10112-1–10112-8. 

31. Billiet T, Gevaert E, de Schryver T, et al., 2014, The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, 35(1):49–62. https://doi.org/10.1016/J.BIOMATERIALS.2013.09.078
 
32. Gómez JC, Galván V, Patrocinio D, et al., 2021, Improving cell viability and velocity in μ-extrusion bioprinting with a novel pre-incubator bioprinter and a standard FDM 3D printing nozzle. Materials, 14(11):3100. https://doi.org/10.3390/MA14113100 

33. Matamoros M, et al., 2020, Temperature and humidity PID controller for a bioprinter atmospheric enclosure system. Micromachines, 11(11):999. https://doi.org/10.3390/MI11110999 

34. Agujetas R, Marcos AC, Fernández-Vigo JI, et al., 2019, Influence of an iris-fixed phakic intraocular lens on the transport of nutrients by the aqueous humor. Biomech Model Mechanobiol, 18(2):491–502. https://doi.org/10.1007/S10237-018-1099-3/TABLES/5 

35. Matamoros M, Gómez JC, Sánchez A, et al., 2021, Development of a device for the control of variables in the bioprinting of hydrogels. 25th International Congress on Project Management and Engineering, 13.

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing