AccScience Publishing / IJB / Volume 3 / Issue 2 / DOI: 10.18063/IJB.2017.02.004
Cite this article
18
Download
604
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Printing amphotericin B on microneedles using matrixassisted pulsed laser evaporation 

Roger Sachan1 Panupong Jaipan2 Jennifer Y. Zhang3 Simone Degan3 Detlev Erdmann4 Jonathan Tedesco5 Lyndsi Vanderwal6 Shane J. Stafslien6 Irina Negut7 Anita Visan7 Gabriela Dorcioman7 Gabriel Socol7 Rodica Cristescu7 Douglas B. Chrisey8 Roger J. Narayan2*
Show Less
1 Wake Early College of Health and Sciences, Raleigh, North Carolina, USA
2 Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Raleigh, North Carolina, USA
3 Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA
4 Department of Surgery, Division of Plastic, Reconstructive, Maxillofacial and Oral Surgery, Duke University Medical Center, Durham, North Carolina, USA
5 Keyence Corporation of America, Elmwood Park, New Jersey, USA
6 Office of Research and Creativity Activity, North Dakota State University, 1715 Research Park Drive, Fargo ND, USA
7 National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele, Romania
8 Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, USA
IJB 2017, 3(2), 147–157; https://doi.org/10.18063/IJB.2017.02.004
© Invalid date by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Transdermal delivery of amphotericin B, a pharmacological agent with activity against fungi and parasitic protozoa, is a challenge since amphotericin B exhibits poor solubility in aqueous solutions at physiologic pH values. In this study, we have used a laser-based printing approach known as matrix-assisted pulsed laser evaporation to print amphotericin B on the surfaces of polyglycolic acid microneedles that were prepared using a combination of injection molding and drawing lithography. In a modified agar disk diffusion assay, the amphotericin B-loaded microneedles showed concentrationdependent activity against the yeast Candida albicans. The results of this study suggest that matrix-assisted pulsed laser evaporation may be used to print amphotericin B and other drugs that have complex solubility issues on the surfaces of microneedles.

Keywords
matrix-assisted pulsed laser evaporation
microneedle
amphotericin B
antifungal
References

1.    Ostrosky-Zeichner L, Marr K A, Rex J H, et al., 2003, Amphotericin B: time for a new “gold standard”. Clinical Infectious Diseases, vol.37(3): 415–425. 
https://dx.doi.org/10.1086/376634
2.    Torrado J J, Espada R, Ballesteros M P, et al., 2008, Amphotericin B formulations and drug targeting. Journal of Pharmaceutical Sciences, vol.97(7): 2405–2425. 
https://dx.doi.org/10.1002/jps.21179
3.    Trejo W H and Bennett R E, 1963, Streptomyces nodosus sp. nov., the amphotericin-producing organism. Journal of Bacteriology, vol.85(2): 436–439. 
4.    Hamill R J, 2013, Amphotericin B formulations: A comparative review of efficacy and toxicity. Drugs, vol.73(9): 919–934. 
https://dx.doi.org/10.1007/s40265-013-0069-4
5.    Laniado-Laborin R and Cabrales-Vargas M N, 2009, Amphotericin B: Side effects and toxicity. Revista Iberoamericana de Micología, vol.26(4): 223–227.
https://dx.doi.org/10.1016/j.riam.2009.06.003
6.    Khanna P, Strom J A, Malone J I, et al., 2008, Microneedle-based automated therapy for diabetes mellitus. Journal of Diabetes Science and Technology, vol.2(6): 1122–1129. 
https:/dx./doi.org/10.1177/193229680800200621
7.    Baria S H, Gohel M C, Mehta T A, et al., 2011, Microneedles: An emerging transdermal drug delivery system. Journal of Pharmacology and Pharmacotherapeutics, vol.64(1): 11–29. 
https://dx.doi.org/10.1111/j.2042-7158.2011.01369.x
8.    Arora A, Prausnitz M R, Mitragotri S, 2008, Micro-scale devices for transdermal drug delivery. International Journal of Pharmaceutics, vol.364(2): 227–236. 
https://dx.doi.org/10.1016/j.ijpharm.2008.08.032
9.    Gill H S, Denson D D, Burris B A, et al., 2008, Effect of microneedle design on pain in human volunteers. The Clinical Journal of Pain, vol. 24(7): 585–594. 
https://dx.doi.org/10.1097/AJP.0b013e31816778f9
10.    Nahar M, Mishra D, Dubey V, et al., 2008, Development, characterization, and toxicity evaluation of amphotericin B–loaded gelatin nanoparticles. Nanomedicine, vol.4(3): 252–261. 
https://dx.doi.org/10.1016/j.nano.2008.03.007
11.    Boehm R D, Miller P R, Schell W A, et al., 2013, Inkjet printing of amphotericin B onto biodegradable microneedles using piezoelectric inkjet printing. JOM, vol.65(4): 525–533. 
https://dx.doi.org/10.1007/s11837-013-0574-7
12.    Boehm R D, Daniels J, Stafslien S, et al., 2015, Polyglycolic acid microneedles modified with inkjet-deposited antifungal coatings. Biointerphases, vol.10(1): 011004. 
https://dx.doi.org/10.1116/1.4913378
13.    Boehm R D. Jaipan P, Skoog S A, et al., 2016, Inkjet deposition of itraconazole onto poly(glycolic acid) microneedle arrays. Biointerphases, vol.11(1): 011008. 
http://dx.doi.org/10.1116/1.4941448
14.    Wu P K, Ringeisen B R, Krizman D B, et al., 2003, Laser transfer of biomaterials: Matrix-assisted pulsed laser evaporation (MAPLE) and MAPLE Direct Write. Review of Scientific Instruments, vol.74(4): 2546–2557. 
http://dx.doi.org/10.1063/1.1544081
15.    Schmidmaier G, Wildemann B, Stemberger A, et al., 2001, Biodegradable poly(ᴅ,ʟ-Lactide) coating of implants for continuous release of growth factors. Journal of Biomedical Materials Research (Applied Biomaterials), vol.58(4): 449–455. 
http://dx.doi.org/10.1002/jbm.1040
16.    Kumar N, Langer R S, Domb A J, 2002, Polyanhydrides: An overview. Advanced Drug Delivery Reviews, vol.54(7): 889–910. 
https://dx.doi.org/10.1016/S0169-409X(02)00050-9
17.    Shieh L, Tamada J, Chen I, et al., 1994, Erosion of a new family of biodegradable polyanhydrides. Journal of Biomedical Materials Research, vol.28(12): 1465–1475. 
https://dx.doi.org/10.1002/jbm.820281212
18.    Göpferich A and Tessmar, J, 2002, Polyanhydride degradation and erosion. Advanced Drug Delivery Reviews, vol.54(7): 911–931. 
https://dx.doi.org/10.1016/S0169-409X(02)00051-0
19.    Patz T M, Doraiswamy A, Narayan R J, et al., 2007, Matrix assisted pulsed laser evaporation of biomaterial thin films. Materials Science and Engineering C, vol.27(3): 514–522. 
https://dx.doi.org/10.1016/j.msec.2006.05.039
20.    Iordache F, Grumezescu V, Grumezescu AM, et al., 2015, Gamma-cyclodextrin/usnic acid thin film fabricated by MAPLE for improving the resistance of medical surfaces to Staphylococcus aureus colonization. Applied Surface Science, vol.336(1): 407–412. 
https://dx.doi.org/10.1016/j.apsusc.2015.01.081
21.    Cristescu R, Popescu C, Socol G, et al., 2011, Deposition of antibacterial of poly(1,3-bis-(p-carboxyphenoxy propane)-co-(sebacic anhydride)) 20:80/gentamicin sulfate composite coatings by MAPLE. Applied Surface Science, vol.257(12): 5287–5292. 
https://dx.doi.org/10.1016/j.apsusc.2010.11.141
22.    Cristescu R, Popescu C, Dorcioman G, et al., 2013, Antimicrobial activity of biopolymer-antibiotic thin films fabricated by advanced pulsed laser methods. Applied Surface Science, vol.278: 211–213. 
https://dx.doi.org/10.1016/j.apsusc.2013.01.062
23.    Li X, Gao H, Murphy C J, et al., 2003, Nanoindentation of silver nanowires. Nano Letters, vol.3(11): 1495–1498. 
https://dx.doi.org/10.1021/nl034525b
24.    Machekposhti S A, Soltani M, Najafizadeh P, et al., 2017, Biocompatible polymer microneedle for topical/dermal delivery of tranexamic acid, Journal of Controlled Release, vol.261: 87–92. 
https://dx.doi.org/10.1016/j.jconrel.2017.06.016
25.    Capriotti K and Capriotti J A, 2015, Onychomycosis treated with a dilute povidone-iodine/dimethyl sulfoxide preparation, International Medical Case Reports Journal, vol.8: 231–3. 
https://dx.doi.org/10.2147/IMCRJ.S90775
26.    Piqué A, 2011, The matrix-assisted pulsed laser evaporation (MAPLE) process: Origins and future directions, Applied Physics A, vol.105(3): 517–528. 
https://dx.doi.org/10.1007/s00339-011-6594-7 
27.    Bubb D M, McGill R A, Horwitz J S, et al., 2001, Laser-based processing of polymer nanocomposites for chemical sensing applications, Journal of Applied Physics, vol.89(10): 5739–5746. 
http://dx.doi.org/10.1063/1.1362405
28.    Paun I A, Ion V, Moldovan A, et al., 2012, MAPLE deposition of PEG:PLGA thin films, Applied Physcia A, vol.106(1): 197–205. 
http://dx.doi.org/10.1007/s00339-011-6548-0
29.    Jovanović Ž, Radosavljević A, Šiljegović M, et al., 2012, Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by γ-irradiation, Radiation Physics and Chemistry, vol.81(11): 1720–1728. 
https://dx.doi.org/10.1016/j.radphyschem.2012.05.019
30.    Majumdar P, Lee E, Gubbins N, et al., 2009, Synthesis and antimicrobial activity of quaternary ammonium-functionalized POSS (Q-POSS) and polysiloxane coatings containing Q-POSS, Polymer, vol.50(5): 1124–1133. 
https://dx.doi.org/10.1016/j.polymer.2009.01.009
31.    Narayan R J, Adiga S P, Pellin M J, et al., 2010, Atomic layer deposition of nanoporous biomaterials, Materials Today, vol.13(3): 60–64. 
https://dx.doi.org/10.1016/S1369-7021(10)70035-3
32.    Majumdar P, He J, Lee E, et al., 2010, Antimicrobial activity of polysiloxane coatings containing quaternary ammonium-functionalized polyhedral oligomeric silsesquioxane, Journal of Coatings Technology and Research, vol.7(4): 455–467. 
https://dx.doi.org/10.1007/s11998-009-9197-x 
33.    Kugel A, Chisholm B, Ebert S, et al., 2010, Antimicrobial polysiloxane polymers and coatings containing pendant levofloxacin, Polymer Chemistry, vol.1(4): 442–452. 
https://dx.doi.org/10.1039/B9PY00309F
34.    Gittard S D, Ovsianikov A, Monteiro-Riviere N A, et al., 2009, Fabrication of polymer microneedles using a two-photon polymerization and micromolding process. Journal of Diabetes Science and Technology, vol.3(2): 304–311. 
https://dx.doi.org/10.1177/193229680900300211
35.    Park J H, Allen M G, Prausnitz M R, 2005, Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. Journal of Controlled Release, vol.104(1): 51–66. 
https://dx.doi.org/10.1016/j.jconrel.2005.02.002
36.    Singh P K, Sah P, Meher J G, et al., 2016, Macrophage-targeted chitosan anchored PLGA nanoparticles bearing doxorubicin and amphotericin B against visceral leishmaniasis. RSC Advances, vol.6(75): 71705–71718. 
https://dx.doi.org/10.1039/C6RA06007B
37.    Wallace V M, Dhumal N R, Zehentbauer F M, et al., 2015, Revisiting the aqueous solutions of dimethyl sulfoxide by spectroscopy in the mid- and near-infrared: Experiments and Car–Parrinello simulations. Journal of Physical Chemistry B, vol.119(46): 14780–14789. 
https://dx.doi.org/10.1021/acs.jpcb.5b09196
38.    Espinel-Ingroff A, Canton E, Fothergill A, et al., 2011, Quality control guidelines for amphotericin B, itraconazole, posaconazole, and voriconazole disk diffusion susceptibility tests with non-supplemented Mueller-Hinton Agar (CLSI M51-A document) for nondermatophyte filamentous fungi. Journal of Clinical Microbiology, vol.49(7): 2568–2572. 
https://dx.doi.org/10.1128/JCM.00393-11

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing