AccScience Publishing / IJB / Volume 3 / Issue 2 / DOI: 10.18063/IJB.2017.02.003
Cite this article
37
Download
718
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

A dual crosslinking strategy to tailor rheological properties of gelatin methacryloyl 

Miaomiao Zhou1† Bae Hoon Lee2† Lay Poh Tan1,3*
Show Less
1 School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
2 Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, Wenzhou 325011, China
3 Singapore Centre for 3D Printing (SC3DP) 639798, Singapore
IJB 2017, 3(2), 130–137; https://doi.org/10.18063/IJB.2017.02.003
© Invalid date by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

3D bioprinting is an emerging technology that enables the fabrication of three-dimensional organised cellular constructs. One of the major challenges in 3D bioprinting is to develop a material to meet the harsh requirements (cellcompatibility, printability, structural stability post-printing and bio-functionality to regulate cell behaviours) suitable for printing. Gelatin methacryloyl (GelMA) has recently emerged as an attractive biomaterial in tissue engineering because it satisfies the requirements of bio-functionality and mechanical tunability. However, poor rheological property such as low viscosity at body temperature inhibits its application in 3D bioprinting. In this work, an enzymatic crosslinking method triggered by Ca2+-independent microbial transglutaminase (MTGase) was introduced to catalyse isopeptide bonds formation between chains of GelMA, which could improve its rheological behaviours, specifically its viscosity. By combining enzymatic crosslinking and photo crosslinking, it is possible to tune the solution viscosity and quickly stabilize the gelatin macromolecules at the same time. The results showed that the enzymatic crosslinking can increase the solution viscosity. Subsequent photo crosslinking could aid in fast stabilization of the structure and make handling easy.

Keywords
microbial transglutaminase
enzymatic crosslinking
photo crosslinking
viscosity
References

1.    Abouna G M, 2008, Organ shortage crisis: Problems and possible solutions. Transplantation Proceedings, vol.40(1): 34–38.
http://dx.doi.org/10.1016/j.transproceed.2007.11.067
2.    Ikada Y, 2006, Tissue engineering: Fundamentals and applications, Vol. 8, San Diego, USA.
3.    Wüst S, Müller R and Hofmann, 2011, Controlled positioning of cells in biomaterials—Approaches towards 3D tissue printing. Journal of  Functional Biomaterials, vol.2(3): 119–154.
    http://dx.doi.org/10.3390/jfb2030119
4.    Gu B K, Choi D J, Park S J, et al., 2016, 3-dimensional bioprinting for tissue engineering applications. Biomaterials Research, 2016. , vol.20(1): 12.
5.    Murphy S V and Atala A, 2014, 3D bioprinting of tissues and organs. Nature Biotechnology, vol.32(8): 773–785.
    http://dx.doi.org/10.1038/nbt.2958
6.    Jungst T, Smolan W, Schacht K, et al., 2016, Strategies and molecular design criteria for 3D printable hydrogels. Chemical Review, vol.116(3): 1496–1539.
    http://dx.doi.org/10.1021/acs.chemrev.5b00303
7.    Hölzl K, Lin S, Tytgat L, et al., 2016, Bioink properties before, during and after 3D bioprinting. Biofabrication, vol.8(3): 032002.
    http://dx.doi.org/10.1088/1758-5090/8/3/032002
8.    Carrow, J K, et al., 2015, Polymers for bioprinting. In: Atala A and Yoo J J (editors), Essentials of 3D biofabrication and translation. Oxford, UK: Academic Press.
9.    Peppas N A, Hilt JZ, Khademhosseini A, et al., 2006, Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Advanced Materials, vol.18(11): 1345–1360.
    http://dx.doi.org/10.1002/adma.200501612
10.    Gaetani R, Doevendans P A, Metz C H, et al., 2012, Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials, vol.33(6): 1782–1790.
    http://dx.doi.org/10.1016/j.biomaterials.2011.11.003
11.    Khalil S and Sun W, 2009, Bioprinting endothelial cells with alginate for 3D tissue constructs. Journal of Biomechanical  Engineering, vol.131(11): 111002.
    http://dx.doi.org/10.1115/1.3128729
12.    Brandl F, Sommer F and Goepferich A, 2007, Rational design of hydrogels for tissue engineering: Impact of physical factors on cell behavior. Biomaterials, vol.28(2): 134–146.
    http://dx.doi.org/10.1016/j.biomaterials.2006.09.017
13.    DeForest C A and KS Anseth, 2012, Advances in bioactive hydrogels to probe and direct cell fate. Annual Review of Chemical and Biomolecular Engineering, vol.3: 421–444.
    http://dx.doi.org/10.1146/annurev-chembioeng-062011-080945
14.    Markstedt K, Mantas A, Tournier I, et al., 2015, 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules, vol.16(5): 1489–1496.
    http://dx.doi.org/10.1021/acs.biomac.5b00188
15.    Park J Y, Choi J C, Shim J H, et al., 2014, A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication, vol.6(3): 035004.
    http://dx.doi.org/10.1088/1758-5082/6/3/035004
16.    Duan B, Hockaday L A, Kang K H, et al., 2013, 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. Journal of Biomedical Materials Research Part A, vol.101A(5): 1255–1264.
    http://dx.doi.org/10.1002/jbm.a.34420
17.    Shanjani Y, Pan C C, Elomaa L, et al., 2015, A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication, vol.7(4): 045008.
http://dx.doi.org/10.1088/1758-5090/7/4/045008
18.    Klotz BJ, Gawlitta D, Rosenberg AJ, et al., 2016, Gelatin-methacryloyl hydrogels: Towards biofabrication-based tissue repair. Trends in Biotechnology, vol.34(5): 394–407.
    http://dx.doi.org/10.1016/j.tibtech.2016.01.002
19.    Wang X, Yan Y, Pan Y, et al., 2006, Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Engineering, vol.12(1): 83–90.
    http://dx.doi.org/10.1089/ten.2006.12.83
20.    Yan Y, Wang X, Pan Y, et al., 2005, Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials, vol.26(29): 5864–5871.
    http://dx.doi.org/10.1016/j.biomaterials.2005.02.027
21.    Zhang T, Yan Y, Wang X, et al., 2007, Three-dimensional gelatin and gelatin/hyaluronan hydrogel structures for traumatic brain injury. Journal of Bioactive and Compatible Polymers, vol.22(1): 19–29.
    http://dx.doi.org/10.1177/0883911506074025
22.    Yan Y, Wang X, Xiong Z, et al., 2005, Direct construction of a three-dimensional structure with cells and hydrogel. Journal of Bioactive and Compatible Polymers, vol.20(3): 259–269.
    http://dx.doi.org/10.1177/0883911505053658
23.    Yue K, Trujillo-de Santiago G, Alvarez M M, et al., 2015, Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, vol.73: 254–271.
    http://dx.doi.org/10.1016/j.biomaterials.2015.08.045
24.    Schuurman W, Levett P A, Pot M W, et al., 2013, Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue – engineered cartilage constructs. Macromolecular Bioscience, vol.13(5): 551–561.
    http://dx.doi.org/10.1002/mabi.201200471
25.    Du Y, Lo E, Ali S, et al., 2008, Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proceedings of the National Academy of Sciences, vol.105(28): 9522–9527.
    http://dx.doi.org/10.1073/pnas.0801866105
26.    Yeh J, Ling Y, Karp J M, et al., 2006, Micromolding of shape-controlled, harvestable cell-laden hydrogels. Biomaterials, vol.27(31): 5391–5398.
    http://dx.doi.org/10.1016/j.biomaterials.2006.06.005
27.    Nichol J W, Koshy S T, Bae H, et al., 2010, Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, vol.31(21): 5536–5544.
    http://dx.doi.org/10.1016/j.biomaterials.2010.03.064
28.    Billiet T, Gevaert E, De Schryver T, et al., 2014, The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, vol.35(1): 49–62.
    http://dx.doi.org/10.1016/j.biomaterials.2013.09.078
29.    Zhao L, Lib X, Zhao J, et al., 2016, A novel smart injectable hydrogel prepared by microbial transglutaminase and human-like collagen: Its characterization and biocompatibility. Materials Science and Engineering: C, vol.68(1): 317–326.
    http://dx.doi.org/10.1016/j.msec.2016.05.108
30.    Kieliszek M and Misiewicz A, 2014, Microbial transglutaminase and its application in the food industry. A review. Folia Microbiologica, vol.59(3): 241–250.
    http://dx.doi.org/10.1007/s12223-013-0287-x
31.    Williams C G, Malik A N, Kim T K, et al., 2005, Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials, vol.26(11): 1211–1218.
    http://dx.doi.org/10.1016/j.biomaterials.2004.04.024
32.    Shirahama H, Lee BH, Tan LP, et al., 2016, Precise tuning of facile one-pot gelatin methacryloyl (GeLMA) synthesis. Scientific Reports, vol.6: 31036.
    http://dx.doi.org/10.1038/srep31036
33.    Lee B H, Shirahama H, Cho N J, et al., 2015, Efficient and controllable synthesis of highly substituted gelatin methacrylamide for mechanically stiff hydrogels. RSC Advances, vol.5(128): 106094–106097.
    http://dx.doi.org/10.1039/C5RA22028A
34.    McDermott M K, Chen T, Williams C M, et al., 2004, Mechanical properties of biomimetic tissue adhesive based on the microbial transglutaminase-catalyzed crosslinking of gelatin. Biomacromolecules, vol.5(4): 1270–1279.
    http://dx.doi.org/10.1021/bm034529a
35.    Wüst S, Godla M E, Müller R, et al., 2014, Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomaterialia, vol.10(2): 630–640.
    http://dx.doi.org/10.1016/j.actbio.2013.10.016.
36.    Malda J, Visser J, Melchels F P, et al., 2013, 25th anniversary article: Engineering hydrogels for biofabrication. Advanced Materials, vol.25(36): 5011–5028.
    http://dx.doi.org/10.1002/adma.201302042
37.    Das S, Pati F, Chameettachal S, et al., 2013, Enhanced redifferentiation of chondrocytes on microperiodic silk/gelatin scaffolds: Toward tailor-made tissue engineering. Biomacromolecules, vol.14(2): 311–321.
    http://dx.doi.org/10.1021/bm301193t
38.    Li H, S Liu and L Lin, 2016, Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide. International Journal of Bioprinting, vol.2(2): 54–66.
    http://dx.doi.org/10.18063/IJB.2016.02.007
39.    Yi J, Kim Y T, Bae H J, et al., 2006, Influence of transglutaminase‐induced cross‐linking on properties of fish gelatin films. Journal of Food Science, vol.71(9): E376–E383.
    http://dx.doi.org/10.1111/j.1750-3841.2006.00191.x
40.    Bae H J, Darby D O, Kimmel R M, et al., 2009, Effects of transglutaminase-induced cross-linking on properties of fish gelatin-nanoclay composite film. Food Chemistry, vol.114(1): 180–189.
http://dx.doi.org/10.1016/j.foodchem.2008.09.057

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing