AccScience Publishing / IJB / Volume 7 / Issue 1 / DOI: 10.18063/ijb.v7i1.299
Cite this article
57
Download
2194
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

3D Composite Bioprinting for Fabrication of Artificial Biological Tissues

Yi Zhang1 Bin Wang1 Junchao Hu1 Tianyuan Yin1 Tao Yue1 Na Liu1 Yuanyuan Liu1*
Show Less
1 School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
© Invalid date by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Three-dimensional (3D) bioprinting is an important technology for fabricating artificial tissue. To effectively reconstruct the multiscale structure and multi-material gradient of natural tissues and organs, 3D bioprinting has been increasingly developed into multi-process composite mode. The current 3D composite bioprinting is a combination of two or more printing processes, and oftentimes, physical field regulation that can regulate filaments or cells during or after printing may be involved. Correspondingly, both path planning strategy and process control all become more complex. Hence, the computer-aided design and computer-aided manufacturing (CAD/CAM) system that is traditionally used in 3D printing system is now facing challenges. Thus, the scale information that cannot be modeled in the CAD process should be considered in the design of CAM by adding a process management module in the traditional CAD/CAM system and add more information reflecting component gradient in the path planning strategy. 

Keywords
3D composite bioprinting
Biofabrication
Computer-aided design and computer-aided manufacturing
Multiscale structure
Physical field control
References

1. Groll J, Burdick JA, Cho DW, et al., 2018, A Definition of Bioinks and their Distinction from Biomaterial Inks [J]. Biofabrication, 11(1):013001. https://doi.org/10.1088/1758-5090/aaec52

2. Gungor-Ozkerim PS, Inci I, Zhang YS, et al., 2018, Bioinks for 3D Bioprinting: An Overview [J]. Biomater Sci, 6(5):915–46. https://doi.org/10.1039/c7bm00765e

3. Ng WL, Chua CK, Shen YF, 2019, Print Me An Organ! Why We Are Not There Yet [J]. Prog Polym Sci, 97:101145. https://doi.org/10.1016/j.progpolymsci.2019.101145

4. Ng WL, Chan A, Ong YS, et al., 2020, Deep Learning for Fabrication and Maturation of 3D Bioprinted Tissues and Organs [J]. Virtual Phys Prototyp 15(3):340–58

5. Ozbolat IT, Hospodiuk M, 2016, Current Advances and Future Perspectives in Extrusion-based Bioprinting [J]. Biomaterials, 76:321–43. https://doi.org/10.1016/j.biomaterials.2015.10.076

6. Emmermacher J, Spura D, Cziommer J, et al., 2020, Engineering Considerations on Extrusion-based Bioprinting: Interactions of Material Behavior, Mechanical Forces and Cells in the Printing Needle [J]. Biofabrication, 12(2):025022. https://doi.org/10.1088/1758-5090/ab7553

7. Gao G, Kim BS, Jang J, et al., 2019, Recent Strategies in Extrusion-Based Three-Dimensional Cell Printing toward Organ Biofabrication [J]. ACS Biomater Sci Eng, 5(3):1150–69. https://doi.org/10.1021/acsbiomaterials.8b00691

8. Gudapati H, Dey M, Ozbolat I, 2016, A Comprehensive Review on Droplet-based Bioprinting: Past, Present and Future [J]. Biomaterials, 102:20–42. https://doi.org/10.1016/j.biomaterials.2016.06.012

9. Ng WL, Lee JM, Yeong WY, et al., 2017, Microvalve-based Bioprinting Process, Bio-inks and Applications [J]. Biomater Sci, 5(4):632–47. https://doi.org/10.1039/c6bm00861e

10. Koch L, Brandt O, Deiwick A, et al. 2017, Laser-assisted Bioprinting at Different Wavelengths and Pulse Durations with a Metal Dynamic Release Layer: A Parametric Study [J]. Int J Bioprint, 3(1):42–53. https://doi.org/10.18063/ijb.2017.01.001

11. Onses MS, Sutanto E, Ferreira PM, et al., 2015, Mechanisms, Capabilities, and Applications of High-Resolution Electrohydrodynamic Jet Printing [J]. Small, 11(34):4237–66. https://doi.org/10.1002/smll.201500593

12. Ng WL, Lee JM, Zhou M, et al., 2020, Vat Polymerization based Bioprinting Process, Materials, Applications and Regulatory Challenges [J]. Biofabrication, 12(2):022001. https://doi.org/10.1088/1758-5090/ab6034

13. Li W, Mille LS, Robledo JA, et al., 2020, Recent Advances in Formulating and Processing Biomaterial Inks for Vat Polymerization-Based 3D Printing [J]. Adv Healthc Mater, 9(15):2000156. https://doi.org/10.1002/adhm.202000156

14. Quan H, Zhang T, Xu H, et al., 2020, Photo-curing 3D Printing Technique and its Challenges [J]. Bioact Mater, 5(1):110–5.

15. Jun I, Han HS, Edwards JR, et al., 2018, Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication [J]. Int J Mol Sci, 19(3):745. https://doi.org/10.3390/ijms19030745

16. Liashenko I, Rosell-Llompart J, Cabot A, 2020, Ultrafast 3D Printing with Submicrometer Features Using Electrostatic Jet Deflection [J]. Nat Commun 11(1):753. https://doi.org/10.1038/s41467-020-14557-w

17. Wang C, Meng G, Zhang L, et al., 2012, Physical Properties and Biocompatibility of a Core-sheath Structure Composite Scaffold for Bone Tissue Engineering In Vitro [J]. J Biomed Biotechnol, 2012:579141

18. Kolesky DB, Homan KA, Skylar-Scott MA, et al., 2016, Three-dimensional Bioprinting of thick Vascularized Tissues [J]. Proc Natl Acad Sci U S A, 113(12):3179–84. https://doi.org/10.1073/pnas.1521342113

19. Skylar-Scott MA, Uzel SG, Nam LL, et al., 2019, Biomanufacturing of Organ-specific Tissues with High Cellular Density and Embedded Vascular Channels [J]. Sci Adv, 5(9): eaaw2459. https://doi.org/10.1126/sciadv.aaw2459

20. Wang W, Junior JR, Nalesso PR, et al., 2019, Engineered 3D Printed Poly(ɛ caprolactone)/Graphene Scaffolds for Bone Tissue Engineering [J]. Mater Sci Eng C, 100:759–70. https://doi.org/10.1016/j.msec.2019.03.047

21. Chen YW, Shen YF, Ho CC, et al., 2018, Osteogenic and Angiogenic Potentials of the Cell-laden Hydrogel/Mussel inspired Calcium Silicate Complex Hierarchical Porous Scaffold Fabricated by 3D Bioprinting [J]. Mater Sci Eng C, 91:679–87. https://doi.org/10.1016/j.msec.2018.06.005

22. Mekhileri NV, Lim KS, Brown GC, et al., 2018, Automated 3D Bioassembly of Micro-tissues for Biofabrication of Hybrid Tissue Engineered Constructs [J]. Biofabrication, 10(2):024103. https://doi.org/10.1088/1758-5090/aa9ef1

23. Gao Q, He Y, Fu JZ, et al., 2015, Coaxial Nozzle-assisted 3D Bioprinting with Built-in Microchannels for Nutrients Delivery [J]. Biomaterials, 61:203–15. https://doi.org/10.1016/j.biomaterials.2015.05.031

24. Andrique L, Recher G, Alessandri K, et al., 2019, A Model of Guided Cell Self-organization for Rapid and Spontaneous Formation of Functional Vessels [J]. Sci Adv, 5(6): eaau6562. https://doi.org/10.1126/sciadv.aau6562

25. Jia WT, Gungor-Ozkerim PS, Zhang YS, et al., 2016, Direct 3D Bioprinting of Perfusable Vascular Constructs Using a Blend Bioink [J]. Biomaterials, 106:58–68. https://doi.org/10.1016/j.biomaterials.2016.07.038

26. Millik SC, Dostie AM, Karis DG, et al., 2019, 3D Printed Coaxial Nozzles for the Extrusion of Hydrogel Tubes Toward Modeling Vascular Endothelium [J]. Biofabrication, 11(4):045009. https://doi.org/10.1088/1758-5090/ab2b4d

27. Narayanan LK, Huebner P, Fisher MB, et al., 2016, 3D-Bioprinting of Polylactic Acid (PLA) Nanofiber-Alginate Hydrogel Bioink Containing Human Adipose-Derived Stem Cells [J]. ACS Biomater Sci Eng, 2(10):1732–42. https://doi.org/10.1021/acsbiomaterials.6b00196

28. Tabriz AG, Hermida MA, Leslie NR, et al., 2015, Three dimensional Bioprinting of Complex Cell Laden Alginate Hydrogel Structures [J]. Biofabrication, 7(4):045012. https://doi.org/10.1088/1758-5090/7/4/045012

29. Lozano R, Stevens L, Thompson BC, et al., 2015, 3D Printing of Layered Brain-like Structures Using Peptide Modified Gellan Gum Substrates [J]. Biomaterials, 67:264–73. https://doi.org/10.1016/j.biomaterials.2015.07.022

30. Wang X, Li X, Dai X, et al., 2018, Coaxial Extrusion Bioprinted Shell-core Hydrogel Microfibers Mimic Glioma Microenvironment and Enhance the Drug Resistance of Cancer Cells [J]. Colloids Surf B Biointerfaces, 171:291–9. https://doi.org/10.1016/j.colsurfb.2018.07.042

31. Abel SB, Ballarin FM, Abraham GA, 2020, Combination of Electrospinning with other Techniques for the Fabrication of 3D Polymeric and Composite Nanofibrous Scaffolds with Improved Cellular Interactions [J]. Nanotechnology, 31(17):172002. https://doi.org/10.1088/1361-6528/ab6ab4

32. Lee SJ, Heo DN, Park JS, et al., 2015, Characterization and Preparation of Bio-tubular Scaffolds for Fabricating Artificial Vascular Grafts by Combining Electrospinning and a 3D Printing System [J]. Phys Chem Chem Phys, 17(5):2996–9 https://doi.org/10.1039/c4cp04801f

33. Akentjew TL, Terraza C, Suazo C, et al., 2019, Rapid Fabrication of Reinforced and Cell-laden Vascular Grafts Structurally Inspired by Human Coronary Arteries [J]. Nat Commun, 10(1):3098. https://doi.org/10.1038/s41467-019-11446-9

34. Jungst T, Pennings I, Schmitz M, et al., 2019, Heterotypic Scaffold Design Orchestrates Primary Cell Organization and Phenotypes in Cocultured Small Diameter Vascular Grafts [J]. Adv Funct Mater, 29(43):1905987. https://doi.org/10.1002/adfm.201905987

35. Wang K, Zheng W, Pan Y, et al., 2016, Three-Layered PCL Grafts Promoted Vascular Regeneration in a Rabbit Carotid Artery Model [J]. Macromol Biosci, 16(4):608–18. https://doi.org/10.1002/mabi.201500355

36. Liu Y, Xiang K, Chen H, et al., 2015, Composite Vascular Repair Grafts via Micro-imprinting and Electrospinning [J]. AIP Adv, 5(4):041318. https://doi.org/10.1063/1.4906571

37. Wu P, Wang L, Li W, et al., 2020, Construction of Vascular Graft with Circumferentially Oriented Microchannels for Improving Artery Regeneration [J]. Biomaterials, 242:119922. https://doi.org/10.1016/j.biomaterials.2020.119922

38. Lee SJ, Kim ME, Nah H, et al., 2019, Vascular Endothelial Growth Factor Immobilized on Mussel-inspired Three dimensional Bilayered Scaffold for Artificial Vascular Graft Application: In Vitro and In Vivo Evaluations [J]. J Colloid Interface Sci, 537:333–44. https://doi.org/10.1016/j.jcis.2018.11.039

39. Chen X, Ergun A, Gevgilili H, et al., 2013, Shell-core bilayered Scaffolds for Engineering of Vascularized Osteonlike Structures [J]. Biomaterials, 34:8203–12. https://doi.org/10.1016/j.biomaterials.2013.07.035

40. Costa PF, Vaquette C, Zhang Q, et al., 2014, Advanced Tissue Engineering Scaffold Design for Regeneration of the Complex Hierarchical Periodontal Structure [J]. J Clin Periodontol, 41(3):283–94. https://doi.org/10.1111/jcpe.12214

41. Vaquette C, Fan W, Xiao Y, et al., 2012, A Biphasic Scaffold Design Combined with Cell Sheet Technology for Simultaneous Regeneration of Alveolar Bone/Periodontal Ligament Complex [J]. Biomaterials, 33(22):5560–73. https://doi.org/10.1016/j.biomaterials.2012.04.038

42. Kumar PT, Hashimi S, Saifzadeh S, et al., 2018, Additively Manufactured Biphasic Construct Loaded with BMP-2 for Vertical Bone Regeneration: A Pilot Study in Rabbit [J]. Mater Sci Eng C, 92:554–64. https://doi.org/10.1016/j.msec.2018.06.071

43. De Ruijter M, Ribeiro A, Dokter I, et al., 2019, Simultaneous Micropatterning of Fibrous Meshes and Bioinks for the Fabrication of Living Tissue Constructs [J]. Adv Healthc Mater, 8(7):1800418. https://doi.org/10.1002/adhm.201800418

44. Rajzer I, Kurowska A, Jabłoński A, et al., 2018, Layered Gelatin/PLLA Scaffolds Fabricated by Electrospinning and 3D Printing for Nasal Cartilages and Subchondral Bone Reconstruction [J]. Mater Des, 155:297–306. https://doi.org/10.1016/j.matdes.2018.06.012

45. Diloksumpan P, De Ruijter M, Castilho M, et al., 2020, Combining Multi-scale 3D Printing Technologies to Engineer Reinforced Hydrogel-ceramic Interfaces [J]. Biofabrication, 12(2):025014. https://doi.org/10.1088/1758-5090/ab69d9

46. Park JA, Lee HR, Park SY, et al., 2020, Self-Organization of Fibroblast-Laden 3D Collagen Microstructures from Inkjet-Printed Cell Patterns [J]. Adv Biosyst, 4(5):1900280. https://doi.org/10.1002/adbi.201900280

47. Kérourédan O, Bourget JM, Rémy M, et al., 2019, Micropatterning of Endothelial Cells to Create a Capillary like Network with Defined Architecture by Laser-assisted Bioprinting [J]. J Mater Sci Mater Med, 30(2):28. https://doi.org/10.1007/s10856-019-6230-1

48. Kérourédan O, Hakobyan D, Rémy M, et al., 2019, In Situ Prevascularization Designed by Laser-assisted Bioprinting: Effect on Bone Regeneration [J]. Biofabrication, 11(4):045002. https://doi.org/10.1088/1758-5090/ab2620

49. Chen H, Liu Y, Hu Q, 2015, A Novel Bioactive Membrane by Cell Electrospinning [J]. Exp Cell Res, 338(2):261–6.

50. Redd MA, Zeinstra N, Qin W, et al., 2019, Patterned Human Microvascular Grafts Enable Rapid Vascularization and Increase Perfusion in Infarcted Rat Hearts [J]. Nat Commun, 10(1):584. https://doi.org/10.1038/s41467-019-08388-7

51. Clyne AM, Swaminathan S, Lantada AD, 2019, Biofabrication Strategies for Creating Microvascular Complexity [J]. Biofabrication, 11(3):032001. https://doi.org/10.1088/1758-5090/ab0621

52. Chandra P, Atala A, 2019, Engineering Blood Vessels and Vascularized Tissues: Technology Trends and Potential Clinical Applications [J]. Clin Sci, 133(9):1115–35. https://doi.org/10.1042/cs20180155

53. Rouwkema J, Khademhosseini A, 2016, Vascularization and Angiogenesis in Tissue Engineering: Beyond Creating Static Networks [J]. Trends Biotechnol, 34(9):733–45. https://doi.org/10.1016/j.tibtech.2016.03.002

54. Kinstlinger IS, Miller JS, 2016, 3D-printed Fluidic Networks as Vasculature for Engineered Tissue [J]. Lab Chip, 16(11):2025–43. https://doi.org/10.1039/c6lc00193a

55. Miri AK, Khalilpour A, Cecen B, et al., 2019, Multiscale Bioprinting of Vascularized Models [J]. Biomaterials, 198:204–16. https://doi.org/10.1016/j.biomaterials.2018.08.006

56. Sharma D, Ross D, Wang G, et al., 2019, Upgrading Prevascularization in Tissue Engineering: A Review of Strategies for Promoting Highly Organized Microvascular Network Formation [J]. Acta Biomater, 95:112–30. https://doi.org/10.1016/j.actbio.2019.03.016

57. Daly AC, Pitacco P, Nulty J, et al., 2018, 3D Printed Microchannel Networks to Direct Vascularisation during Endochondral Bone Repair [J]. Biomaterials, 162:34–46. https://doi.org/10.1016/j.biomaterials.2018.01.057

58. Pimentel CR, Ko SK, Caviglia C, et al., 2018, Three dimensional Fabrication of Thick and Densely Populated Soft Constructs with Complex and Actively Perfused Channel Network [J]. Acta Biomater, 65:174–84. https://doi.org/10.1016/j.actbio.2017.10.047

59. Negrini NC, Bonnetier M, Giatsidis G, et al., 2019, Tissue mimicking Gelatin Scaffolds by Alginate Sacrificial Templates for Adipose Tissue Engineering [J]. Acta Biomater, 87:61–75. https://doi.org/10.1016/j.actbio.2019.01.018

60. Ji S, Almeida E, Guvendiren M, 2019, 3D Bioprinting of Complex Channels within Cell-laden Hydrogels [J]. Acta Biomater, 95:214–24. https://doi.org/10.1016/j.actbio.2019.02.038

61. Ouyang L, Armstrong JP, Chen Q, et al., 2020, Void-Free 3D Bioprinting for In Situ Endothelialization and Microfluidic Perfusion [J]. Adv Funct Mater, 30(1):1908349. https://doi.org/10.1002/adfm.201908349

62. Kim BS, Gao G, Kim JY, et al., 2019, 3D Cell Printing of
Perfusable Vascularized Human Skin Equivalent Composed
of Epidermis, Dermis, and Hypodermis for Better Structural
Recapitulation of Native Skin [J] Adv. Healthcare Mater,
8(7):1801019. https://doi.org/10.1002/adhm.201801019

63. Kang HW, Lee SJ, Ko IK, et al., 2016, A 3D Bioprinting System to Produce Human-scale Tissue Constructs with Structural Integrity [J]. Nat Biotechnol, 34(3):312–9. https://doi.org/10.1038/nbt.3413

64. Noor N, Shapira A, Edri R, et al., 2019, 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts [J]. Adv Sci, 6(11):1900344. https://doi.org/10.1002/advs.201900344

65. Yang Y, Chen Z, Song X, et al., 2017, Biomimetic Anisotropic Reinforcement Architectures by Electrically Assisted Nanocomposite 3D Printing [J]. Adv Mater, 29(11):1605750. https://doi.org/10.1002/adma.201605750

66. Chansoria P, Shirwaiker R, 2019, Characterizing the Process Physics of Ultrasound-Assisted Bioprinting [J]. Sci Rep, 9(1):13889. https://doi.org/10.1038/s41598-019-50449-w

67. Kirillova A, Maxson R, Stoychev G, et al., 2017, 4D Biofabrication Using Shape-Morphing Hydrogels [J]. Adv Mater, 29(46):1703443. https://doi.org/10.1002/adma.201703443

68. Kokkinis D, Schaffner M, Studart AR, 2015, Multimaterial Magnetically Assisted 3D Printing of Composite Materials [J]. Nat Commun, 6(1):8643. https://doi.org/10.1038/ncomms9643

69. Kim Y, Yuk H, Zhao R, et al., 2018, Printing Ferromagnetic Domains for Untethered Fast-transforming Soft Materials [J]. Nature, 558(7709):274–9. https://doi.org/10.1038/s41586-018-0185-0

70. Shim JH, Lee JS, Kim JY, et al., 2012, Bioprinting of a Mechanically Enhanced Three-dimensional Dual Cell-laden Construct for Osteochondral Tissue Engineering Using a Multi-head Tissue/organ Building System [J]. J Micromech Microeng, 22(8):085014. https://doi.org/10.1088/0960-1317/22/8/085014

71. Marga F, Jakab K, Khatiwala C, et al., 2012, Toward Engineering Functional Organ Modules by Additive Manufacturing [J]. Biofabrication, 4(2):022001. https://doi.org/10.1088/1758-5082/4/2/022001

72. Whatley BR, Kuo J, Shuai C, et al., 2011, Fabrication of a Biomimetic Elastic Intervertebral Disk Scaffold Using Additive Manufacturing [J]. Biofabrication, 3(1):015004. https://doi.org/10.1088/1758-5082/3/1/015004

73. Chen Z, Li D, Lu B, et al., 2004, Fabrication of Artificial Bioactive Bone Using Rapid Prototyping [J]. Rapid Prototyp J, 10(5):327–33. https://doi.org/10.1108/13552540410562368

74. Liu L, Xiong Z, Yan Y, et al., 2007, Porous Morphology, Porosity, Mechanical Properties of Poly (α-hydroxy acid)-Tricalcium Phosphate Composite Scaffolds Fabricated by Low-temperature Deposition [J]. J Biomed Mater Res Part A, 82A(3):618–29. https://doi.org/10.1002/jbm.a.31177

75. Liu TK, Pang Y, Zhou ZZ, et al., 2019, An Integrated Cell Printing System for the Construction of Heterogeneous Tissue Models [J]. Acta Biomater, 95:245–57. https://doi.org/10.1016/j.actbio.2019.05.052

76. Xie C, Gao Q, Wang P, et al., 2019, Structure-induced Cell Growth by 3D Printing of Heterogeneous Scaffolds with Ultrafine Fibers [J]. Mater Des, 181:108092. https://doi.org/10.1016/j.matdes.2019.108092

77. Liu D, 2012, Multiphysics Coupling Analysis and Experiment of Low-temperature Deposition Manufacturing and Electrospinning for Multi-scale Tissue Engineering Scaffold [J]. J Mech Eng, 48(15):137–43. https://doi.org/10.3901/jme.2012.15.137

78. Dali L, Jun G, Shuhui F, et al., 2012, On-line Monitor System
for Nanoscale Fiber Manufacturing Based on Multi-featured
Pattern Recognition [J]. Opt Precis Eng, 20(2):360–8.
https://doi.org/10.37h88/OPE.20122002.0360

79. Liu Y. 2014, CAD/CAM System and Experimental Study of Biological 3D Printing Composite Process. J Mech Eng, 50(15):147. https://doi.org/10.3901/jme.2014.15.147

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing