AccScience Publishing / GTM / Online First / DOI: 10.36922/GTM025500093
REVIEW ARTICLE

Chronodisruption induced by artificial light exposure: Unraveling its molecular pathways and impacts on cardiometabolic dysfunctions

Ayoola Awosika1* Mayowa Jeremiah Adeniyi2
Show Less
1 Department of Family and Community Medicine, Faculty of Medicine, University of Illinois College of Medicine Peoria, Bloomington, Illinois, United States of America
2 Department of Physiology, Faculty of Medical and Health Sciences, University of Rwanda, Kigali, Rwanda
Global Translational Medicine, 025500093 https://doi.org/10.36922/GTM025500093
Received: 12 December 2025 | Revised: 19 January 2026 | Accepted: 22 January 2026 | Published online: 11 February 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Chronodisruption, defined as misalignment between endogenous circadian rhythms and external environmental cues, is increasingly implicated in cardiometabolic dysfunction, which elevates cardiovascular disease risk. Artificial light exposure, particularly during nighttime, disrupts the circadian clock by altering molecular pathways involving clock genes, melatonin secretion, and metabolic regulators. Animal studies have revealed that such disruptions exacerbate insulin resistance, dyslipidemia, and systemic inflammation—key risk factors for cardiovascular disease. Evidence also suggests impaired autonomic regulation, endothelial dysfunction, and altered myocardial metabolism due to circadian misalignment. Artificial light also alters other indices of cardiovascular function by raising blood pressure and the atherogenic index, both of which have been shown to hamper recovery from vascular and cardiovascular diseases. Despite these advances, knowledge gaps remain, including species-specific differences, long-term effects of varying light intensities, durations, and spectra, and translational applicability to humans. This review aims to elucidate several molecular pathways responsible for this disruption, and to examine how they interfere with physiological systems using animal studies and how they translate into clinical contexts. Bridging these gaps could inform novel preventive and therapeutic strategies targeting chronodisruption-induced cardiometabolic risks.

Keywords
Artificial light
Cardiometabolic dysfunction
Circadian rhythm
Cardiovascular disease
Blood pressure
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Lowden A, Moreno C, Holmbäck U, Lennernäs M, Tucker P. Eating and shift work - effects on habits, metabolism and performance. Scand J Work Environ Health. 2010;36(2):150-162. doi: 10.5271/sjweh.2898

 

  1. Awosika A, Adeniyi M. Occupation-related stress and stress-related risk factors among nurses in West Africa. Middle East Res J Med Sci. 2023;3:9-16. doi: 10.36348/merjms.2023.v03i01.002

 

  1. Gamble KL, Resuehr D, Johnson CH. Shift work and circadian dysregulation of reproduction. Front Endocrinol (Lausanne). 2013;4:92. doi: 10.3389/fendo.2013.00092

 

  1. Stamenkovic JA, Olsson AH, Nagorny CL, et al. Regulation of core clock genes in human islets. Metabolism. 2012;61(7):978-985. doi: 10.1016/j.metabol.2011.11.013

 

  1. Adeniyi MJ, Awosika A, Idaguko CA, Ekhoye E. The influence of artificial light exposure on indigenous populations: Exploring its impact on menarcheal age and reproductive function. J Reprod Infertil. 2024;25(3):171-183. doi: 10.18502/jri.v25i3.17011

 

  1. Adeniyi MJ, Agoreyo FO, Ige SF, et al. Physiological implications of prolonged selenium administrations in normal and desynchronized adult female rats. J Krishna Inst Med Sci (JKIMSU). 2021;10(4):21-36.

 

  1. Karbovskyĭ LL, Minchenko DO, Garmash IaA, Minchenko OG. [Molecular mechanisms of circadian clock functioning]. Ukr Biokhim Zh (1999). 2011;83(3):5-24.

 

  1. Münch M, Nowozin C, Regente J, et al. Blue-enriched morning light as a countermeasure to light at the wrong time: Effects on cognition, sleepiness, sleep, and circadian phase. Neuropsychobiology. 2016;74(4):207-218. doi: 10.1159/000477093

 

  1. Awosika A, Adeniyi MJ, Okojie AK, Okeke C. Photic stress and rhythmic physiological processes: Roles of selenium as a chronobiotic. In: Selenium and Human Health. London: IntechOpen; 2023. doi: 10.5772/intechopen.110294

 

  1. Adeniyi MJ, Awosika A, Millis RM, Ige SF. Occupational stress-related sleep anomaly in frontline COVID-19 health workers: The possible underlying mechanisms. In: Identifying Occupational Stress and Coping Strategies. London: IntechOpen; 2023. doi: 10.5772/intechopen.109148

 

  1. Khan S, Duan P, Yao L, Hou H. Shiftwork-mediated disruptions of circadian rhythms and sleep homeostasis cause serious health problems. Int J Genomics. 2018;2018:8576890. doi: 10.1155/2018/8576890

 

  1. Yamazaki S, Numano R, Abe M, et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science. 2000;288(5466):682-685. doi: 10.1126/science.288.5466.682

 

  1. Toffol E, Heikinheimo O, Partonen T. Biological rhythms and fertility: The hypothalamus-pituitary-ovary axis. Chrono Physiol Ther. 2016;23:6:15-27. doi: 10.2147/cpt.s84855

 

  1. Dewan K, Benloucif S, Reid K, Wolfe LF, Zee PC. Light-induced changes of the circadian clock of humans: Increasing duration is more effective than increasing light intensity. Sleep. 2011;34(5):593-599. doi: 10.1093/sleep/34.5.593

 

  1. Comas M, Beersma DG, Spoelstra K, Daan S. Phase and period responses of the circadian system of mice (Mus musculus) to light stimuli of different duration. J Biol Rhythms. 2006;21(5):362-372. doi: 10.1177/0748730406292446

 

  1. Zheng B, Albrecht U, Kaasik K, et al. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell. 2001;105(5):683-694. doi: 10.1016/s0092-8674(01)00380-4

 

  1. Zhang X, Zarbl H. Chemopreventive doses of methylselenocysteine alter circadian rhythm in rat mammary tissue. Cancer Prev Res (Phila). 2008;1(2): 119-127. doi: 10.1158/1940-6207.CAPR-08-0036

 

  1. Barrett KE, Susan M, Barman SB, Heddwen LB. Ganong’s Review of Medical Physiology. 23rd ed. Vol. 421. New York: MC Graw Hills; 2010. p. 391-427.

 

  1. Molcan L, Babarikova K, Cvikova D, Kincelova N, Kubincova L, Mauer Sutovska H. Artificial light at night suppresses the day-night cardiovascular variability: Evidence from humans and rats. Pflugers Arch. 2024;476(3):295-306. doi: 10.1007/s00424-023-02901-0

 

  1. Hilal-Dandan R, He H, Martin JL, Brunton LL, Dillmann WH. Endothelin downregulates SERCA2 gene and protein expression in adult rat ventricular myocytes: Regulation by pertussis toxin-sensitive Gi protein and cAMP. Am J Physiol Heart Circ Physiol. 2009;296(3):H728-H734. doi: 10.1152/ajpheart.00584.2008

 

  1. Sutovska H, Miklovic M, Molcan L. Artificial light at night suppresses the expression of sarco/endoplasmic reticulum Ca2+ -ATPase in the left ventricle of the heart in normotensive and hypertensive rats. Exp Physiol. 2021;106(8):1762-1771. doi: 10.1113/EP089594

 

  1. Rumanova VS, Okuliarova M, Molcan L, Sutovska H, Zeman M. Consequences of low-intensity light at night on cardiovascular and metabolic parameters in spontaneously hypertensive rats 1. Can J Physiol Pharmacol. 2019;97(9): 863-871. doi: 10.1139/cjpp-2019-0043

 

  1. Mauer Sutovska H, Obermajer V, Zeman M, Molcan L. Artificial light at night affects the daily profile of pulse pressure and protein expression in the thoracic aorta of rats. Hypertens Res. 2024;47(7):1897-1907. doi: 10.1038/s41440-024-01685-9

 

  1. Molcan L, Sutovska H, Okuliarova M, Senko T, Krskova L, Zeman M. Dim light at night attenuates circadian rhythms in the cardiovascular system and suppresses melatonin in rats. Life Sci. 2019;231:116568. doi: 10.1016/j.lfs.2019.116568

 

  1. Fonken LK, Workman JL, Walton JC, et al. Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci U S A. 2010;107(43):18664-18669. doi: 10.1073/pnas.1008734107

 

  1. Babinec SA. Role of dim artificial light at night (dALAN) on body weight percentage increase of Mus musculus. J S Carol Acad Sci. 2022;20(2):32-39.

 

  1. Fonken LK, Aubrecht TG, Meléndez-Fernández OH, Weil ZM, Nelson RJ. Dim light at night disrupts molecular circadian rhythms and increases body weight. J Biol Rhythms. 2013;28(4):262-271. doi: 10.1177/0748730413493862

 

  1. Aubrecht TG, Jenkins R, Nelson RJ. Dim light at night increases body mass of female mice. Chronobiol Int. 2015;32(4):557-560. doi: 10.3109/07420528.2014.986682

 

  1. Meléndez-Fernández OH, Walton JC, DeVries AC, Nelson RJ. The role of daylight exposure on body mass in male mice. Physiol Behav. 2023;266:114186. doi: 10.1016/j.physbeh.2023.114186

 

  1. Kooijman S, Van Den Berg R, Ramkisoensing A, et al. Prolonged daily light exposure increases body fat mass through attenuation of brown adipose tissue activity. Proc Natl Acad Sci U S A. 2015;112(21):6748-6753. doi: 10.1073/pnas.1504239112

 

  1. Sarmiento J, Pulgar R, Mandakovic D, et al. Nocturnal light pollution induces weight gain in mice and reshapes the structure, functions, and interactions of their colonic microbiota. Int J Mol Sci. 2022;23(3):1673. doi: 10.3390/ijms23031673

 

  1. Rumanova VS, Okuliarova M, Foppen E, Kalsbeek A, Zeman M. Exposure to dim light at night alters daily rhythms of glucose and lipid metabolism in rats. Front Physiol. 2022;13:973461. doi: 10.3389/fphys.2022.973461

 

  1. Adeniyi MJ, Agoreyo FO, Olorunnisola OL, et al. Photo-pollution disrupts reproductive homeostasis in female rats: The duration-dependent role of selenium administrations. Chin J Physiol. 2020;63(5):235-243. doi: 10.4103/CJP.CJP_52_20

 

  1. Mondal G, Khan ZA, Devi SD, Labala RK, Chattoraj A. The daily pattern of expression of leptin and ghrelin O-acyl transferase under various lighting schedules in the whole brain of zebrafish (Danio rerio). Front Ecol Evol. 2021;9:676332. doi: 10.3389/fevo.2021.676332

 

  1. Schmid SM, Hallschmid M, Jauch-Chara K, Born J, Schultes B. A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men. J Sleep Res. 2008;17(3):331-334. doi: 10.1111/j.1365-2869.2008.00662.x

 

  1. Schüssler P, Uhr M, Ising M, et al. Nocturnal ghrelin, ACTH, GH and cortisol secretion after sleep deprivation in humans. Psychoneuroendocrinology. 2006;31(8):915-923. doi: 10.1016/j.psyneuen.2006.05.002

 

  1. Wan X, Wang L, Khan MA, et al. Shift work promotes adipogenesis via cortisol-dependent downregulation of EGR3-HDAC6 pathway. Cell Death Discov. 2024;10(1):129. doi: 10.1038/s41420-024-01904-9

 

  1. Fonken LK, Lieberman RA, Weil ZM, Nelson RJ. Dim light at night exaggerates weight gain and inflammation associated with a high-fat diet in male mice. Endocrinology. 2013;154(10):3817-3825. doi: 10.1210/en.2013-1121

 

  1. Borniger JC, Maurya SK, Periasamy M, Nelson RJ. Acute dim light at night increases body mass, alters metabolism, and shifts core body temperature circadian rhythms. Chronobiol Int. 2014;31(8):917-925. doi: 10.3109/07420528.2014.926911

 

  1. Kumar M, Kumar A, Tripathi V, Prabhat A, Bhardwaj SK. Dimly illuminated nights alter behavior and negatively affect fat metabolism in adult male zebra finches. Photochem Photobiol Sci. 2024;23(12):2201-2210. doi: 10.1007/s43630-024-00659-7

 

  1. Yonis M, Haim A, Zubidat AE. Altered metabolic and hormonal responses in male rats exposed to acute bright light-at-night associated with global DNA hypo-methylation. J Photochem Photobiol B. 2019;194:107-118. doi: 10.1016/j.jphotobiol.2019.03.020

 

  1. Luo Y, Yang J, Kang J, et al. PPARα mediates night neon light-induced weight gain: Role of lipid homeostasis. Theranostics. 2020;10(25):11497-11506. doi: 10.7150/thno.50953

 

  1. Russart KLG, Chbeir SA, Nelson RJ, Magalang UJ. Light at night exacerbates metabolic dysfunction in a polygenic mouse model of type 2 diabetes mellitus. Life Sci. 2019;231:116574. doi: 10.1016/j.lfs.2019.116574

 

  1. Borck PC, Rickli S, Vettorazzi JF, et al. Effect of nighttime light exposure on glucose metabolism in protein-restricted mice. J Endocrinol. 2021;252(2):143-154. doi: 10.1530/JOE-21-0133

 

  1. Okuliarova M, Rumanova VS, Stebelova K, Zeman M. Dim light at night disturbs molecular pathways of lipid metabolism. Int J Mol Sci. 2020;21(18):6919. doi: 10.3390/ijms21186919

 

  1. Coomans CP, Van Den Berg SA, Houben T, et al. Detrimental effects of constant light exposure and high-fat diet on circadian energy metabolism and insulin sensitivity. FASEB J. 2013;27(4):1721-1732. doi: 10.1096/fj.12-210898

 

  1. Raap T, Casasole G, Costantini D, et al. Artificial light at night affects body mass but not oxidative status in free-living nestling songbirds: An experimental study. Sci Rep. 2016;6:35626. doi: 10.1038/srep35626

 

  1. Cheung IN, Zee PC, Shalman D, Malkani RG, Kang J, Reid KJ. Morning and evening blue-enriched light exposure alters metabolic function in normal weight adults. PLoS One. 2016;11(5):e0155601. doi: 10.1371/journal.pone.0155601

 

  1. Fonken LK, Meléndez-Fernández OH, Weil ZM, Nelson RJ. Exercise attenuates the metabolic effects of dim light at night. Physiol Behav. 2014;124:33-36. doi: 10.1016/j.physbeh.2013.10.022

 

  1. Opperhuizen AL, Stenvers DJ, Jansen RD, Foppen E, Fliers E, Kalsbeek A. Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats. Diabetologia. 2017;60(7):1333-1343. doi: 10.1007/s00125-017-4262-y

 

  1. Adeniyi M. Impacts of environmental stressors on autonomic nervous system. In: Physiology. London: IntechOpen; 2022. doi: 10.5772/intechopen.101842

 

  1. Masís-Vargas A, Hicks D, Kalsbeek A, Mendoza J. Blue light at night acutely impairs glucose tolerance and increases sugar intake in the diurnal rodent Arvicanthis ansorgei in a sex-dependent manner. Physiol Rep. 2019;7(20):e14257. doi: 10.14814/phy2.14257

 

  1. Zhang S, Zhang Y, Zhang W, Chen S, Liu C. Chronic exposure to green light aggravates high-fat diet-induced obesity and metabolic disorders in male mice. Ecotoxicol Environ Saf. 2019;178:94-104. doi: 10.1016/j.ecoenv.2019.04.013

 

  1. Zhu N, Shang J, Zhang S. Short-term night lighting disrupts lipid and glucose metabolism in Zebra Finches: Implication for urban stopover birds. Avian Res. 2023;14:100138. doi: 10.1016/j.avrs.2023.100138

 

  1. Han B, Deng J, Huang X, Yin X, Liang Y. Effects of exposure to outdoor light at night on blood lipids in China: A nationwide cross-sectional study. Sci Rep. 2024;14(1):28263. doi: 10.1038/s41598-024-79484-y

 

  1. Schilperoort M, Van Den Berg R, Coomans CP, et al. Continuous light does not affect atherosclerosis in APOE*3- leiden.CETP mice. J Biol Rhythms. 2020;35(6):598-611. doi: 10.1177/0748730420951320

 

  1. Wang R, Hu X, Ou Y, et al. Association between outdoor light at night and hypertension and high-normal blood pressure: A nationwide cross-sectional study among Chinese adults. J Clin Hypertens (Greenwich). 2024;26(2):134-144. doi: 10.1111/jch.14760

 

  1. Grossman E, Laudon M, Zisapel N. Effect of melatonin on nocturnal blood pressure: Meta-analysis of randomized controlled trials. Vasc Health Risk Manag. 2011;7:577-584. doi: 10.2147/VHRM.S24603

 

  1. Zuo J, Jiang Z. Melatonin attenuates hypertension and oxidative stress in a rat model of L-NAME-induced gestational hypertension. Vasc Med. 2020;25(4):295-301. doi: 10.1177/1358863X20919798

 

  1. Zhao T, Zhang H, Jin C, Qiu F, Wu Y, Shi L. Melatonin mediates vasodilation through both direct and indirect activation of BKCa channels. J Mol Endocrinol. 2017;59(3):219-233. doi: 10.1530/JME-17-0028

 

  1. Lew MJ, Flanders S. Mechanisms of melatonin-induced vasoconstriction in the rat tail artery: A paradigm of weak vasoconstriction. Br J Pharmacol. 1999;126(6):1408-1418. doi: 10.1038/sj.bjp.0702435

 

  1. Zhou Y, Sondek J, Harden TK. Activation of human phospholipase C-eta2 by Gbetagamma. Biochemistry. 2008;47(15):4410-4417. doi: 10.1021/bi800044n

 

  1. Park D, Jhon DY, Lee CW, Lee KH, Rhee SG. Activation of phospholipase C isozymes by G protein beta gamma subunits. J Biol Chem. 1993;268(7):4573-4576. doi: 10.1016/S0021-9258(18)53431-1

 

  1. Emmer KM, Russart KLG, Walker WH, Nelson RJ, DeVries AC. Effects of light at night on laboratory animals and research outcomes. Behav Neurosci. 2018;132(4): 302-314. doi: 10.1037/bne0000252

 

  1. Dang J, Shi D, Li X, et al. Artificial light-at-night exposure and overweight and obesity across GDP levels among Chinese children and adolescents. Nutrients. 2023;15(4):939. doi: 10.3390/nu15040939

 

  1. Fan M, Yuan J, Zhang S, et al. Association between outdoor artificial light at night and metabolic diseases in middle-aged to older adults-the CHARLS survey. Front Public Health. 2025;13:1515597. doi: 10.3389/fpubh.2025.1515597

 

  1. Albreiki MS, Middleton B, Hampton SM. A single night light exposure acutely alters hormonal and metabolic responses in healthy participants. Endocr Connect. 2017;6(2): 100-110. doi: 10.1530/EC-16-0097

 

  1. Li Q, Xu YX, Lu XZ, et al. Impact of bedroom light exposure on glucose metabolic markers and the role of circadian-dependent meal timing: A population-based cross-sectional study. Ecotoxicol Environ Saf. 2025;290:117589. doi: 10.1016/j.ecoenv.2024.117589
Share
Back to top
Global Translational Medicine, Electronic ISSN: 2811-0021 Print ISSN: 3060-8600, Published by AccScience Publishing