AccScience Publishing / IJB / Volume 10 / Issue 2 / DOI: 10.36922/ijb.2590
Cite this article
42
Download
478
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Optimizing implant lattice design for large distal femur defects: Stimulating interface bone growth to enhance osseointegration

Chun-Ming Chang1 Pei-Chun Wong2 Sin-Liang Ou3 Chih-En Ko4 Yu-Tzu Wang4*
Show Less
1 Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan
2 Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
3 Department of Biomedical Engineering, Da-Yeh University, Changhua, Taiwan
4 Department of Mechanical and Electro-Mechanical Engineering, TamKang University, New Taipei City, Taiwan
IJB 2024, 10(2), 2590 https://doi.org/10.36922/ijb.2590
Submitted: 20 December 2023 | Accepted: 20 February 2024 | Published: 21 March 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Large bone defects in the distal femur present a significant challenge due to the lack of inherent self-healing capabilities. Traditional approaches, such as utilizing polymethyl methacrylate (PMMA) in conjunction with a plate for distal femur reconstruction, have shown unsatisfactory osseointegration outcome, which leads to complications. To address this challenge, this study focuses on developing a lattice-structured implant for reconstructing distal femoral bone defects. The lattice geometry is based on the cuboctahedron lattice, with its design optimized through the adjustment of pillar diameter and arrangement angle. The lattice structure is designed to stimulate the surrounding bone, ultimately enhancing osseointegration in distal femur reconstruction. Finite element analysis revealed that for promoting bone ingrowth toward the implant, setting the optimal lattice structure parameters, i.e., a 45° arrangement angle and a 0.8 mm pillar diameter, is required. Fabricated using state-of-the-art metal three-dimensional printing, the implant underwent rigorous validation through biomechanical testing, in vitro biological assays, and animal experiments. The comprehensive results affirmed the bioactivity of the lattice-structured implant, underscoring its capability to improve osseointegration in distal femoral defect reconstruction.

Keywords
Lattice
Osseointegration
Bone strain
Osteoconductive
Distal femur
Mechanical behavior
Funding
This work was supported by the National Science and Technology Council (Project NSTC 112-2221-E-032-004-MY3).
References
  1. Wiese A, Pape HC. Bone defects caused by high-energy injuries, bone loss, infected nonunions, and nonunions. Orthop Clin North Am. 2010;41(1):1-4. doi: 10.1016/j.ocl.2009.07.003
  2. Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2005;74(4):782-788. doi: 10.1002/jbm.b.30291
  3. Jones AC, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt MA. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials. 2007;28(15):2491-2504. doi: 10.1016/j.biomaterials.2007.01.046
  4. Eil Bakhtiari SS, Bakhsheshi-Rad HR, Karbasi S, et al. Polymethyl methacrylate-based bone cements containing carbon nanotubes and graphene oxide: an overview of physical, mechanical, and biological properties. Polymers. 2020;12(7):1469. doi: 10.3390/polym12071469
  5. Vaishya R, Chauhan M, Vaish A. Bone cement. J Clin Orthop Trauma. 2013;4(4):157-163. doi: 10.1016/j.jcot.2013.11.005
  6. Gundapaneni D, Goswami T. Thermal isotherms in PMMA and cell necrosis during total hip arthroplasty. J Appl Biomater Funct Mater. 2014;12(3):193-202. doi: 10.5301/jabfm.5000196
  7. Revie IC, Wallace ME, Orr JF. The effect of PMMA thickness on thermal bone necrosis around acetabular sockets. Proc Inst Mech Eng H. 1994;208(1):45-51. doi: 10.1177/095441199420800106
  8. Hasandoost L, Rodriguez O, Alhalawani A, et al. The role of poly(methyl methacrylate) in management of bone loss and infection in revision total knee arthroplasty: a review. J Funct Biomater. 2020;11(2):25. doi: 10.3390/jfb11020025
  9. Mnaymneh W, Malinin TI, Lackman RD, Hornicek FJ, Ghandur-Mnaymneh L. Massive distal femoral osteoarticular allografts after resection of bone tumors. Clin Orthop Relat Res. 1994;303:103-115. doi: 10.1097/00003086-199406000-00013
  10. Kim T, See CW, Li X, Zhu D. Orthopedic implants and devices for bone fractures and defects: past, present and perspective. Eng Regen. 2020;1:6-18. doi: 10.1016/j.engreg.2020.05.003
  11. Song Y, Xu DS, Yang R, Li D, Wu WT, Guo ZX. Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys. Mater Sci Eng A. 1999;260(1):269-274. doi: 10.1016/S0921-5093(98)00886-7
  12. Velasco MA, Narváez-Tovar CA, Garzón-Alvarado DA. Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. Biomed Res Int. 2015;2015:729076. doi: 10.1155/2015/729076
  13. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants – a review. Prog Mater Sci. 2009;54(3):397-425. doi: 10.1016/j.pmatsci.2008.06.004
  14. Liu Y, Li K, Wu H, et al. Synthesis of Ti-Ta alloys with dual structure by incomplete diffusion between elemental powders. J Mech Behav Biomed Mater. 2015;51:302-312. doi: 10.1016/j.jmbbm.2015.07.004
  15. Arabnejad S, Burnett Johnston R, Pura JA, Singh B, Tanzer M, Pasini D. High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta Biomater. 2016;30:345-356. doi: 10.1016/j.actbio.2015.10.048
  16. Hsieh MT, Begley MR, Valdevit L. Architected implant designs for long bones: advantages of minimal surface-based topologies. Mater Des. 2021;207:109838. doi: 10.1016/j.matdes.2021.109838
  17. Mikuni-Takagaki Y, Suzuki Y, Kawase T, Saito S. Distinct responses of different populations of bone cells to mechanical stress. Endocrinology. 1996;137(5):2028-2035. doi: 10.1210/endo.137.5.8612544
  18. Ehrlich PJ, Lanyon LE. Mechanical strain and bone cell function: a review. Osteoporos Int. 2002;13(9):688-700. doi: 10.1007/s001980200095
  19. Al-Tamimi AA, Almeida H, Bartolo P. Structural optimization for medical implants through additive manufacturing. Prog Addit Manuf. 2020;5(2):95-110. doi: 10.1007/s40964-020-00109-7
  20. Burton HE, Eisenstein NM, Lawless BM, et al. The design of additively manufactured lattices to increase the functionality of medical implants. Mater Sci Eng C Mater Biol Appl. 2019;94:901-908. doi: 10.1016/j.msec.2018.10.052
  21. Wang P, Li X, Luo S, Nai MLS, Ding J, Wei J. Additively manufactured heterogeneously porous metallic bone with biostructural functions and bone-like mechanical properties. J Mater Sci Technol. 2021;62:173-179. doi: 10.1016/j.jmst.2020.05.056
  22. Bucklen BS, Wettergreen WA, Yuksel E, Liebschner MAK. Bone-derived CAD library for assembly of scaffolds in computer-aided tissue engineering. Virtual Phys Prototyp. 2008;3(1):13-23. doi: 10.1080/17452750801911352
  23. Van Bael S, Chai YC, Truscello S, et al. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater. 2012;8(7):2824- 2834. doi: 10.1016/j.actbio.2012.04.001
  24. Guoqing Z, Junxin L, Chengguang Z, Juanjuan X, Xiaoyu Z, Anmin W. Design optimization and manufacturing of bio-fixed tibial implants using 3D printing technology. J Mech Behav Biomed Mater. 2021;117:104415. doi: 10.1016/j.jmbbm.2021.104415
  25. Mishra RN, Singh MK, Kumar V. Biomechanical analysis of human femur using finite element method: a review study. Mater Today: Proc. 2022;56(1):384-389. doi: 10.1016/j.matpr.2022.01.222
  26. Alabort E, Barba D, Reed RC. Design of metallic bone by additive manufacturing. Scr Mater. 2019;164:110-114. doi: 10.1016/j.scriptamat.2019.01.022
  27. Lozanovski B, Leary M, Tran P, et al. Computational modelling of strut defects in SLM manufactured lattice structures. Mater Des. 2019;171:107671. doi: 10.1016/j.matdes.2019.107671
  28. Ejnisman L, Gobbato B, de França Camargo AF, Zancul E. Three-dimensional printing in orthopedics: from the basics to surgical applications. Curr Rev Musculoskelet Med. 2021;14(1):1-8. doi: 10.1007/s12178-020-09691-3
  29. Wang YT, Hsu CK. Novel parameter optimization lattice design for improving osseointegration in hypo-loading regions – a case study of maxillary tumor reconstruction implant. Mater Des. 2023;233(2023):112274. doi: 10.1016/j.matdes.2023.112274
  30. Lee KS, Lee WC, Kim PG, et al. Biomechanical evaluation of initial stability of a root analogue implant design withdrilling protocol: a 3D finite element analysis. Appl Sci. 2020;10:4104. doi: 10.3390/app10124104
  31. Delikanli YE, Kayacan MC. Design, manufacture, and fatigue analysis of lightweight hip implants. J Appl Biomater Funct Mater. 2019;17(2):2280800019836830. doi: 10.1177/2280800019836830
  32. Kang J, Dong E, Li X, et al. Topological design and biomechanical evaluation for 3D printed multi-segment artificial vertebral implants. Biomater Adv. 2021;127: 112250. doi: 10.1016/j.msec.2021.112250
  33. Kang H, Lin CY, Hollister SJ. Topology optimization of three dimensional tissue engineering scaffold architectures for prescribed bulk modulus and diffusivity. Struct Multidiscipl Optim. 2010;42(4):633-644. doi: 10.1007/s00158-010-0508-8
  34. Rayhan SB, Rahman M. Modeling elastic properties of unidirectional composite materials using Ansys material designer. Int J Struct Integr. 2020;28:1892-1900. doi: 10.1016/j.prostr.2020.11.012
  35. Raja BK, Arun KC, Dheenadayalan J. Classification of distal femur fractures and their clinical relevance. Trauma Int. 2016;2(1):3-6. doi: 10.13107/ti.2016.v02i01.012
  36. Schmidt U, Penzkofer R, Bachmaier S, Augat P. Implant material and design alter construct stiffness in distal femur locking plate fixation: a pilot study. Clin Orthop Relat Res. 2013;471(9):2808-2814. doi: 10.1007/s11999-013-2867-0
  37. Ahirwar H, Gupta VK, Nanda HS. Finite element analysis of fixed bone plates over fractured femur model. Comput Methods Biomech Biomed Engin. 2021;24(15): 1742-1751. doi: 10.1080/10255842.2021.1918123
  38. Chethan KN, Bhat SN, Shenoy SB. Biomechanics of hip joint: a systematic review. Int J Eng Technol. 2018;7(3): 1672-1676. doi: 10.14419/ijet.v7i3.15231
  39. Darwish SM, Al-Samhan AM. Optimization of artificial hip joint parameters. Materwiss Werksttech. 2009;40(3):218-223. doi: 10.1002/mawe.200900430
  40. Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng A. 1998;243(1):231-236. doi: 10.1016/S0921-5093(97)00806-X
  41. Reina-Romo E, Sampietro-Fuentes A, Gómez-Benito MJ, Domínguez J, Doblaré M, García-Aznar JM. Biomechanical response of a mandible in a patient affected with hemifacial microsomia before and after distraction osteogenesis. Med Eng Phys. 2010;32(8):860-866. doi: 10.1016/j.medengphy.2010.05.012
  42. Zhang Y, Yan C, Zhang L, Zhang W, Wang G. Comparison of ordinary cannulated compression screw and double-head cannulated compression screw fixation in vertical femoral neck fractures. Biomed Res Int. 2020;2020:2814548. doi: 10.1155/2020/2814548
  43. Maia PW, Teixeira ML, Scavone de Macedo LG, et al. Use of platelet-rich fibrin associated with xenograft in critical bone defects: histomorphometric study in rabbits. Symmetry. 2019;11(10):1293. doi: 10.3390/sym11101293
  44. Bai MY, Wang CW, Wang JY, Lin MF, Chan WP. Three-dimensional structure and cytokine distribution of platelet-rich fibrin. Clinics (Sao Paulo). 2017;72(2):116-124. doi: 10.6061/clinics/2017(02)09
  45. Wu PK, Lee CW, Sun WH, Lin CL. Biomechanical analysis and design method for patient-specific reconstructive implants for large bone defects of the distal lateral femur. Biosensors. 2022;12(1):4. doi: 10.3390/bios12010004
  46. Bergmann G, Deuretzbacher G, Heller M, et al. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34(7):859-871. doi: 10.1016/s0021-9290(01)00040-9
  47. Callaghan JP, McGill SM. Low back joint loading and kinematics during standing and unsupported sitting. Ergonomics. 2001;44(3):280-294. doi: 10.1080/00140130118276
  48. Hamandi F, Laughlin R, Goswami T. Failure analysis of PHILOS plate construct used for pantalar arthrodesis paper II—screws and FEM simulations. Metals. 2018;8(4):279. doi: 10.3390/met8040279
  49. Arabnejad S, Burnett Johnston R, Pura JA, Singh B, Tanzer M, Pasini D. High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta Biomater. 2016;30: 345-356. doi: 10.1016/j.actbio.2015.10.048
  50. Park JY, Park SH, Kim MG, Park SH, Yoo TH, Kim MS. Biomimetic scaffolds for bone tissue engineering. Adv Exp Med Biol. 2018;1064:109-121. doi: 10.1007/978-981-13-0445-3_7
  51. Boyle C, Kim IY. Comparison of different hip prosthesis shapes considering micro-level bone remodeling and stress-shielding criteria using three-dimensional design space topology optimization. J Biomech. 2011;44(9):1722-1728. doi: 10.1016/j.jbiomech.2011.03.038
  52. Rahmanian R, Moghaddam NS, Haberland C, Dean D, Miller M, Elahinia M. Load bearing and stiffness tailored NiTi implants produced by additive manufacturing: a simulation study. Proc SPIE. 2014;9058:905814. doi: 10.1117/12.2048948
  53. Alghamdi HS. Methods to improve osseointegration of dental implants in low quality (type-IV) bone: an overview. J Funct Biomater. 2018;9(1):7. doi: 10.3390/jfb9010007
  54. Maskery I, Aremu AO, Parry L, Wildman RD, Tuck CJ, Ashcroft IA. Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading. Mater Des. 2018;155:220-232. doi: 10.1016/j.matdes.2018.05.058
  55. Sahu NK, Andhare AB. Multiobjective optimization for improving machinability of Ti-6Al-4V using RSM and advanced algorithms. J Comput Des Eng. 2019;6(1):1-12. doi: 10.1016/j.jcde.2018.04.004
  56. Taniguchi N, Fujibayashi S, Takemoto M, et al. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C Mater Biol Appl. 2016;59:690-701. doi: 10.1016/j.jmst.2020.05.056
  57. Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8(4):114-124. doi: 10.4161/org.23306
  58. Bhatt RA, Rozental TD. Bone graft substitutes. Hand Clin. 2012;28(4):457-468. doi: 10.1016/j.hcl.2012.08.001
  59. Harwood PJ, Ferguson DO, Michael ALR. An update on fracture healing and non-union. Orthop Trauma. 2010;24(1):9-23. doi: 10.1016/j.mporth.2009.12.004
  60. Fisher DM, Wong JM, Crowley C, Khan WS. Preclinical and clinical studies on the use of growth factors for bone repair: a systematic review. Curr Stem Cell Res Ther. 2013;8(3):260-268. doi: 10.2174/1574888x11308030011
  61. Kharmanda G. Integration of multi-objective structural optimization into cementless hip prosthesis design: improved Austin-Moore model. Comput Methods Biomech Biomed Engin. 2016;19(14):1557-1566. doi: 10.1080/10255842.2016.1170121
  62. Xiong YZ, Gao RN, Zhang H, Dong LL, Li JT, Li X. Rationally designed functionally graded porous Ti6Al4V scaffolds with high strength and toughness built via selective laser melting for load-bearing orthopedic applications. J Mech Behav Biomed Mater. 2020;104:103673. doi: 10.1016/j.jmbbm.2020.103673
  63. Ding W. Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials. Regen Biomater. 2016;3(2):79-86. doi: 10.1093/rb/rbw003



Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing