Bioinformatics analysis of the GEO database for the identification of novel biomarkers and potential targeted drugs for pulmonary hypertension

Pulmonary arterial hypertension (PAH) is a progressive and life-threatening cardiopulmonary disorder. This study integrated two PAH datasets (GSE117261 and GSE113439) from the Gene Expression Omnibus database to screen novel PAH biomarkers using bioinformatics methods and explore immune cell infiltration and potential therapeutic drugs. After batch effect correction, 311 differentially expressed genes (DEGs), comprising 182 upregulated and 129 downregulated genes, were identified using the Linear Models for Microarray Data analysis. Weighted gene co-expression network analysis revealed 11 significant modules, and intersecting these with DEGs yielded 24 module DEGs. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated enrichment in extracellular matrix organization, exosome-related functions, and inflammation-related pathways, including the positive regulation of inflammatory response and acute-phase response. A protein-protein interaction network analysis identified 10 hub genes: Upregulated periostin, osteoblast-specific factor (POSTN), OGN, asporin, and downregulated S100 calcium-binding protein A12, LCN2, SPP1, S100 calcium-binding protein A9, CD163, S100A8, and AQP9. Immune infiltration analysis (CIBERSORT, dataset GSE169471) revealed markedly altered levels of monocytes, dendritic cells, neutrophils, resting cluster of differentiation 4-positive memory T cells, and macrophages. Single-cell RNA sequencing analysis further confirmed hub gene expression. Notably, macrophage-associated genes (SPP1, S100A8/A9/A12, CD163, POSTN, AQP9, and LCN2) were implicated in vascular inflammation, endothelial dysfunction, and fibrosis, underscoring their role in immune-mediated vascular remodeling in PAH. Finally, drug prediction using the Comparative Toxicogenomic Database identified retinol, arsenic trioxide, and active vitamin D as potential therapeutics with significant regulatory effects on hub genes. This integrated bioinformatics analysis reveals key genes, pathways, and immune cell alterations in PAH, emphasizing macrophage-associated mechanisms in vascular remodeling and immune dysregulation. The findings provide potential biomarkers and therapeutic targets for improved PAH management.
- Wu W, Chen A, Lin S, et al. The identification and verification of hub genes associated with pulmonary arterial hypertension using weighted gene co-expression network analysis. BMC Pulm Med. 2022;22(1):474. doi: 10.1186/s12890-022-02275-6
- Zhang JR, Ouyang X, Hou C, et al. Natural ingredients from Chinese materia medica for pulmonary hypertension. Chin J Nat Med. 2021;19(11):801-814. doi: 10.1016/s1875-5364(21)60092-4
- Bisserier M, Pradhan N, Hadri L. Current and emerging therapeutic approaches to pulmonary hypertension. Rev Cardiovasc Med. 2020;21(2):163-179. doi: 10.31083/j.rcm.2020.02.597
- Edwards AL, Gunningham SP, Clare GC, et al. Professional killer cell deficiencies and decreased survival in pulmonary arterial hypertension. Respirology. 2013;18(8):1271-1277. doi: 10.1111/resp.12152
- van Uden D, Koudstaal T, van Hulst JAC, et al. Peripheral blood T cells of patients with IPAH have a reduced cytokine-producing capacity. Int J Mol Sci. 2022;23(12):6508. doi: 10.3390/ijms23126508
- Meng X, Yang J, Dong M, et al. Regulatory T cells in cardiovascular diseases. Nat Rev Cardiol. 2016;13(3):167-179. doi: 10.1038/nrcardio.2015.169
- Yan T, Zhu S, Zhu M, Wang C, Guo C. Integrative identification of hub genes associated with immune cells in atrial fibrillation using weighted gene correlation network analysis. Front Cardiovasc Med. 2020;7:631775. doi: 10.3389/fcvm.2020.631775
- Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249-264. doi: 10.1093/biostatistics/4.2.249
- Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. doi: 10.1186/1471-2105-9-559
- Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44-57. doi: 10.1038/nprot.2008.211
- Wu J, Mao X, Cai T, Luo J, Wei L. KOBAS server: A web-based platform for automated annotation and pathway identification. Nucleic Acids Res. 2006;34(Web Server issue):W720-W724. doi: 10.1093/nar/gkl167
- Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447-D452. doi: 10.1093/nar/gku1003
- Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-2504. doi: 10.1101/gr.1239303
- Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J. NetworkAnalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019;47(W1):W234-W241. doi: 10.1093/nar/gkz240
- Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453-457. doi: 10.1038/nmeth.3337
- Hu K. Become competent within one day in generating boxplots and violin plots for a novice without prior R experience. Methods Protoc. 2020;3(4):64. doi: 10.3390/mps3040064
- Davis AP, Grondin CJ, Johnson RJ, et al. Comparative toxicogenomics database (CTD): Update 2021. Nucleic Acids Res. 2021;49(D1):D1138-D1143. doi: 10.1093/nar/gkaa891
- Singh AV, Bhardwaj P, Laux P, et al. AI and ML-based risk assessment of chemicals: Predicting carcinogenic risk from chemical-induced genomic instability. Front Toxicol. 2024;6:1461587. doi: 10.3389/ftox.2024.1461587
- Yang Z, Yan WX, Cai H, et al. S100A12 provokes mast cell activation: A potential amplification pathway in asthma and innate immunity. J Allergy Clin Immunol. 2007;119(1):106-114. doi: 10.1016/j.jaci.2006.08.021
- Yan WX, Armishaw C, Goyette J, et al. Mast cell and monocyte recruitment by S100A12 and its hinge domain. J Biol Chem. 2008;283(19):13035-13043. doi: 10.1074/jbc.M710388200
- Ryckman C, Vandal K, Rouleau P, Talbot M, Tessier PA. Proinflammatory activities of S100: Proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J Immunol. 2003;170(6):3233-3242. doi: 10.4049/jimmunol.170.6.3233
- Tzouvelekis A, Herazo-Maya JD, Ryu C, et al. S100A12 as a marker of worse cardiac output and mortality in pulmonary hypertension. Respirology. 2018;23(8):771-779. doi: 10.1111/resp.13302
- Liu Y, Shi JZ, Jiang R, et al. Regulatory T cell-related gene indicators in pulmonary hypertension. Front Pharmacol. 2022;13:908783. doi: 10.3389/fphar.2022.908783
- Taz TA, Ahmed K, Paul BK, Al-Zahrani FA, Mahmud SMH, Moni MA. Identification of biomarkers and pathways for the SARS-CoV-2 infections that make complexities in pulmonary arterial hypertension patients. Brief Bioinform. 2021;22(2):1451-1465. doi: 10.1093/bib/bbab026
- Yang J, Goetz D, Li JY, et al. An iron delivery pathway mediated by a lipocalin. Mol Cell. 2002;10(5):1045-1056. doi: 10.1016/s1097-2765(02)00710-4
- Shields-Cutler RR, Crowley JR, Miller CD, Stapleton AE, Cui W, Henderson JP. Human metabolome-derived cofactors are required for the antibacterial activity of siderocalin in urine. J Biol Chem. 2016;291(50):25901-25910. doi: 10.1074/jbc.M116.759183
- Bao G, Clifton M, Hoette TM, et al. Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex. Nat Chem Biol. 2010;6(8):602-609. doi: 10.1038/nchembio.402
- Li C, Zhang Z, Xu Q, Wu T, Shi R. Potential mechanisms and serum biomarkers involved in sex differences in pulmonary arterial hypertension. Medicine. 2020;99(13):e19612. doi: 10.1097/md.0000000000019612
- Snider P, Hinton RB, Moreno-Rodriguez RA, et al. Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart. Circ Res. 2008;102(7):752-760. doi: 10.1161/circresaha.107.159517
- Seki M, Furukawa N, Koitabashi N, et al. Periostin-expressing cell-specific transforming growth factor-β inhibition in pulmonary artery prevents pulmonary arterial hypertension. PLoS One. 2019;14(8):e0220795. doi: 10.1371/journal.pone.0220795
- Kim BR, Yoon JW, Choi H, Kim D, Kang S, Kim JH. Application of periostin peptide-decorated self-assembled protein cage nanoparticles for therapeutic angiogenesis. BMB Rep. 2022;55(4):175-180. doi: 10.5483/BMBRep.2022.55.4.137
- Yoshida T, Nagaoka T, Nagata Y, et al. Periostin-related progression of different types of experimental pulmonary hypertension: A role for M2 macrophage and FGF-2 signalling. Respirology. 2022;27(7):529-538. doi: 10.1111/resp.14249
- Lee D, Lee H, Jo HN, et al. Endothelial periostin regulates vascular remodeling by promoting endothelial dysfunction in pulmonary arterial hypertension. Anim Cells Syst. 2024;28(1):1-14. doi: 10.1080/19768354.2023.2300437
- Liang X, Gao J, Wang Q, Hou S, Wu C. ECRG4 represses cell proliferation and invasiveness via NFIC/OGN/ NF-κB signaling pathway in bladder cancer. Front Genet. 2020;11:846. doi: 10.3389/fgene.2020.00846
- Xu T, Zhang R, Dong M, et al. Osteoglycin (OGN) inhibits cell proliferation and invasiveness in breast cancer via PI3K/Akt/mTOR signaling pathway. Onco Targets Ther. 2019;12:10639-10650. doi: 10.2147/ott.S222967
- Rochette A, Boufaied N, Scarlata E, et al. Asporin is a stromally expressed marker associated with prostate cancer progression. Br J Cancer. 2017;116(6):775-784. doi: 10.1038/bjc.2017.15
- Li H, Yang HH, Sun ZG, Tang HB, Min JK. Whole-transcriptome sequencing of knee joint cartilage from osteoarthritis patients. Bone Joint Res. 2019;8(7):290-303. doi: 10.1302/2046-3758.87.Bjr-2018-0297.R1
- Dai B, Ding L, Zhao L, Zhu H, Luo H. Contributions of immune cells and stromal cells to the pathogenesis of systemic sclerosis: Recent insights. Front Pharmacol. 2022;13:826839. doi: 10.3389/fphar.2022.826839
- Wang L, Sun J. ASPN Is a potential biomarker and associated with immune infiltration in endometriosis. Genes (Basel). 2022;13(8):1352. doi: 10.3390/genes13081352
- Koudouna A, Gkioka AI, Gkiokas A, et al. Serum-soluble CD163 levels as a prognostic biomarker in patients with diffuse large B-cell lymphoma treated with chemoimmunotherapy. Int J Mol Sci. 2024;25(5):2862. doi: 10.3390/ijms25052862
- Møller HJ. Soluble CD163. Scand J Clin Lab Invest. 2012;72(1):1-13. doi: 10.3109/00365513.2011.626868
- Lekva T, Gullestad L, Broch K, Aukrust P, Andreassen AK, Ueland T. Distinct patterns of soluble leukocyte activation markers are associated with etiology and outcomes in precapillary pulmonary hypertension. Sci Rep. 2020;10(1):18540. doi: 10.1038/s41598-020-75654-w
- D’Addario CA, Lanier GM, Jacob C, et al. Differences in the expression of DNA methyltransferases and demethylases in leukocytes and the severity of pulmonary arterial hypertension between ethnic groups. Physiol Rep. 2022;10(10):e15282. doi: 10.14814/phy2.15282
- Meng L, Liu X, Teng X, et al. Osteopontin plays important roles in pulmonary arterial hypertension induced by systemic-to-pulmonary shunt. FASEB J. 2019;33(6):7236-7251. doi: 10.1096/fj.201802121RR
- Mura M, Cecchini MJ, Joseph M, Granton JT. Osteopontin lung gene expression is a marker of disease severity in pulmonary arterial hypertension. Respirology. 2019;24(11):1104-1110. doi: 10.1111/resp.13557
- Hoshikawa Y, Matsuda Y, Sakuma M, Kondo T. Potential therapeutic target for pulmonary arterial hypertension--osteopontin. Nihon rinsho Jpn J Clin Med. 2008;66(11):2097-2101.
- da Silva IV, Soveral G. Aquaporins in immune cells and inflammation: New targets for drug development. Int J Mol Sci. 2021;22(4):1845. doi: 10.3390/ijms22041845
- da Silva IV, Garra S, Calamita G, Soveral G. The multifaceted role of aquaporin-9 in health and its potential as a clinical biomarker. Biomolecules. 2022;12(7):897. doi: 10.3390/biom12070897