AccScience Publishing / IJB / Volume 9 / Issue 2 / DOI: 10.18063/ijb.v9i2.665
Cite this article
68
Download
1125
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Three-dimensional bioprinting of functional β-islet-like constructs

Shahram Parvaneh1,2,3,4 Lajos Kemény1,3,5 Ameneh Ghaffarinia5 Reza Yarani6,7 Zoltán Veréb1,3,4*
Show Less
1 Regenerative Medicine and Cellular Pharmacology Laboratory (HECRIN), Department of Dermatology and Allergology, University of Szeged, Koranyi fasor 6., H 6720, Szeged, Hungary
2 Doctoral School of Clinical Medicine, University of Szeged, Tisza Lajos krt. 109, H 6725 Szeged, Hungary
3 Research Institute of Translational Biomedicine, Department of Dermatology and Allergology, University of Szeged, Koranyi fasor 6., H 6720, Szeged, Hungary
4 Interdisciplinary Research Development and Innovation, Center of Excellence, University of Szeged, Dugonics tér 13., H 6720 Szeged, Hungary
5 HCEMM-SZTE Skin Research Group, University of Szeged, Koranyi fasor 6., H 6720, Szeged, Hungary
6 Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730 Herlev, Gentofte, Denmark
7 Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
Submitted: 15 July 2022 | Accepted: 26 September 2022 | Published: 9 January 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Diabetes is an autoimmune disease that ensues when the pancreas does not deliver adequate insulin or when the body cannot react to the existing insulin. Type 1 diabetes is an autoimmune disease defined by continuous high blood sugar levels and insulin deficiency due to β-cell destruction in the islets of Langerhans (pancreatic islets). Long-term complications, such as vascular degeneration, blindness, and renal failure, result from periodic glucose-level fluctuations following exogenous insulin therapy. Nevertheless, the shortage of organ donors and the lifelong dependency on immunosuppressive drugs limit the transplantation of the entire pancreas or pancreas islet, which is the therapy for this disease. Although encapsulating pancreatic islets using multiple hydrogels creates a semi-privileged environment to prevent immune rejection, hypoxia that occurs in the core of the capsules is the main hindrance that should be solved. Bioprinting technology is an innovative process in advanced tissue engineering that allows the arranging of a wide array of cell types, biomaterials, and bioactive factors as a bioink to simulate the native tissue environment for fabricating clinically applicable bioartificial pancreatic islet tissue. Multipotent stem cells have the potential to be a possible solution for donor scarcity and can be a reliable source for generating autograft and allograft functional β-cells or even pancreatic islet-like tissue. The use of supporting cells, such as endothelial cells, regulatory T cells, and mesenchymal stem cells, in the bioprinting of pancreatic islet-like construct could enhance vasculogenesis and regulate immune activity. Moreover, scaffolds bioprinted using biomaterials that can release oxygen postprinting or enhance angiogenesis could increase the function of β-cells and the survival of pancreatic islets, which could represent a promising avenue.

Keywords
Mesenchymal stem cells
Hydrogels
Bioprinting
Islets of Langerhans
References

1. Kim SK, MacDonald RJ, 2002, Signaling and transcriptional control of pancreatic organogenesis. Curr Opin Genet Dev, 12: 540–547. https://doi:10.1016/s0959-437x(02)00338-6 

2. Piper K, Brickwood S, Turnpenny LW, et al., 2004, Beta cell differentiation during early human pancreas development. J Endocrinol, 181: 11–23. https://doi:10.1677/joe.0.1810011 

3. Kulkarni RN, 2004, The islet beta-cell. Int J Biochem Cell Biol, 36: 365–371. https://doi:10.1016/j.biocel.2003.08.010 

4. Bosco D, Armanet M, Morel P, et al., 2010, Unique arrangement of α- and β-cells in human islets of Langerhans. Diabetes, 59: 1202–1210. https://doi:10.2337/db09-1177 

5. Ionescu-Tirgoviste C, Gagniuc PA, et al., 2015, A 3D map of the islet routes throughout the healthy human pancreas. Sci Rep, 5: 14634. https://doi:10.1038/srep14634 

6. Henquin JC, 2000, Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes, 49: 1751–1760. https://doi:10.2337/diabetes.49.11.1751
 
7. Maechler P, Kennedy ED, Pozzan T, et al., 1997, Mitochondrial activation directly triggers the exocytosis of insulin in permeabilized pancreatic beta-cells. EMBO J, 16: 3833–3841. https://doi:10.1093/emboj/16.13.3833 

8. Townsend SE, Gannon M, 2019, Extracellular matrix– associated factors play critical roles in regulating pancreatic β-cell proliferation and survival. Endocrinology, 160: 1885–1894. https://doi: 10.1210/en.2019-00206 

9. Fishman MP, Melton DA, 2002, Pancreatic lineage analysis using a retroviral vector in embryonic mice demonstrates a common progenitor for endocrine and exocrine cells. Int J Dev Biol, 46: 201–207. https://doi:10.1387/ijdb.011552

10. Rojas A, Khoo A, Tejedo JR, et al., 2010, Islet cell development. Adv Exp Med Biol, 654: 59–75. https://doi:10.1007/978-90-481-3271-3_4 

11. Bouwens L, Lu WG, De Krijger R. 1997, Proliferation and differentiation in the human fetal endocrine pancreas. Diabetologia, 40: 398–404. https://doi:10.1007/s001250050693 

12. Gu G, Brown JR, Melton DA, 2003, Direct lineage tracing reveals the ontogeny of pancreatic cell fates during mouse embryogenesis. Mech Dev, 120: 35–43. https://doi:10.1016/s0925-4773(02)00330-1
 
13. Gu G, Dubauskaite J, Melton DA, 2002, Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development, 129: 2447–2457. https://doi:10.1242/dev.129.10.2447
 
14. Bonner-Weir S, 2000, Perspective: Postnatal pancreatic beta cell growth. Endocrinology, 141: 1926–1929. https://doi:10.1210/endo.141.6.7567 

15. Xu X, D’Hoker J, Stangé G, et al., 2008, Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell, 132: 197–207. https://doi:10.1016/j.cell.2007.12.015 

16. Seymour PA, Sander M, 2011, Historical perspective: Beginnings of the beta-cell: current perspectives in beta-cell development. Diabetes, 60: 364–376. https://doi:10.2337/db10-1068 

17. Kassem SA, Ariel I, Thornton PS, et al., 2000, Beta-cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy. Diabetes, 49: 1325–1333. https://doi:10.2337/diabetes.49.8.1325 

18. Meier JJ, Butler AE, Saisho Y, et al., 2008, Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes, 57: 1584–1594. https://doi:10.2337/db07-1369

19. Gradwohl G, Dierich A, LeMeur M, et al., 2000, Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A, 97: 1607–1611. https://doi:10.1073/pnas.97.4.1607
 
20. Johansson KA, Dursun U, Jordan N, et al., 2007, Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev Cell, 12: 457–465. https://doi:10.1016/j.devcel.2007.02.010

21. Habener JF, Stanojevic V, 2012, α-cell role in β-cell generation and regeneration. Islets, 4: 188–198. https://doi:10.4161/isl.20500 

22. Willcox A, Richardson SJ, Bone AJ, et al., 2010, Evidence of increased islet cell proliferation in patients with recent-onset type 1 diabetes. Diabetologia, 53: 2020–2028. https://doi:10.1007/s00125-010-1817-6 

23. Nelson CM, Bissell MJ, 2006, Of Extracellular Matrix, Scaffolds, and Signaling: Tissue Architecture Regulates Development, Homeostasis, and Cancer. Annu Rev Cell Dev Biol, 22: 287–309. https://doi:10.1146/annurev.cellbio.22.010305.104315 

24. Beattie GM, Montgomery AMP, Lopez AD, et al., 2002, A novel approach to increase human islet cell mass while preserving β-cell function. Diabetes, 51: 3435–3439. https://doi:10.2337/diabetes.51.12.3435 

25. Gordon MK, Hahn RA, 2010, Collagens. Cell Tissue Res, 339: 247–257. https://doi:10.1007/s00441-009-0844-4 

26. Kaido T, Yebra M, Cirulli V, et al., 2004, Regulation of human β-cell adhesion, motility, and insulin secretion by collagen iv and its receptor α1β1. J Biol Chem, 17: 53762–53769. https://doi:10.1074/jbc.m411202200 

27. Nikolova G, Jabs N, Konstantinova I, et al., 2006, The vascular basement membrane: A niche for insulin gene expression and β cell proliferation. Dev Cell, 10: 397–405. https://doi:10.1016/j.devcel.2006.01.015 

28. Wang RN, Rosenberg L, 1999, Maintenance of beta-cell function and survival following islet isolation requires re-establishment of the islet-matrix relationship. J Endocrinol, 163: 181–190. https://doi:10.1677/joe.0.1630181 

29. Weber LM, Hayda KN, Anseth KS, 2008, Cell–matrix interactions improve β-cell survival and insulin secretion in three-dimensional culture. Tissue Eng Part A, 14: 1959–1968. https://doi:10.1089/ten.tea.2007.0238 

30. Stendahl JC, Kaufman DB, Stupp SI, 2009, Extracellular matrix in pancreatic islets: relevance to scaffold design and transplantation. Cell Transplant, 18: 1–12. https://doi:10.3727/096368909788237195 

31. Banerjee M, Virtanen I, Palgi J, et al., 2012, Proliferation and plasticity of human beta cells on physiologically occurring laminin isoforms. Mol Cell Endocrinol, 355: 78–86. https://doi:10.1016/j.mce.2012.01.020 

32. Pinkse GGM, Bouwman WP, Jiawan-Lalai R, et al., 2006, Integrin signaling via rgd peptides and anti-beta1 antibodies confers resistance to apoptosis in islets of langerhans. Diabetes, 55: 312–317.https://doi:10.2337/diabetes.55.02.06.db04-0195 

33. Ziolkowski AF, Popp SK, Freeman C, et al., 2012, Heparan sulfate and heparanase play key roles in mouse β cell survival and autoimmune diabetes. J Clin Invest, 122: 132–141. https://doi:10.1172/jci46177 

34. Takahashi I, Noguchi N, Nata K, et al., 2009, Important role of heparan sulfate in postnatal islet growth and insulin secretion. Biochem Biophys Res Commun, 22: 113–118. https://doi:10.1016/j.bbrc.2009.03.140 

35. Hull RL, Zraika S, Udayasankar J, et al., 2007, Inhibition of glycosaminoglycan synthesis and protein glycosylation with WAS-406 and azaserine result in reduced islet amyloid formation in vitro. Am J Physiol Cell Physiol, 293: C1586– C1593. https://doi:10.1152/ajpcell.00208.2007
 
36. Potter KJ, Werner I, Denroche HC, et al., 2015, Amyloid formation in human islets is enhanced by heparin and inhibited by heparinase. Am J Transplant, 15: 1519–1530. https://doi:10.1111/ajt.13134 

37. Diaferia GR, Jimenez-Caliani AJ, Ranjitkar P, et al., 2013, β1 integrin is a crucial regulator of pancreatic β-cell expansion. Development, 140: 3360–3372. https://doi:10.1242/dev.098533 

38. Peart J, Li J, Lee H, et al., 2017, Critical role of β1 integrin in postnatal beta-cell function and expansion. Oncotarget, 18: 62939–62952. https://doi:10.18632/oncotarget.17969 

39. Lankisch PG, Apte M, Banks PA, 2015, Acute pancreatitis. The Lancet, 396: 85–96. https://doi:10.1016/s0140-6736(14)60649-8 

40. Siegel RL, Miller KD, Fuchs HE, et al., 2022, Cancer statistics, 2022. CA Cancer J Clin, 72: 7–33. https://doi:10.3322/caac.21708 

41. Eriksson B, Oberg K, 2000, Neuroendocrine tumours of the pancreas. Br J Surg, 87: 129–131. https://doi:10.1046/j.1365-2168.2000.01277.x 

42. Burns WR, Edil BH, 2012, Neuroendocrine pancreatic tumors: guidelines for management and update. Curr Treat Options Oncol, 13: 24–34. https://doi:10.1007/s11864-011-0172-2 

43. Boitard C, Efendic S, Ferrannini E, et al., 2005, A tale of two cousins: Type 1 and type 2 diabetes. Diabetes. 54: S1–S3. https://doi:10.2337/diabetes.54.suppl_2.s1 

44. Todd JA, 2010, Etiology of type 1 diabetes. Immunity, 39: 457–467. https://doi:10.1016/j.immuni.2010.04.001

45. Rogner UC, Boitard C, Morin J, et al., 2001, Three loci on mouse chromosome 6 influence onset and final incidence of type I diabetes in NOD.C3H congenic strains. Genomics, 74: 163–171. https://doi:10.1006/geno.2001.6508 

46. Itoh N, Hanafusa T, Miyazaki A, et al., 1993, Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. J Clin Invest, 92: 2313–2322. https://doi:10.1172/JCI116835 

47. Willcox A, Richardson SJ, Bone AJ, et al., 2009, Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol, 155: 173–181. https://doi:10.1111/j.1365-2249.2008.03860.x 

48. James Shapiro AM, Shaw JAM, 2007, Islet Transplantation and Beta Cell Replacement Therapy. CRC Press, Boca Raton. Available: https://play.google.com/store/books/details?id= jwdiP1lrQd8C
 
49. Speight J, Reaney MD, Woodcock AJ, et al., 2010, Patient-reported outcomes following islet cell or pancreas transplantation (alone or after kidney) in Type 1 diabetes: A systematic review. Diabet Med, 27: 812–822. https://doi:10.1111/j.1464-5491.2010.03029.x 

50. Orlando G, Piemonti L, Ricordi C, et al., 2019, Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas: Volume 1. Academic Press, Cambridge, Massachusetts. https://play.google.com/store/books/details?id= jFK9DwAAQBAJ 

51. Desai T, Shea LD, 2017, Advances in islet encapsulation technologies. Nat Rev Drug Discov, 16: 338–350. https://doi:10.1038/nrd.2016.232 

52. Kogawa R, Nakamura K, Mochizuki Y, 2020, A new islet transplantation method combining mesenchymal stem cells with recombinant peptide pieces, microencapsulated islets, and mesh bags. Biomedicines, 8: 299. https://doi:10.3390/biomedicines8090299 

53. Dave SD, Trivedi HL, Chooramani SG, et al., 2013, Management of type 1 diabetes mellitus using in vitro autologous adipose tissue trans-differentiated insulin-making cells. BMJ Case Rep, 26: bcr2013200226–bcr2013200226. https://doi:10.1136/bcr-2013-200226 

54. Thomson JA, 1998, Embryonic stem cell lines derived from human blastocysts. Science, 282:1145–1147. https://doi:10.1126/science.282.5391.1145 

55. Ilic D, Devito L, Miere C, et al., 2015, Human embryonic and induced pluripotent stem cells in clinical trials: Table 1. Br Med Bull, 116: ldv045. https://doi:10.1093/bmb/ldv045 

56. Schulz TC, 2015, Concise review: Manufacturing of pancreatic endoderm cells for clinical trials in type 1 diabetes. Stem Cells Transl Med, 4: 927–931. https://doi:10.5966/sctm.2015-0058 

57. Takahashi K, Tanabe K, Ohnuki M, et al., 2007, Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 130: 861–872. https://doi:10.1016/j.cell.2007.11.019 

58. Yu J, Vodyanik MA, Smuga-Otto K, et al., 2007, Induced pluripotent stem cell lines derived from human somatic cells. Science, 318: 1917–1920. https://doi:10.1126/science.1151526

59. Moroni L, Boland T, Burdick JA, et al., 2018, Biofabrication: A guide to technology and terminology. Trends Biotechnol, 36: 384–402. https://doi:10.1016/j.tibtech.2017.10.015 

60. Ng WL, Chua CK, Shen Y-F, 2019, Print me an organ! Why we are not there yet. Prog Polym Sci, 97: 101145. https://doi:10.1016/j.progpolymsci.2019.101145
 
61. He J, Mao M, Li X, et al., 2021, Bioprinting of 3D functional tissue constructs. Int J Bioprint, 7: 395. https://doi:10.18063/ijb.v7i3.395 

62. Ashammakhi N, Ahadian S, Xu C, et al., 2019, Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. 1: 100008. https://doi:10.1016/j.mtbio.2019.100008
 
63. Mironov V, Trusk T, Kasyanov V, et al., 2009, Biofabrication: A 21st century manufacturing paradigm. Biofabrication, 1: 022001. https://doi:10.1088/1758-5082/1/2/022001 

64. Kang KH, Hockaday LA, Butcher JT, 2013, Quantitative optimization of solid freeform deposition of aqueous hydrogels. Biofabrication, 5: 035001. https://doi:10.1088/1758-5082/5/3/035001
 
65. Michael S, Sorg H, Peck C-T, et al., 2013, Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One, 8: e57741. https://doi:10.1371/journal.pone.0057741 

66. Lee JM, Sing SL, Zhou M, et al., 2018, 3D bioprinting processes: A perspective on classification and terminology. Int J Bioprint, 4: 151. https://doi:10.18063/IJB.v4i2.151

67. Yap YL, Wang C, Sing SL, et al., 2017, Material jetting additive manufacturing: An experimental study using designed metrological benchmarks. Precis Eng, 50: 275–285.https://doi:10.1016/j.precisioneng.2017.05.015 

68. Cui H, Nowicki M, Fisher JP, et al., 2017, 3D bioprinting for organ regeneration. Adv Healthc Mater, 6:e1601118. https://doi:10.1002/adhm.201601118 

69. Ng WL, Huang X, Shkolnikov V, et al., 2022, Controlling droplet impact velocity and droplet volume: key factors to achieving high cell viability in sub-nanoliter droplet-based bioprinting. Int J Bioprint, 8: 424. https://doi:10.18063/ijb.v8i1.424 

70. Xu C, Zhang M, Huang Y, et al., 2014, Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink. Langmuir, 30: 9130–9138. https://doi:10.1021/la501430x 

71. Xu T, Jin J, Gregory C, et al., 2005, Inkjet printing of viable mammalian cells. Biomaterials, 26: 93–99. https://doi:10.1016/j.biomaterials.2004.04.011
 
72. Demirci U, Montesano G, 2007, Single cell epitaxy by acoustic picolitre droplets. Lab Chip, 7: 1139–1145. https://doi:10.1039/b704965j
 
73. Guillemot F, Guillotin B, Fontaine A, et al., 2011, Laser-assisted bioprinting to deal with tissue complexity in regenerative medicine. MRS Bull, 36: 1015–1019. https://doi:10.1557/mrs.2011.272
 
74. Hakobyan D, Médina C, Dusserre N, et al., 2020, Laser-assisted 3D bioprinting of exocrine pancreas spheroid models for cancer initiation study. Biofabrication, 12: 035001. https://doi:10.1088/1758-5090/ab7cb8 

75. Turksen, K. (eds), 2015, 3D Bioprinting and 3D imaging for stem cell engineering, in Bioprinting in Regenerative Medicine: Stem Cell Biology and Regenerative Medicine, Springer International Publishing, Cham, 33–66. https://doi:10.1007/978-3-319-21386-6_2 

76. Ng WL, Lee JM, Zhou M, et al., 2020, Vat polymerization-based bioprinting-process, materials, applications and regulatory challenges. Biofabrication, 12: 022001. https://doi:10.1088/1758-5090/ab6034 

77. Li W, Mille LS, Robledo JA, et al., 2020, Recent advances in formulating and processing biomaterial inks for vat polymerization-based 3D printing. Adv Healthc Mater, 9: e2000156. https://doi:10.1002/adhm.202000156 

78. Hull CW, 1986, Apparatus for production of three-dimensional objects by stereolithography. US Patent. 4575330. https://patentimages.storage.googleapis.com/5c/a0/27/ e49642dab99cf6/US4575330.pdf 

79. Wang Z, Abdulla R, Parker B, et al., 2015, A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication, 7: 045009.https://doi:10.1088/1758-5090/7/4/045009 

80. Yu S-L, Lee S-K, 2017, Ultraviolet radiation: DNA damage, repair, and human disorders. Mol Cell Toxicol, 13: 21–28. https://doi:10.1007/s13273-017-0002-0 

81. Jiang T, Munguia-Lopez JG, Flores-Torres S, et al., 2019, Extrusion bioprinting of soft materials: An emerging technique for biological model fabrication. Appl Phys Rev, 6: 011310. https://doi:10.1063/1.5059393 

82. Billiet T, Gevaert E, De Schryver T, et al., 2014, The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, 35: 49–62. https://doi:10.1016/j.biomaterials.2013.09.078 

83. Ahn S, Lee H, Kim G, 2013, Functional cell-laden alginate scaffolds consisting of core/shell struts for tissue regeneration. Carbohydr Polym, 98: 936–942. https://doi:10.1016/j.carbpol.2013.07.008 

84. Zhuang P, Ng WL, An J, et al., 2019, Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications. PLoS One, 14: e0216776. https://doi:10.1371/journal.pone.0216776 

85. Chia HN, Wu BM, 2015, Recent advances in 3D printing of biomaterials. J Biol Eng, 9: 4. https://doi:10.1186/s13036-015-0001-4 

86. Hospodiuk M, Dey M, Sosnoski D, et al., 2017, The bioink: A comprehensive review on bioprintable materials. Biotechnol Adv, 35: 217–239. https://doi:10.1016/j.biotechadv.2016.12.006 

87. Chan BP, Leong KW, 2008, Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J, 467–479. https://doi:10.1007/s00586-008-0745-3 

88. Asghari F, Samiei M, Adibkia K, et al., 2017, Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif Cells Nanomed Biotechnol, 45: 185–192. https://doi:10.3109/21691401.2016.1146731 

89. Liang J-P, Accolla RP, Soundirarajan M, et al., 2021, Engineering a macroporous oxygen-generating scaffold for enhancing islet cell transplantation within an extrahepatic site. Acta Biomater, 130: 268–280. https://doi:10.1016/j.actbio.2021.05.028 

90. Pedraza E, Coronel MM, Fraker CA, et al., 2012, Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proc Natl Acad Sci U S A, 109: 4245–4250. https://doi:10.1073/pnas.1113560109 

91. Coronel MM, Liang J-P, Li Y, et al., 2019, Oxygen generating biomaterial improves the function and efficacy of beta cells within a macroencapsulation device. Biomaterials, 210: 1–11.  https://doi:10.1016/j.biomaterials.2019.04.017 

92. Khademhosseini A, Langer R, 2016, A decade of progress in tissue engineering. Nat Protoc, 11: 1775–1781. https://doi:10.1038/nprot.2016.123 

93. Olsen BD, Kornfield JA, Tirrell DA, 2010, Yielding behavior in injectable hydrogels from telechelic proteins. Macromolecules, 43: 9094–9099. https://doi:10.1021/ma101434a 

94. Appel EA, del Barrio J, Loh XJ, et al., 2012, Supramolecular polymeric hydrogels. Chem Soc Rev, 18: 6195. https://doi:10.1039/c2cs35264h 

95. Appel EA, Loh XJ, Jones ST, et al., 2012, Sustained release of proteins from high water content supramolecular polymer hydrogels. Biomaterials, 33: 4646–4652. https://doi:10.1016/j.biomaterials.2012.02.030 

96. Majee SB (ed.), 2016, An introduction to hydrogels and some recent applications, in Emerging Concepts in Analysis and Applications of Hydrogels, IntechOpen, Rijeka. https://doi:10.5772/64301 

97. Miao S, Castro N, Nowicki M, et al., 2017, 4D printing of polymeric materials for tissue and organ regeneration. Mater Today, 20: 577–591. https://doi:10.1016/j.mattod.2017.06.005 

98. Malda J, Visser J, Melchels FP, et al., 2013, 25th anniversary article: Engineering hydrogels for biofabrication. Adv Mater, 25: 5011–5028. https://doi:10.1002/adma.201302042 

99. Drury JL, Mooney DJ, 2003, Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials, 24: 4337–4351. https://doi:10.1016/s0142-9612(03)00340-5 

100. Kopeček J, Yang J, 2007, Hydrogels as smart biomaterials. Polym Int, 56: 1078–1098. https://doi:10.1002/pi.2253 

101. Bal T, Nazli C, Okcu A, et al.,2017, Mesenchymal stem cells and ligand incorporation in biomimetic poly(ethylene glycol) hydrogels significantly improve insulin secretion from pancreatic islets. J Tissue Eng Regen Med, 11: 694–703. https://doi:10.1002/term.1965
 
102. Fang J, 2008, Temperature-sensitive hydrogels composed of chitosan and hyaluronic acid as injectable carriers for drug delivery. Eur J Pharm Biopharm, 68: 626–636. https://doi:10.1016/j.ejpb.2007.08.012 

103. Kharkar PM, Kiick KL, Kloxin AM, 2015, Design of thiol-and light-sensitive degradable hydrogels using Michael-type addition reactions. Polym Chem, 6: 5565–5574. https://doi:10.1039/c5py00750j 

104. Cevik O, Gidon D, Kizilel S, 2015, Visible-light-induced synthesis of pH-responsive composite hydrogels for controlled delivery of the anticonvulsant drug pregabalin. Acta Biomater, 11: 151–161. https://doi:10.1016/j.actbio.2014.09.018 

105. Cinay GE, Erkoc P, Alipour M, et al., 2017, Nanogel-integrated pH-responsive composite hydrogels for controlled drug delivery. ACS Biomater Sci Eng, 3: 370–380. https://doi:10.1021/acsbiomaterials.6b00670 

106. Erkoc P, Cingöz A, Bagci-Onder T, et al., 2017, Quinacrine mediated sensitization of glioblastoma (GBM) cells to trail through MMP-sensitive PEG hydrogel carriers. Macromol Biosci, 17: 1600267. https://doi:10.1002/mabi.201600267 

107. Yang J-A, Yeom J, Hwang BW, et al., 2014, In situ-forming injectable hydrogels for regenerative medicine. Prog Polym Sci, 39: 1973–1986. https://doi:10.1016/j.progpolymsci.2014.07.006 

108. Augst AD, Kong HJ, Mooney DJ, 2006, Alginate hydrogels as biomaterials. Macromol Biosci, 6: 623–633. https://doi:10.1002/mabi.200600069 

109. de Vos P, Hamel AF, Tatarkiewicz K, 2002, Considerations for successful transplantation of encapsulated pancreatic islets. Diabetologia, 45: 159–173. https://doi:10.1007/s00125-001-0729-x 

110. Mallett AG, Korbutt GS, 2009, Alginate modification improves long-term survival and function of transplanted encapsulated islets. Tissue Eng Part A, 15: 1301–1309. https://doi:10.1089/ten.tea.2008.0118 

111. Hals IK, Rokstad AM, Strand BL, et al., 2013, Alginate microencapsulation of human islets does not increase susceptibility to acute hypoxia. J Diabetes Res, 2013: 374925. https://doi:10.1155/2013/374925 

112. Marchioli G, Di Luca A, de Koning E, et al., 2016, Hybrid Polycaprolactone/alginate scaffolds functionalized with vegf to promote de novo vessel formation for the transplantation of islets of langerhans. Adv Healthc Mater, 5: 1606–1616. https://doi:10.1002/adhm.201600058 

113. Bloch K, Papismedov E, Yavriyants K, et al., 2006, Photosynthetic oxygen generator for bioartificial pancreas. Tissue Eng, 12: 337–344. https://doi:10.1089/ten.2006.12.337 

114. Duin S, Schütz K, Ahlfeld T, et al., 2019, 3D bioprinting of functional islets of langerhans in an alginate/methylcellulose hydrogel blend. Adv Healthc Mater, 8: e1801631. https://doi:10.1002/adhm.201801631 

115. Ali A, Ahmed S, 2018, A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol, 109: 273–286. https://doi:10.1016/j.ijbiomac.2017.12.078 

116. Yang K-C, Wu C-C, Lin F-H, et al., 2008, Chitosan/ gelatin hydrogel as immunoisolative matrix for injectable bioartificial pancreas. Xenotransplantation, 15: 407–416. https://doi:10.1111/j.1399-3089.2008.00503.x 

117. Yang K-C, Qi Z, Wu C-C, et al., 2010, The cytoprotection of chitosan based hydrogels in xenogeneic islet transplantation: An in vivo study in streptozotocin-induced diabetic mouse. Biochem Biophys Res Commun, 393: 818–823. https://doi:10.1016/j.bbrc.2010.02.089 

118. McBane JE, Vulesevic B, Padavan DT, et al., 2013, Evaluation of a collagen-chitosan hydrogel for potential use as a pro-angiogenic site for islet transplantation. PLoS ONE, 8: e77538. https://doi:10.1371/journal.pone.0077538 

119. Fakhari A, Berkland C, 2013, Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater, 9: 7081–7092. https://doi:10.1016/j.actbio.2013.03.005 

120. Papakonstantinou E, Roth M, Karakiulakis G, 2012, Hyaluronic acid: A key molecule in skin aging. Dermatoendocrinol, 4: 253–258. https://doi:10.4161/derm.21923 

121. Velten F, Laue C, Schrezenmeir J, 1999, The effect of alginate and hyaluronate on the viability and function of immunoisolated neonatal rat islets. Biomaterials, 20: 2161–2167. https://doi:10.1016/s0142-9612(99)00119-2 

122. Harrington S, Williams J, Rawal S, et al., 2017, Hyaluronic acid/collagen hydrogel as an alternative to alginate for long-term immunoprotected islet transplantation. Tissue Eng Part A, 23: 1088–1099. https://doi:10.1089/ten.TEA.2016.0477 

123. Cañibano-Hernández A, Saenz Del Burgo L, Espona- Noguera A, et al., 2019, Hyaluronic acid enhances cell survival of encapsulated insulin-producing cells in alginate-based microcapsules. Int J Pharm, 557: 192–198. https://doi:10.1016/j.ijpharm.2018.12.062 

124. Frantz C, Stewart KM, Weaver VM, 2010, The extracellular matrix at a glance. J Cell Sci, 123: 4195–4200. https://doi:10.1242/jcs.023820 

125. Chen X-G, Wang Z, Liu W-S, et al., 2002, The effect of carboxymethyl-chitosan on proliferation and collagen secretion of normal and keloid skin fibroblasts. Biomaterials, 23: 4609–4614. https://doi:10.1016/s0142-9612(02)00207-7 

126. Cen L, Liu W, Cui L, et al., 2008, Collagen tissue engineering: Development of novel biomaterials and applications. Pediatr Res, 63: 492–496. https://doi:10.1203/PDR.0b013e31816c5bc3 

127. Glowacki J, Mizuno S, 2008, Collagen scaffolds for tissue engineering. Biopolymers, 89: 338–344. https://doi:10.1002/bip.20871 

128. Yousefi M, Ariffin F, Huda N, 2017, An alternative source of type I collagen based on by-product with higher thermal stability. Food Hydrocoll, 63: 372–382. https://doi:10.1016/j.foodhyd.2016.09.029 

129. Gauza-Włodarczyk M, Kubisz L, Mielcarek S, et al., 2017, Comparison of thermal properties of fish collagen and bovine collagen in the temperature range 80: 298–670 K. Mater Sci Eng C, 468–471. https://doi:10.1016/j.msec.2017.06.012 

130. Yang C, Hillas PJ, Báez JA, et al., 2004, The application of recombinant human collagen in tissue engineering. BioDrugs, 18: 103–119. https://doi:10.2165/00063030-200418020-00004 

131. Hoque ME, Nuge T, Yeow TK, et al., 2015, Gelatin based scaffolds for tissue engineering-a review. Polym Res J, 9: 15. https://www.academia.edu/download/49257339/Gelatin_ Based_Scaffolds_For_Tissue_Engin20160930-21565- 1f3e97z.pdf 

132. Kodama S, Kojima K, Furuta S, et al., 2009, Engineering functional islets from cultured cells. Tissue Eng Part A, 15: 3321–3329. https://doi:10.1089/ten.tea.2008.0459 

133. Kleinman HK, Martin GR, 2005, Matrigel: Basement membrane matrix with biological activity. Semin Cancer Biol, 15: 378–386. https://doi:10.1016/j.semcancer.2005.05.004 

134. Stewart MH, Bendall SC, Bhatia M, 2008, Deconstructing human embryonic stem cell cultures: Niche regulation of self-renewal and pluripotency. J Mol Med, 86: 875–886. https://doi:10.1007/s00109-008-0356-9 

135. Hagbard L, Cameron K, August P, et al., 2018, Developing defined substrates for stem cell culture and differentiation. Philos Trans R Soc Lond B Biol Sci, 373: 373.https://doi:10.1098/rstb.2017.0230 

136. Greggio C, De Franceschi F, Figueiredo-Larsen M, et al., 2013, Artificial three-dimensional niches deconstruct pancreas development in vitro. Development, 140: 4452–4462. https://doi:10.1242/dev.096628 

137. Haque MR, Lee DY, Ahn C-H, et al., 2014, Local co-delivery of pancreatic islets and liposomal clodronate using injectable hydrogel to prevent acute immune reactions in a type 1 diabetes. Pharm Res, 31: 2453–2462. https://doi:10.1007/s11095-014-1340-4 

138. Pati F, Gantelius J, Svahn HA, 2016, 3D bioprinting of tissue/ organ models. Angew Chem Int Ed Engl, 55: 4650–4665. https://doi:10.1002/anie.201505062 

139. Gentile P, Chiono V, Carmagnola I, et al., 2014, An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci, 15: 3640–3659. https://doi:10.3390/ijms15033640 

140. Shim J-H, Kim JY, Park M, et al., 2011, Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Biofabrication, 3: 034102. https://doi:10.1088/1758-5082/3/3/034102 

141. Omami M, McGarrigle JJ, Reedy M, et al., 2017, Islet microencapsulation: Strategies and clinical status in diabetes. Curr Diab Rep, 17: 47. https://doi:10.1007/s11892-017-0877-0 

142. Bai X, Pei Q, Pu C, et al., 2020, Multifunctional islet transplantation hydrogel encapsulating A20 high-expressing islets. Drug Des Devel Ther, 14: 4021–4027. https://doi:10.2147/DDDT.S273050 

143. Knobeloch T, Abadi SEM, Bruns J, et al., 2017, Injectable polyethylene glycol hydrogel for islet encapsulation: an in vitro and in vivo characterization. Biomed Phys Eng Express, 3: 035022. https://doi:10.1088/2057-1976/aa742b 

144. Ouyang L, Dan Y, Shao Z, et al., 2019, MMP-sensitive PEG hydrogel modified with RGD promotes bFGF, VEGF and EPC-mediated angiogenesis. Exp Ther Med, 18: 2933–2941. https://doi:10.3892/etm.2019.7885 

145. Weber LM, Anseth KS, 2008, Hydrogel encapsulation environments functionalized with extracellular matrix interactions increase islet insulin secretion. Matrix Biol, 27: 667–673. https://doi:10.1016/j.matbio.2008.08.001 

146. Song J, Millman JR, 2016, Economic 3D-printing approach for transplantation of human stem cell-derived β -like cells. Biofabrication, 9: 015002. https://doi:10.1088/1758-5090/9/1/015002 

147. Daoud JT, Petropavlovskaia MS, Patapas JM, et al., 2011, Long-term in vitro human pancreatic islet culture using three-dimensional microfabricated scaffolds. Biomaterials, 32: 1536–1542. https://doi:10.1016/j.biomaterials.2010.10.036 

148. Salg GA, Poisel E, Neulinger-Munoz M, et al., 2022, Toward 3D-bioprinting of an endocrine pancreas: A building-block concept for bioartificial insulin-secreting tissue. J Tissue Eng, 13: 204173142210910. https://doi:10.1177/20417314221091033 

149. Athanasiou KA, Eswaramoorthy R, Hadidi P, et al., 2013, Self-organization and the self-assembling process in tissue engineering. Annu Rev Biomed Eng, 15: 115–136. https://doi:10.1146/annurev-bioeng-071812-152423 

150. Ovsianikov A, Khademhosseini A, Mironov V, 2018, The Synergy of Scaffold-Based and Scaffold-Free Tissue Engineering Strategies. Trends Biotechnol, 36: 348–357. https://doi:10.1016/j.tibtech.2018.01.005 

151. Yu Y, Moncal KK, Li J, et al., 2016, Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink. 6: Sci Rep. https://doi:10.1038/srep28714 

152. Akkouch A, Yu Y, Ozbolat IT, 2015, Microfabrication of scaffold-free tissue strands for three-dimensional tissue engineering. Biofabrication, 7: 031002. https://doi:10.1088/1758-5090/7/3/031002 

153. Marchioli G, van Gurp L, van Krieken PP, et al., 2015, Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation. Biofabrication, 7: 025009. https://doi:10.1088/1758-5090/7/2/025009 

154. Liu X, Carter S-SD, Renes MJ, et al., 2019, Development of a coaxial 3D printing platform for biofabrication of implantable islet-containing constructs. Adv Healthc Mater, 8: e1801181. https://doi:10.1002/adhm.201801181 

155. Liu X, Carter SD, Renes MJ, et al., 2019, Pancreatic islet transplantation: Development of a coaxial 3D printing platform for biofabrication of implantable islet‐containing constructs. Adv Healthc Mater, 8: 1970029. https://doi:10.1002/adhm.201970029 

156. Farina M, Ballerini A, Fraga DW, et al., 2017, 3D printed vascularized device for subcutaneous transplantation of human islets. Biotechnol J, 12: 1700169. https://doi:10.1002/biot.201700169 

157. Kim J, Shim IK, Hwang DG, et al., 2019, 3D cell printing of islet-laden pancreatic tissue-derived extracellular matrix bioink constructs for enhancing pancreatic functions. J Mater Chem B Mater Biol Med, 7: 1773–1781. https://doi:10.1039/c8tb02787k 

158. Hwang DG, Jo Y, Kim M, et al., 2021, A 3D bioprinted hybrid encapsulation system for delivery of human pluripotent stem cell-derived pancreatic islet-like aggregates. Biofabrication, 14: 014101. https://doi:10.1088/1758-5090/ac23ac 

159. Idaszek J, Volpi M, Paradiso A, et al., 2021, Alginate-based tissue-specific bioinks for multi-material 3D-bioprinting of pancreatic islets and blood vessels: A step towards vascularized pancreas grafts. Bioprinting, 24: e00163. https://doi:10.1016/j.bprint.2021.e00163
 
160. Agulnick AD, Ambruzs DM, Moorman MA, et al., 2015, Insulin-producing endocrine cells differentiated in vitro from human embryonic stem cells function in macroencapsulation devices in vivo. Stem Cells Transl. Med, 4: 1214–1222. https://doi:10.5966/sctm.2015-0079 

161. Penko D, Mohanasundaram D, Sen S, et al., 2011, Incorporation of endothelial progenitor cells into mosaic pseudoislets. Islets, 3: 73–79. https://doi:10.4161/isl.3.3.15392 

162. Gabr MM, Zakaria MM, Refaie AF, et al., 2013, Insulin-producing cells from adult human bone marrow mesenchymal stem cells control streptozotocin-induced diabetes in nude mice. Cell Transplant, 22: 133–145. https://doi:10.3727/096368912X647162 

163. Okura H, Komoda H, Fumimoto Y, et al., 2009, Transdifferentiation of human adipose tissue-derived stromal cells into insulin-producing clusters. J Artif Organs, 12: 123–130. https://doi:10.1007/s10047-009-0455-6 

164. Ohmura Y, Tanemura M, Kawaguchi N, et al., 2010, Combined transplantation of pancreatic islets and adipose tissue-derived stem cells enhances the survival and insulin function of islet grafts in diabetic mice. Transplantation, 90: 1366–1373. https://doi:10.1097/TP.0b013e3181ffba31
 
165. Bai C, Gao Y, Li X, et al., 2017, MicroRNAs can effectively induce formation of insulin-producing cells from mesenchymal stem cells. J Tissue Eng Regen Med, 11: 3457–3468. https://doi:10.1002/term.2259 

166. Moshtagh PR, Emami SH, Sharifi AM, 2013, Differentiation of human adipose-derived mesenchymal stem cell into insulin-producing cells: an in vitro study. J Physiol Biochem, 69: 451–458. https://doi:10.1007/s13105-012-0228-1 

167. Ilic D, Ogilvie C, 2017, Concise review: Human embryonic stem cells-what have we done? What are we doing? Where are we going? Stem Cells, 35: 17–25. https://doi:10.1002/stem.2450 

168. Russ HA, Parent AV, Ringler JJ, et al., 2015, Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J, 34: 1759–1772. https://doi:10.15252/embj.201591058 

169. Rezania A, Bruin JE, Arora P, et al., 2014, Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol, 32: 1121–1133. https://doi:10.1038/nbt.3033 

170. Pagliuca FW, Millman JR, Gürtler M, et al., 2014, Generation of functional human pancreatic β cells in vitro. Cell, 159: 428–439. https://doi:10.1016/j.cell.2014.09.040 

171. Kroon E, Martinson LA, Kadoya K, et al., 2008, Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol, 26: 443–452. https://doi:10.1038/nbt1393 

172. A safety, tolerability, and efficacy study of VC-01TM combination product in subjects with type i diabetes mellitus, n.d., viewed 17 May 2021, https://clinicaltrials.gov/ct2/show/NCT02239354 

173. Zhu S, Russ HA, Wang X, et al., 2016, Human pancreatic beta-like cells converted from fibroblasts. Nat Commun, 7: 10080. https://doi:10.1038/ncomms10080 

174. Tateishi K, He J, Taranova O, et al., 2008, Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem, 283: 31601–31607. https://doi:10.1074/jbc.M806597200 

175. Maehr R, Chen S, Snitow M, et al., 2009, Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci U S A, 106: 15768–15773. https://doi:10.1073/pnas.0906894106 

176. Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, et al., 2010, Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells, 28: 1568–1570. https://doi:10.1002/stem.471 

177. Teramura Y, Iwata H, 2010, Bioartificial pancreas microencapsulation and conformal coating of islet of Langerhans. Adv Drug Deliv Rev, 62: 827–840. https://doi:10.1016/j.addr.2010.01.005 

178. Hiscox AM, Stone AL, Limesand S, et al., 2008, An islet-stabilizing implant constructed using a preformed vasculature. Tissue Eng Part A, 14: 433–440.  https://doi:10.1089/tea.2007.0099 

179. Ma M, Chiu A, Sahay G, et al., 2013, Cell delivery: Core-shell hydrogel microcapsules for improved islets encapsulation. Adv Healthc Mater, 2: 768–768. https://doi:10.1002/adhm.201370026 

180. Ludwig B, Reichel A, Steffen A, et al., 2013, Transplantation of human islets without immunosuppression. Proc Natl Acad Sci U S A, 110: 19054–19058. https://doi:10.1073/pnas.1317561110

181. Carlsson P-O, Espes D, Sedigh A, et al., 2018, Transplantation of macroencapsulated human islets within the bioartificial pancreas βAir to patients with type 1 diabetes mellitus. Am J Transplant, 18: 1735–1744. https://doi:10.1111/ajt.14642 

182. Bernard AB, Lin C-C, Anseth KS, 2012, A microwell cell culture platform for the aggregation of pancreatic β-cells. Tissue Eng. Part C Methods, 18: 583–592. https://doi:10.1089/ten.tec.2011.0504 

183. Kim J, Kang K, Drogemuller CJ, 2019, Bioprinting an artificial pancreas for type 1 diabetes. Curr Diab Rep, 19: 53. https://doi:10.1007/s11892-019-1166-x 

184. Tuch BE, Keogh GW, Williams LJ, et al., 2009, Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care, 32: 1887–1889. https://doi:10.2337/dc09-0744 

185. Ng WL, Chan A, Ong YS, et al., 2020, Deep learning for fabrication and maturation of 3D bioprinted tissues and organs. Virtual Phys Prototyp, 15: 340–358. https://doi:10.1080/17452759.2020.1771741 

186. Yu C, Jiang J. 2020, A perspective on using machine learning in 3D bioprinting. Int J Bioprint, 6: 253. https://doi:10.18063/ijb.v6i1.253 

187. Fu Z, Angeline V, Sun W, 2021, Evaluation of printing parameters on 3D extrusion printing of pluronic hydrogels and machine learning guided parameter recommendation. Int J Bioprint, 7: 434. https://doi:10.18063/ijb.v7i4.434

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing