Printing amphotericin B on microneedles using matrixassisted pulsed laser evaporation

Transdermal delivery of amphotericin B, a pharmacological agent with activity against fungi and parasitic protozoa, is a challenge since amphotericin B exhibits poor solubility in aqueous solutions at physiologic pH values. In this study, we have used a laser-based printing approach known as matrix-assisted pulsed laser evaporation to print amphotericin B on the surfaces of polyglycolic acid microneedles that were prepared using a combination of injection molding and drawing lithography. In a modified agar disk diffusion assay, the amphotericin B-loaded microneedles showed concentrationdependent activity against the yeast Candida albicans. The results of this study suggest that matrix-assisted pulsed laser evaporation may be used to print amphotericin B and other drugs that have complex solubility issues on the surfaces of microneedles.
1. Ostrosky-Zeichner L, Marr K A, Rex J H, et al., 2003, Amphotericin B: time for a new “gold standard”. Clinical Infectious Diseases, vol.37(3): 415–425.
https://dx.doi.org/10.1086/376634
2. Torrado J J, Espada R, Ballesteros M P, et al., 2008, Amphotericin B formulations and drug targeting. Journal of Pharmaceutical Sciences, vol.97(7): 2405–2425.
https://dx.doi.org/10.1002/jps.21179
3. Trejo W H and Bennett R E, 1963, Streptomyces nodosus sp. nov., the amphotericin-producing organism. Journal of Bacteriology, vol.85(2): 436–439.
4. Hamill R J, 2013, Amphotericin B formulations: A comparative review of efficacy and toxicity. Drugs, vol.73(9): 919–934.
https://dx.doi.org/10.1007/s40265-013-0069-4
5. Laniado-Laborin R and Cabrales-Vargas M N, 2009, Amphotericin B: Side effects and toxicity. Revista Iberoamericana de Micología, vol.26(4): 223–227.
https://dx.doi.org/10.1016/j.riam.2009.06.003
6. Khanna P, Strom J A, Malone J I, et al., 2008, Microneedle-based automated therapy for diabetes mellitus. Journal of Diabetes Science and Technology, vol.2(6): 1122–1129.
https:/dx./doi.org/10.1177/193229680800200621
7. Baria S H, Gohel M C, Mehta T A, et al., 2011, Microneedles: An emerging transdermal drug delivery system. Journal of Pharmacology and Pharmacotherapeutics, vol.64(1): 11–29.
https://dx.doi.org/10.1111/j.2042-7158.2011.01369.x
8. Arora A, Prausnitz M R, Mitragotri S, 2008, Micro-scale devices for transdermal drug delivery. International Journal of Pharmaceutics, vol.364(2): 227–236.
https://dx.doi.org/10.1016/j.ijpharm.2008.08.032
9. Gill H S, Denson D D, Burris B A, et al., 2008, Effect of microneedle design on pain in human volunteers. The Clinical Journal of Pain, vol. 24(7): 585–594.
https://dx.doi.org/10.1097/AJP.0b013e31816778f9
10. Nahar M, Mishra D, Dubey V, et al., 2008, Development, characterization, and toxicity evaluation of amphotericin B–loaded gelatin nanoparticles. Nanomedicine, vol.4(3): 252–261.
https://dx.doi.org/10.1016/j.nano.2008.03.007
11. Boehm R D, Miller P R, Schell W A, et al., 2013, Inkjet printing of amphotericin B onto biodegradable microneedles using piezoelectric inkjet printing. JOM, vol.65(4): 525–533.
https://dx.doi.org/10.1007/s11837-013-0574-7
12. Boehm R D, Daniels J, Stafslien S, et al., 2015, Polyglycolic acid microneedles modified with inkjet-deposited antifungal coatings. Biointerphases, vol.10(1): 011004.
https://dx.doi.org/10.1116/1.4913378
13. Boehm R D. Jaipan P, Skoog S A, et al., 2016, Inkjet deposition of itraconazole onto poly(glycolic acid) microneedle arrays. Biointerphases, vol.11(1): 011008.
http://dx.doi.org/10.1116/1.4941448
14. Wu P K, Ringeisen B R, Krizman D B, et al., 2003, Laser transfer of biomaterials: Matrix-assisted pulsed laser evaporation (MAPLE) and MAPLE Direct Write. Review of Scientific Instruments, vol.74(4): 2546–2557.
http://dx.doi.org/10.1063/1.1544081
15. Schmidmaier G, Wildemann B, Stemberger A, et al., 2001, Biodegradable poly(ᴅ,ʟ-Lactide) coating of implants for continuous release of growth factors. Journal of Biomedical Materials Research (Applied Biomaterials), vol.58(4): 449–455.
http://dx.doi.org/10.1002/jbm.1040
16. Kumar N, Langer R S, Domb A J, 2002, Polyanhydrides: An overview. Advanced Drug Delivery Reviews, vol.54(7): 889–910.
https://dx.doi.org/10.1016/S0169-409X(02)00050-9
17. Shieh L, Tamada J, Chen I, et al., 1994, Erosion of a new family of biodegradable polyanhydrides. Journal of Biomedical Materials Research, vol.28(12): 1465–1475.
https://dx.doi.org/10.1002/jbm.820281212
18. Göpferich A and Tessmar, J, 2002, Polyanhydride degradation and erosion. Advanced Drug Delivery Reviews, vol.54(7): 911–931.
https://dx.doi.org/10.1016/S0169-409X(02)00051-0
19. Patz T M, Doraiswamy A, Narayan R J, et al., 2007, Matrix assisted pulsed laser evaporation of biomaterial thin films. Materials Science and Engineering C, vol.27(3): 514–522.
https://dx.doi.org/10.1016/j.msec.2006.05.039
20. Iordache F, Grumezescu V, Grumezescu AM, et al., 2015, Gamma-cyclodextrin/usnic acid thin film fabricated by MAPLE for improving the resistance of medical surfaces to Staphylococcus aureus colonization. Applied Surface Science, vol.336(1): 407–412.
https://dx.doi.org/10.1016/j.apsusc.2015.01.081
21. Cristescu R, Popescu C, Socol G, et al., 2011, Deposition of antibacterial of poly(1,3-bis-(p-carboxyphenoxy propane)-co-(sebacic anhydride)) 20:80/gentamicin sulfate composite coatings by MAPLE. Applied Surface Science, vol.257(12): 5287–5292.
https://dx.doi.org/10.1016/j.apsusc.2010.11.141
22. Cristescu R, Popescu C, Dorcioman G, et al., 2013, Antimicrobial activity of biopolymer-antibiotic thin films fabricated by advanced pulsed laser methods. Applied Surface Science, vol.278: 211–213.
https://dx.doi.org/10.1016/j.apsusc.2013.01.062
23. Li X, Gao H, Murphy C J, et al., 2003, Nanoindentation of silver nanowires. Nano Letters, vol.3(11): 1495–1498.
https://dx.doi.org/10.1021/nl034525b
24. Machekposhti S A, Soltani M, Najafizadeh P, et al., 2017, Biocompatible polymer microneedle for topical/dermal delivery of tranexamic acid, Journal of Controlled Release, vol.261: 87–92.
https://dx.doi.org/10.1016/j.jconrel.2017.06.016
25. Capriotti K and Capriotti J A, 2015, Onychomycosis treated with a dilute povidone-iodine/dimethyl sulfoxide preparation, International Medical Case Reports Journal, vol.8: 231–3.
https://dx.doi.org/10.2147/IMCRJ.S90775
26. Piqué A, 2011, The matrix-assisted pulsed laser evaporation (MAPLE) process: Origins and future directions, Applied Physics A, vol.105(3): 517–528.
https://dx.doi.org/10.1007/s00339-011-6594-7
27. Bubb D M, McGill R A, Horwitz J S, et al., 2001, Laser-based processing of polymer nanocomposites for chemical sensing applications, Journal of Applied Physics, vol.89(10): 5739–5746.
http://dx.doi.org/10.1063/1.1362405
28. Paun I A, Ion V, Moldovan A, et al., 2012, MAPLE deposition of PEG:PLGA thin films, Applied Physcia A, vol.106(1): 197–205.
http://dx.doi.org/10.1007/s00339-011-6548-0
29. Jovanović Ž, Radosavljević A, Šiljegović M, et al., 2012, Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by γ-irradiation, Radiation Physics and Chemistry, vol.81(11): 1720–1728.
https://dx.doi.org/10.1016/j.radphyschem.2012.05.019
30. Majumdar P, Lee E, Gubbins N, et al., 2009, Synthesis and antimicrobial activity of quaternary ammonium-functionalized POSS (Q-POSS) and polysiloxane coatings containing Q-POSS, Polymer, vol.50(5): 1124–1133.
https://dx.doi.org/10.1016/j.polymer.2009.01.009
31. Narayan R J, Adiga S P, Pellin M J, et al., 2010, Atomic layer deposition of nanoporous biomaterials, Materials Today, vol.13(3): 60–64.
https://dx.doi.org/10.1016/S1369-7021(10)70035-3
32. Majumdar P, He J, Lee E, et al., 2010, Antimicrobial activity of polysiloxane coatings containing quaternary ammonium-functionalized polyhedral oligomeric silsesquioxane, Journal of Coatings Technology and Research, vol.7(4): 455–467.
https://dx.doi.org/10.1007/s11998-009-9197-x
33. Kugel A, Chisholm B, Ebert S, et al., 2010, Antimicrobial polysiloxane polymers and coatings containing pendant levofloxacin, Polymer Chemistry, vol.1(4): 442–452.
https://dx.doi.org/10.1039/B9PY00309F
34. Gittard S D, Ovsianikov A, Monteiro-Riviere N A, et al., 2009, Fabrication of polymer microneedles using a two-photon polymerization and micromolding process. Journal of Diabetes Science and Technology, vol.3(2): 304–311.
https://dx.doi.org/10.1177/193229680900300211
35. Park J H, Allen M G, Prausnitz M R, 2005, Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. Journal of Controlled Release, vol.104(1): 51–66.
https://dx.doi.org/10.1016/j.jconrel.2005.02.002
36. Singh P K, Sah P, Meher J G, et al., 2016, Macrophage-targeted chitosan anchored PLGA nanoparticles bearing doxorubicin and amphotericin B against visceral leishmaniasis. RSC Advances, vol.6(75): 71705–71718.
https://dx.doi.org/10.1039/C6RA06007B
37. Wallace V M, Dhumal N R, Zehentbauer F M, et al., 2015, Revisiting the aqueous solutions of dimethyl sulfoxide by spectroscopy in the mid- and near-infrared: Experiments and Car–Parrinello simulations. Journal of Physical Chemistry B, vol.119(46): 14780–14789.
https://dx.doi.org/10.1021/acs.jpcb.5b09196
38. Espinel-Ingroff A, Canton E, Fothergill A, et al., 2011, Quality control guidelines for amphotericin B, itraconazole, posaconazole, and voriconazole disk diffusion susceptibility tests with non-supplemented Mueller-Hinton Agar (CLSI M51-A document) for nondermatophyte filamentous fungi. Journal of Clinical Microbiology, vol.49(7): 2568–2572.
https://dx.doi.org/10.1128/JCM.00393-11