AccScience Publishing / IJB / Volume 6 / Issue 1 / DOI: 10.18063/ijb.v6i1.250
Cite this article
18
Download
565
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Extrusion-Based Bioprinting through Glucose-Mediated Enzymatic Hydrogelation

Enkhtuul Gantumur1 Masaki Nakahata1 Masaru Kojima1 Shinji Sakai*
Show Less
1 Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
Published: 21 January 2020
© 2020 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

We report an extrusion-based bioprinting approach, in which stabilization of extruded bioink is achieved through horseradish peroxidase (HRP)-catalyzed cross-linking consuming hydrogen peroxide (H2 O2 ) supplied from HRP and glucose. The bioinks containing living cells, HRP, glucose, alginate possessing phenolic hydroxyl (Ph) groups, and cellulose nanofiber were extruded to fabricate 3D hydrogel constructs. Lattice- and human nose-shaped 3D constructs were successfully printed and showed good stability in cell culture medium for over a week. Mouse 10T1/2 fibroblasts enclosed in the printed constructs remained viable after 7 days of culture. It was also able to switch a non-cell-adhesive surface of the printed construct to celladhesive surface for culturing cells on it through a subsequent cross-linking of gelatin possessing Ph moieties. These results demonstrate the possibility of utilizing the presented cross-linking method for 3D bioprinting.

Keywords
Enzymatic hydrogelation
Horseradish peroxidase
Glucose
Alginate
Cellulose nanofiber
Bioink
Extrusionbased bioprinting
References

1. An J, Teoh JEM, Suntornnond R, et al., 2015, Design and 3D Printing of Scaffolds and Tissues. Engineering, 1(2):261–8. DOI 10.15302/J-ENG-2015061.

2. Liu F, Mishbak H, Bartolo P, et al., 2019, Hybrid Polycaprolactone/Hydrogel Scaffold Fabrication and Inprocess Plasma Treatment Using PABS. Int J Bioprint, 5(1):174. DOI: 10.18063/ijb.v5i1.174.

3. Yang Y, Wang G, Liang H, et al., 2019, Additive Manufacturing of Bone Scaffolds. Int J Bioprint, 5(1):148. DOI: 10.18063/ijb.v5i1.148.

4. Zhuang P, Sun AX, An J, et al., 2018, 3D Neural Tissue Models: From Spheroids to Bioprinting. Biomaterials, 154:113–33. DOI: 10.1016/j.biomaterials.2017.10.002.

5. Mironov V, Trusk T, Kasyanov V, et al., 2009, Biofabrication: A 21st Century Manufacturing Paradigm. Biofabrication, 1(2):022001. DOI: 10.1088/1758-5082/1/2/022001.

6. Mir TA, Nakamura M, Iwanaga S, et al., 2019, Biofabrication Offers Future Hope for Tackling Various Obstacles and Challenges in Tissue Engineering and Regenerative Medicine: A Perspective, Int J Bioprint, 5(1):153. DOI: 10.18063/ijb.v5i1.153.

7. Ng WL, Chua CK, Shen YF, et al., 2019, Print Me an Organ! Why We are not There Yet. Prog Polym Sci, 97:101145. DOI:10.1016/j.prog-polymsci.2019.101145.

8. Lee JM, Sing SL, Zhou M, et al., 2018, 3D Bioprinting Processes: A Perspective on Classification and Terminology. Int J Bioprint, 4(2):151. DOI: 10.18063/ijb.v4i2.151.

9. Murphy SV, Atala A, 2014, 3D Bioprinting of Tissues and Organs. Nat Biotechnol, 32(8):773–85. DOI: 10.1038/nbt.2958.

10. Du X, 2018, 3D Bio-Printing Review. Mater Sci Eng, 301(1):012023. DOI: 10.1088/1757-899X/301/1/012023.

11. Heinrich MA, Liu W, Jimenez A, et al., 2019, 3D Bioprinting: From Benches to Translational Applications. Small, 15(23):1805510. DOI: 10.1002/smll.201805510.

12. Lee JY, An J, Chua CK, et al., 2017, Fundamentals and Applications of 3D Printing for Novel Materials. Appl Mater Today, 7:120–33. DOI: 10.1016/j.apmt.2017.02.004.

13. Nakamura K, Nishiyama Y, Henmi C, et al., 2008, Ink Jet Three-dimensional Digital Fabrication for Biological Tissue Manufacturing: Analysis of Alginate Microgel Beads Produced by Ink Jet Droplets for Three Dimensional Tissue Fabrication. J Imaging Sci Technol, 52(6):060201. DOI: 10.2352/J.ImagingSci.Technol.(2008)52:6(060201).

14. Arai K, Iwanaga S, Toda H, et al., 2011, Three- Dimensional Inkjet Biofabrication Based on Designed Images. Biofabrication, 3(3):034113. DOI: 10.1088/1758- 5082/3/3/034113.

15. Sorkio A, Koch L, Koivusalo L, et al., 2018, Human Stem Cell Based Corneal Tissue Mimicking Structures Using Laser- Assisted 3D Bioprinting and Functional Bioinks. Biomaterials, 171:57–71. DOI: 10.1016/j.biomaterials.2018.04.034.

16. Kérourédan O, Hakobyan D, Rémy M, et al., 2019, In Situ Prevascularization Designed by Laser-assisted Bioprinting: Effect on Bone Regeneration. Biofabrication, 11(4):045002. DOI: 10.1088/1758-5090/ab2620.

17. Sakai S, Kamei H, Mori T, et al., 2018, Visible Light-Induced Hydrogelaton of an Alginate Derivative and Application to Stereolithographic Bioprinting Using a Visible Light Projector and Acic Red. Biomacromolecules, 19(2):672–9. DOI: 10.1021/acs.biomac.7b01827.

18. Lam T, Dehne T, Krüger JP, et al., 2019, Photopolymerizable Gelatin and Hyaluronic Acid for Stereolithographic 3D Bioprinting of Tissue-Engineered Cartilage. J Biomed Mater Res B, 107(8):2649–57. DOI: 10.1002/jbm.b.34354.

19. Zhuang P, Ng WL, An J, et al., 2019, Layer-By-Layer Ultraviolet Assisted Extrusion-Based (UAE) Bioprinting of Hydrogel Constructs with High Aspect Ratio for Soft Tissue Engineering Applications. Plos One, 14(6):e0216776. DOI: 10.1371/journal.pone.0216776.

20. Placone JK, Engler AJ, 2018, Recent Advances in Extrusion-Based 3D Printing for Biomedical Applications. Adv Healthc Mater, 7(8):e1701161. DOI: 10.1002/adhm.201701161.

21. Tai C, Bouissil S, Gantumur E, et al., 2019, Use of Anionic Polysaccharides in the Development of 3D Bioprinting Technology. Appl Sci, 9(13):2596. DOI: 10.3390/app9132596.

22. Hölzl K, Lin S, Tytgat L, et al., 2016, Bioink Properties Before, During and After 3D Bioprinting. Biofabrication, 8(3):032002. DOI: 10.1088/1758-5090/8/3/032002.

23. Ji S, Guvendiren M, et al., 2017, Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs. Front Bioeng Biotechnol, 5:23. DOI: 10.3389/fbioe.2017.00023.

24. Das S, Pati F, Choi YJ, et al., 2015, Bioprintable, Cell-Laden Silk Fibroin-Gelatin Hydrogel Supporting Multilineage Differentiation of Stem Cells for Fabrication of Three- Dimensional Tissue Constructs. Acta Biomater, 11:233–46. DOI: 10.1016/j.actbio.2014.09.023.

25. Sakai S, Yamamoto Y, Enkhtuul G, et al., 2017, Inkjetting Plus Peroxidase-Mediated Hydrogelation Produces Cellladen, Cell-Sized Particles with Suitable Characters for Individual Applications. Macromol Biosci, 17(5):1600416. DOI: 10.1002/mabi.201600416.

26. Arai K, Tsukamoto Y, Yoshida H, et al., 2016, The Development for Cell-Adhesive Hydrogel for 3D Printing. Int J Bioprinting, 2(2):44–53. DOI: 10.18063/IJB.2016.02.002.

27. Sakai S, Ueda K, Gantumur E, et al., 2018, Drop-on-Drop Multimaterial 3D Bioprinting Realized by Peroxidase- Mediated Cross-Linking. Macromol Rapid Commun, 39(3):1700534. DOI: 10.1002/marc.201700534.

28. Sakai S, Mochizuki K, Qu Y, et al., 2018, Peroxidase- Catalyzed Microextrusion Bioprinting of Cell-Laden Hydrogel Constructs in Vaporized Ppm-Level Hydrogen Peroxide. Biofabrication, 10(4):045007. DOI: 10.1088/1758-5090/aadc9e.

29. Gantumur E, Kimura M, Taya M, et al., 2020, Inkjet Micropatterning Through Horseradish Peroxidase-mediated Hydrogelation for Controlled Cell Immobilization and Microtissue Fabrication. Biofabrication, 12(1):011001. DOI: 10.1088/1758-5090/ab3b3c.

30. Sakai S, Nakahata M, et al., 2017, Horseradish Peroxidase Catalyzed Hydrogelation for Biomedical, Biopharmaceutical, and Biofabrication Applications. Chem Asian J, 12(24):3098– 109. DOI: 10.1002/asia.201701364.

31. Moriyama K, Minamihata K, Wakabayashi R, et al., 2014, Enzymatic Preparation of a Redox-Responsive Hydrogel for Encapsulating and Releasing Living Cells. Chem Commun, 50(44):5895–8. DOI: 10.1039/c3cc49766f.

32. Gantumur E, Sakai S, Nakahata M, et al., 2017, Cytocompatible Enzymatic Hydrogelation Mediated by Glucose and Cysteine Residues. ACS Macro Lett, 6(5):485–8. DOI: 10.1021/acsmacrolett.7b00122.

33. Gantumur E, Sakai S, Nakahata M, et al., 2019, Horseradish Peroxidase-Catalyzed Hydrogelation Consuming Enzyme- Produced Hydrogen Peroxide in the Presence of Reducing Sugars. Soft Matter, 15(10):2163–9. DOI: 10.1039/ c8sm01839a.

34. Athukoralalage SS, Balu R, Dutta NK, et al., 2019, 3D Bioprinted Nanocellulose-Based Hydrogels for Tissue Engineering Applications: A Brief Review. Polymers, 11(5):898. DOI: 10.3390/polym11050898.

35. Markstedt K, Mantas A, Tournier I, et al., 2015, 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Application. Biomacromol, 16(5):1489–96. DOI: 10.1021/acs.biomac.5b00188.

36. Leppiniemi J, Lahtinen P, Paajanen A, et al., 2017, 3D-Printable Bioactivated Nanocellulose-Alginate Hydrogels. ACS Appl Mater Interfaces, 9(26):21959–70. DOI: 10.1021/acs.ami.7b02756.

37. Ojansivu M, Rashad A, Ahlinder A, et al., 2019, Wood-Based Nanocellulose and Bioactive Glass Modified Gelatin-Alginate Bioinks for 3D Bioprinting of Bone Cells. Biofabrication, 11(3):035010. DOI: 10.1088/1758-5090/ab0692.

38. Sakai S, Kawakami K, et al., 2007, Synthesis and Characterization of Both Ionically and Enzymatically Crosslinkable Alginate. Acta Biomater, 3(4):495–501. DOI: 10.1016/j.actbio.2006.12.002.

39. Sakai S, Hirose K, Taguchi K, et al., 2009, An Injectable, In Situ Enzymatically Gellable, Gelatin Derivative for Drug Delivery and Tissue Engineering. Biomaterials, 30(20):3371‑7. DOI: 10.1016/j.biomaterials.2009.03.030.

40. Nguyen D, Hägg DA, Forsman A, et al., 2017, Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink. Sci Reports, 7(1):658.DOI: 10.1038/s41598-017-00690-y.

41. Wang L, Xu M, Luo L, et al., 2018, Iterative Feedback Bioprinting-derived Cell-laden Hydrogel Scaffolds with Optimal Geometrical Fidelity and Cellular Controllability. Sci Rep, 8(1):2802. DOI: 10.1038/s41598-018-21274-4.

42. Piras CC, Fernandez-Prieto S, De Borggraeve WM, et al., 2017, Nanocellulosic Materials as Bioinks for 3D Bioprinting. Biomater Sci, 5(10):1988–92. DOI: 10.1039/c7bm00510e.

43. Xu W, Zhang X, Yang P, et al., 2019, Surface Engineered Biomimetic Inks Based on UV Cross-Linkable Wood Biopolymers for 3D Printing. Appl Mater Interfaces, 11(13):12389–400. DOI: 10.1021/acsami.9b03442.

44. Ajdary R, Huan S, Ezazi NZ, et al., 2019, Acetylated Nanocellulose for Single-Component Bioinks and Cell Proliferation on 3D-Printed Scaffolds. Biomacromol, 20(7):2770–8. DOI: 10.1021/acs.biomac.9b00527.

45. Sarker B, Singh R, Silva R, et al., 2014, Evaluation of Fibroblasts Adhesion and Proliferation on Alginate-Gelatin Crosslinked Hydrogel. Plos One, 9(9):e107952. DOI: 10.1371/journal.pone.0107952.

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing