Ex vivo thermographic analysis of the eyelid conjunctival surface during ultraviolet A-mediated photochemical crosslinking of tarsal collagen: A step in translational safety evaluation
Ultraviolet A (UVA)-induced collagen crosslinking can mechanically reinforce collagenous tissues and is being translated as a minimally invasive treatment for pathological eyelid laxity, yet the extent of irradiation-related heating at the conjunctival–tarsal interface remains unclear. In this study, we developed a novel procedure to treat pathological eyelid laxity. The methodology is based on the photocrosslinking of tarsal collagen, leading to mechanical reinforcement of the entire eyelid. In our previous studies, exposure to ultraviolet A (UVA) radiation at fluences below 20 J/cm2 did not cause histopathological alterations to the eyelid tissues. Here, we further evaluated biological safety by quantifying conjunctival surface temperature increases during UVA irradiation to inform clinical translation. Using ex vivo sheep eyelids as a model, we used infrared thermography to measure the temperatures attained on the tarsal conjunctival surface during UVA irradiation (365 nm) at four irradiances for a maximum exposure time of 3 min, corresponding to fluences of 8.1, 13.5, 27, and 45 J/cm2. Both the exposure time and irradiance caused an asymptotic increase in temperature, while a linear dependence was observed between fluence and temperature increase (ΔT). The recorded values for ΔT ranged from 3.3°C to 14.0°C. In summary, at clinically practicable fluences (<20 J/cm2), such increments are not expected to raise the final temperature to the threshold for collagen denaturation and tissue damage.
- Lavker RM, Gerberick GF, Veres D, Irwin CJ, Kaidbey KH. Cumulative effects from repeated exposures to suberythemal doses of UVB and UVA in human skin. J Am Acad Dermatol. 1995;32:53-62. doi: 10.1016/0190-9622(95)90184-1
- Sklar LR, Almutawa F, Lim HW, Hamzavi I. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: A review. Photochem Photobiol Sci. 2013;12:54-64. doi: 10.1039/c2pp25152c
- Battie C, Jitsukawa S, Bernerd F, Del Bino S, Marionnet C, Verschoore M. New insights in photoaging, UVA induced damage and skin types. Exp Dermatol. 2014;23(Suppl 1):7-12. doi: 10.1111/exd.12388
- Gromkowska-Kępka KJ, Puścion-Jakubik A, Markiewicz-Żukowska R, Socha K. The impact of ultraviolet radiation on skin photoaging - review of in vitro studies. J Cosmet Dermatol. 2021;20:3427-3431. doi: 10.1111/jocd.14033
- Bernerd F, Passeron T, Castiel I, Marionnet C. The damaging effects of long UVA (UVA1) rays: A major challenge to preserve skin health and integrity. Int J Mol Sci. 2022;23:8243. doi: 10.3390/ijms23158243
- Tang X, Yang T, Yu D, Xiong H, Zhang S. Current insights and future perspectives of ultraviolet radiation (UV) exposure: Friends and foes to the skin and beyond the skin. Environ Int. 2024;185:108535. doi: 10.1016/j.envint.2024.108535
- Mattson G, Conklin E, Desai S, Nielander G, Savage MD, Morgensen S. A practical approach to crosslinking. Mol Biol Rep. 1993;17:167-183. doi: 10.1007/BF00986726
- Khor E. Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials. 1996;18:95-105. doi: 10.1016/s0142-9612(96)00106-8
- Paul RG, Bailey AJ. Chemical stabilisation of collagen as a biomimetic. Sci World J. 2003;3:138-155. doi: 10.1100/tsw.2003.13
- Chan BP, So KF. Photochemical crosslinking improves the physicochemical properties of collagen scaffolds. J Biomed Mater Res. 2005;75:689-701. doi: 10.1002/jbm.a.30469
- Eyre DR, Wu JJ. Collagen cross-links. Top Curr Chem. 2005;247:207-229.
- Avery NC, Bailey AJ. Restraining cross-links responsible for the mechanical properties of collagen fibers: Natural and artificial. In: Fratzl P, editor. Collagen Structure and Mechanism. New York: Springer Science+Business Media; 2008. p. 81-110.
- Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials (Basel). 2010;3:1863-1887. doi: 10.3390/ma3031863
- Rich H, Odlyha M, Cheema U, Mudera V, Bozec L. Effects of photochemical riboflavin-mediated crosslinks on the physical properties of collagen constructs and fibrils. J Mater Sci Mater Med. 2014;25:11-21. doi: 10.1007/s10856-013-5038-7
- Gu L, Shan T, Ma Y, Tay FR, Niu L. Novel biomedical applications of crosslinked collagen. Trends Biotechnol. 2019;37:464-491. doi: 10.1016/j.tibtech.2018.10.007
- Redmond RW, Kochevar IE. Medical applications of rose Bengal- and riboflavin-photosensitized protein crosslinking. Photochem Photobiol. 2019;95:1097-1115. doi: 10.1111/php.13126
- Adamiak K, Sionkowska A. Current methods of collagen cross-linking: Review. Int J Biol Macromol. 2020;161: 550-560. doi: 10.1016/j.ijbiomac.2020.06.075
- Nair M, Best SM, Cameron RE. Crosslinking collagen constructs: Achieving cellular selectivity through modifications of physical and chemical properties. Appl Sci. 2020;10:6911. doi: 10.3390/app10196911
- Blackburn BJ, Rollins AM, Dupps WJ Jr. Biomechanics of ophthalmic crosslinking. Transl Vis Sci Technol. 2021;10(5):8. doi: 10.1167/tvst.10.5.8
- McCall AS, Kraft S, Edelhauser HF, et al. Mechanisms of corneal tissue cross-linking in response to treatment with topical riboflavin and long-wavelength ultraviolet radiation (UVA). Invest Ophthalmol Vis Sci. 2010;51:129-138. doi: 10.1167/iovs.09-3738
- Gaar J, Naffa R, Brimble M. Enzymatic and non-enzymatic cross-links found in collagen and elastin and their chemical synthesis. Org Chem Front. 2020;7:2789-2814. doi: 10.1096/fasebj.6.7.1348714
- Fan L, Jung O, Herrmann M, et al. Deciphering UVA/ riboflavin collagen crosslinking: A pathway to improve biomedical materials. Adv Funct Mater. 2024;34:2401742. doi: 10.1002/adfm.202401742
- Hayes S, Boote C, Kamma-Lorger CS, et al. Riboflavin/ UVA collagen cross-linking-induced changes in normal and keratoconus corneal stroma. PLOS One. 2011;6:e22405. doi: 10.1371/journal.pone.0022405
- Kamaev P, Friedman MD, Sherr E, Muller D. Photochemical kinetics of corneal cross-linking with riboflavin. Invest Ophthalmol Vis Sci. 2012;53:2360-2367. doi: 10.1167/iovs.11-9385
- Raiskup F, Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. I. Principles. Ocul Surf. 2013;11:65-74. doi: 10.1016/j.jtos.2013.01.002
- Rubinfeld RS, Caruso C, Ostacolo C. Corneal cross-linking: The science beyond the myths and misconceptions. Cornea. 2019;38:780-790. doi: 10.1097/ICO.0000000000001912
- Santhiago MR, Randleman JB. The biology of corneal cross-linking derived from ultraviolet light and riboflavin. Exp Eye Res. 2021;202:108355. doi: 10.1016/j.exer.2020.108355
- Wu D, Lim DK, Lim BXH, et al. Corneal cross-linking: The evolution of treatment for corneal diseases. Front Pharmacol. 2021;12:686630. doi: 10.3389/fphar.2021.686630
- Angelo L, Gokul A, McGhee C, Ziaei M. Corneal crosslinking: Present and future. Asia Pac J Ophthalmol (Phila). 2022;11:441-452. doi: 10.1097/APO.0000000000000557
- Papachristoforou N, Ueno A, Ledwos K, Bartuś J, Nowińska A, Karska-Basta I. A review of keratoconus cross-linking treatment methods. J Clin Med. 2025;14:1702. doi: 10.3390/jcm14051702
- Hafezi F, Kling S, Hafezi NL, et al. Corneal cross-linking. Prog Ret Eye Res. 2025;104:101322. doi: 10.1016/j.preteyeres.2024.101322
- Smith TM, Suzuki S, Cronin BG, et al. Photochemically induced crosslinking of tarsal collagen as a treatment for eyelid laxity: Assessing potentiality in animal tissue. Ophthalmic Plast Reconstr Surg. 2018;34:477-482. doi: 10.1097/IOP.0000000000001063
- Smith TM, Suzuki S, Sabat N, Rayner CL, Harkin DG, Chirila TV. Further investigations on the crosslinking of tarsal collagen as a treatment for eyelid laxity: Optimizing the procedure in animal tissue. Ophthalmic Plast Reconstr Surg. 2019;35:600-603. doi: 10.1097/IOP.0000000000001413
- Manta AI, Pop NE, Tripon RG, et al. Photochemical crosslinking of tarsal collagen as a treatment for eyelid laxity: Evaluation in ex vivo human tissue. Ophthalmic Plast Reconstr Surg. 2025;41:28-35. doi: 10.1097/IOP.0000000000002709
- Smith TM, Cronin BG, Suzuki S, Chirila TV. Method of Treatment of Eyelid Laxity. [U.S. Patent 11,420,073]; 2022.
- Akella SS, Liu J, Miao Y, Chuck RS, Barmettler A, Zhang C. Collagen structural changes in rat tarsus after crosslinking. Transl Vis Sci Technol. 2021;10(5):3. doi: 10.1167/tvst.10.5.3
- Ugradar S, Le A, Lesgart M, Goldberg RA, Rootman D, Demer JL. Biomechanical and morphologic effects of collagen cross-linking in human tarsus. Transl Vis Sci Technol. 2019;8(6):25. doi: 10.1167/tvst.8.6.25
- Ugradar S, Karlin J, Le A, Park J, Goldberg RA. Photochemical collagen cross-linking reverses elastase-induced mechanical degradation of upper eyelid tarsus. Ophthalmic Plast Reconstr Surg. 2020;36:562-565. doi: 10.1097/IOP.0000000000001635
- Kocer AM, Sen EM, Caydere M, Yenigun S, Hucumenoglu S. The histopathological findings in excised upper eyelids of patients with dermatochalasis following collagen cross-linking treatment. Graefes Arch Clin Exp Ophthalmol. 2022;260:2737-2743. doi: 10.1007/s00417-022-05629-2
- Bozec L, Odlyha M. Thermal denaturation studies of collagen by microthermal analysis and atomic force microscopy. Biophys J. 2011;101:228-236. doi: 10.1016/j.bpj.2011.04.033
- Derman ID, Şenel EC, Ferhanoğlu O, Çilesiz I, KazanciM. Effect of heat level and expose time on denaturation of collagen tissues. Cell Mol Bioeng. 2021;14:113-119. doi: 10.1007/s12195-020-00653-w
- Forman J. Photobiological and Thermal Effects of UVA Light on Cell Culture. LSU Master’s Theses. Louisiana State University Scholarly Repository; 2005. p. 3505. Available from: https://repository.lsu.edu/gradschool_theses/3505 [Last accessed on 2025 Aug 20].
- Forman J, Dietrich M, Monroe WT. Photobiological and thermal effects of photoactivating UVA light doses on cell cultures. Photochem Photobiol Sci. 2007;6:649-658. doi: 10.1039/b616979a
- Spunde K, Rudevica Z, Korotkaya K, et al. Bacteria and RNA virus inactivation with a high-irradiance UV-A source. Photochem Photobiol Sci. 2024;23:1841-1856. doi: 10.1007/s43630-024-00634-2
- Mencucci R, Ambrosini S, Ponchietti C, Marini M, Vannelli GB, Menchini U. Ultrasound thermal damage to rabbit corneas after simulated phacoemulsification. J Cataract Refract Surg. 2005;31:2180-2186. doi: 10.1016/j.jcrs.2005.04.043
- Mencucci R, Mazzotta C, Rossi F, et al. Riboflavin and ultraviolet a collagen crosslinking: In vivo thermographic analysis of the corneal surface. J Cataract Refract Surg. 2007;33:1005-1008. doi: 10.1016/j.jcrs.2007.03.021
- Arita R, Morishige N, Shirakawa R, Sato Y, Amano S. Effects of eyelid warming devices on tear film parameters in normal subjects and patients with Meibomian gland dysfunction. Ocul Surf. 2015;13:321-330. doi: 10.1016/j.jtos.2015.04.005
- Shah AM, Galor A. Impact of ocular surface temperature on tear characteristics: Current insights. Clin Optom (Auckl). 2021;13:51-62. doi: 10.2147/OPTO.S281601
- Miles CA, Bailey AJ. Thermal denaturation of collagen revisited. Proc Indian Acad Sci Chem Sci. 1999;111:71-80.
- Bischof JC, He X. Thermal stability of proteins. Ann N Y Acad Sci. 2005;1066:12c33. doi: 10.1196/annals.1363.003
- He X. Thermostability of biological systems: Fundamentals, challenges, and quantification. Open Biomed Eng J. 2011;5:47-73. doi: 10.2174/1874120701105010047
- Wright NT. Quantitative models of thermal damage to cells and tissues. In: Becker SM, Kuznetsov AV, editors. Heat Transfer and Fluid Flow in Biological Processes. London: Academic Press; 2015. p. 59-76.
- Pucci F, Rooman M. Physical and molecular bases of protein thermal stability and cold adaptation. Curr Opin Struct Biol. 2017;42:117-128. doi: 10.1016/j.sbi.2016.12.007
- Nocini PF, Menchini Fabris GB, Gelpi F, et al. Treatment of skin defects with growth factors and biodegradable collagen carrier: Histological evaluation in animal model. J Biol Regul Homeost Agents. 2017;31(2S2):1-13.
