AccScience Publishing / GPD / Online First / DOI: 10.36922/GPD025070014
ORIGINAL RESEARCH ARTICLE

Identification of cullin family members as novel diagnostic and prognostic biomarkers in kidney renal clear cell carcinoma

Shaohao Liu1,2 Fei Wang1,2 Yange Wang1,2 Dandan Wang1,2 Shaoping Ji1,2 Na Fang1,2*
Show Less
1 Cell Signal Transduction Laboratory and Institute of Biomedical Informatics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
2 Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng Science and Technology Bureau, Kaifeng, China
Received: 13 February 2025 | Revised: 15 May 2025 | Accepted: 20 May 2025 | Published online: 2 July 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Kidney renal clear cell carcinoma (KIRC) is a prevalent histological subtype of kidney cancer and one of the most invasive urinary tumors. Members of the cullin family play a pivotal role in driving the development and progression of neoplasms. Accumulating evidence suggests that cullins might play a significant part in the initiation and advancement of KIRC. In this study, the messenger ribonucleic acid expression profiles for eight members of the cullin family (CUL1 – 9) were noticeably upregulated in KIRC compared to normal tissue, whereas CUL3, CUL5, and CUL7 were downregulated. Moreover, our analysis demonstrated that higher expression levels of CUL1 – 3, CUL4A, CUL4B, CUL5, and CUL7 were significantly correlated with enhanced overall survival (OS) in KIRC patients. Co-expression gene analysis showed that the differential expression of cullins in KIRC was predominantly associated with 20 genes. Functional enrichment analysis indicated that cullins in KIRC primarily participated in ubiquitin-mediated protein degradation, facilitated protein polyubiquitylation, and regulated APC/C activators during the G1/S phase transition and early anaphase. Furthermore, cullin gene expression exhibited a positive correlation with the activity of tumor-infiltrating immune cells. These findings suggest that cullins may serve as diagnostic and prognostic biomarkers in KIRC patients.

Graphical abstract
Keywords
Kidney renal clear cell carcinoma
Cullin gene family
Bioinformatics analysis
Prognostic value
Funding
This work was supported by grants from the Henan Province Science and Technology Research Projects (Grant no.: 232102310208), Kaifeng City Science and Technology Research Projects (Grant no.: 2303009 and 2303011), and the Bioinformatics Center of Henan University (Grant no.: 2020YLXKJC02).
Conflict of interest
Shaoping Ji is an Associate Editor of this journal, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Quinn AE, Bell SD, Marrah AJ, Wakefield MR, Fang Y. The current state of the diagnoses and treatments for clear cell renal cell carcinoma. Cancers (Basel). 2024;16(23):4034. doi: 10.3390/cancers16234034

 

  1. Rinaldi L, Senatore E, Feliciello S, Chiuso F, Insabato L, Feliciello A. Kidney cancer: From tumor biology to innovative therapeutics. Biochim Biophys Acta Rev Cancer. 2024;1880(1):189240. doi: 10.1016/j.bbcan.2024.189240

 

  1. Rose TL, Kim WY. Renal cell carcinoma: A review. JAMA. 2024;332(12):1001-1010. doi: 10.1001/jama.2024.12848

 

  1. Yang F, Zhou X, Du S, et al. LIM and SH3 domain protein 1 (LASP-1) overexpression was associated with aggressive phenotype and poor prognosis in clear cell renal cell cancer. PLoS One. 2014;9(6):e100557. doi: 10.1371/journal.pone.0100557

 

  1. Chen G, Li G. Increased Cul1 expression promotes melanoma cell proliferation through regulating p27 expression. Int J Oncol. 2010;37(5):1339-1344. doi: 10.3892/ijo_00000786

 

  1. Hung MS, Mao JH, Xu Z, et al. Cul4A is an oncogene in malignant pleural mesothelioma. J Cell Mol Med. 2011;15(2):350-358. doi: 10.1111/j.1582-4934.2009.00971.x

 

  1. Paul S. Dysfunction of the ubiquitin-proteasome system in multiple disease conditions: Therapeutic approaches. Bioessays. 2008;30(11-12):1172-1184. doi: 10.1002/bies.20852

 

  1. Kiyozumi D, Ikawa M. Proteolysis in reproduction: Lessons from gene-modified organism studies. Front Endocrinol (Lausanne). 2022;13:876370. doi: 10.3389/fendo.2022.876370

 

  1. Tundo GR, Sbardella D, Santoro AM, et al. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther. 2020;213:107579. doi: 10.1016/j.pharmthera.2020.107579

 

  1. Cornelius RJ, Ferdaus MZ, Nelson JW, McCormick JA. Cullin-ring ubiquitin ligases in kidney health and disease. Curr Opin Nephrol Hypertens. 2019;28(5):490-497. doi: 10.1097/MNH.0000000000000527

 

  1. Jiang A, Li J, He Z, et al. Renal cancer: Signaling pathways and advances in targeted therapies. MedComm (2020). 2024;5(8):e676. doi: 10.1002/mco2.676

 

  1. Linehan WM, Spellman PT, Ricketts CJ, et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N Engl J Med. 2016;374(2):135-145. doi: 10.1056/NEJMoa1505917

 

  1. Rhodes DR, Yu J, Shanker K, et al. ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6(1):1-6. doi: 10.1016/s1476-5586(04)80047-2

 

  1. Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19(8):649-658. doi: 10.1016/j.neo.2017.05.002

 

  1. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98-W102. doi: 10.1093/nar/gkx247

 

  1. Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38(Web Server issue):W214-W220. doi: 10.1093/nar/gkq537

 

  1. Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523. doi: 10.1038/s41467-019-09234-6

 

  1. Li T, Fan J, Wang B, et al. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017;77(21):e108-e110. doi: 10.1158/0008-5472.CAN-17-0307

 

  1. Yusenko MV, Kuiper RP, Boethe T, Ljungberg B, van Kessel AG, Kovacs G. High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas. BMC Cancer. 2009;9:152. doi: 10.1186/1471-2407-9-152

 

  1. Jones J, Otu H, Spentzos D, et al. Gene signatures of progression and metastasis in renal cell cancer. Clin Cancer Res. 2005;11(16):5730-5739. doi: 10.1158/1078-0432.CCR-04-2225

 

  1. Beroukhim R, Brunet JP, Di Napoli A, et al. Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res. 2009;69(11):4674-4681. doi: 10.1158/0008-5472.CAN-09-0146

 

  1. Cutcliffe C, Kersey D, Huang CC, et al. Clear cell sarcoma of the kidney: Up-regulation of neural markers with activation of the sonic hedgehog and Akt pathways. Clin Cancer Res. 2005;11(22):7986-7994. doi: 10.1158/1078-0432.CCR-05-1354

 

  1. Xu WH, Xu Y, Wang J, et al. Prognostic value and immune infiltration of novel signatures in clear cell renal cell carcinoma microenvironment. Aging (Albany NY). 2019;11(17):6999-7020. doi: 10.18632/aging.102233

 

  1. Cheng J, Bin X, Tang Z. Cullin-RING ligase 4 in cancer: Structure, functions, and mechanisms. Biochim Biophys Acta Rev Cancer. 2024;1879(5):189169. doi: 10.1016/j.bbcan.2024.189169

 

  1. Berthold J, Schenkova K, Ramos S, et al. Characterization of RhoBTB-dependent Cul3 ubiquitin ligase complexes- -evidence for an autoregulatory mechanism. Exp Cell Res. 2008;314(19):3453-3465. doi: 10.1016/j.yexcr.2008.09.005

 

  1. Lee JW, Chou CL, Knepper MA. Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J Am Soc Nephrol. 2015;26(11): 2669-2677. doi: 10.1681/ASN.2014111067

 

  1. Xu M, Yang X, Zhao J, et al. High expression of Cullin1 indicates poor prognosis for NSCLC patients. Pathol Res Pract. 2014;210(7):397-401. doi: 10.1016/j.prp.2014.01.015

 

  1. Fan YC, Zhu YS, Mei PJ, et al. Cullin1 regulates proliferation, migration and invasion of glioma cells. Med Oncol. 2014;31(10):227. doi: 10.1007/s12032-014-0227-x

 

  1. Liu W, Wang Y, Zhang C, Huang B, Bai J, Tian L. Cullin1 is up-regulated and associated with poor patients’ survival in hepatocellular carcinoma. Int J Clin Exp Pathol. 2015;8(4):4001-4007.

 

  1. Xu J, Fang Y, Wang X, et al. CUL2 overexpression driven by CUL2/E2F1/miR-424 regulatory loop promotes HPV16 E7 induced cervical carcinogenesis. Oncotarget. 2016;7(21):31520-31533. doi: 10.18632/oncotarget.9127

 

  1. Wang H, Lu Y, Wang M, Wu Y, Wang X, Li Y. Correction to: Roles of E3 ubiquitin ligases in gastric cancer carcinogenesis and their effects on cisplatin resistance. J Mol Med (Berl). 2021;99(7):1021-1022. doi: 10.1007/s00109-021-02078-y

 

  1. Yasui K, Arii S, Zhao C, et al. TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas. Hepatology. 2002;35(6): 1476-1484. doi: 10.1053/jhep.2002.33683

 

  1. Forrester NA, Sedgwick GG, Thomas A, et al. Serotype-specific inactivation of the cellular DNA damage response during adenovirus infection. J Virol. 2011;85(5):2201-2211. doi: 10.1128/JVI.01748-10

 

  1. Sato Y, Kamura T, Shirata N, et al. Degradation of phosphorylated p53 by viral protein-ECS E3 ligase complex. PLoS Pathog. 2009;5(7):e1000530. doi: 10.1371/journal.ppat.1000530

 

  1. Jia L, Yan F, Cao W, et al. Dysregulation of CUL4A and CUL4B ubiquitin ligases in lung cancer. J Biol Chem. 2017;292(7):2966-2978. doi: 10.1074/jbc.M116.765230

 

  1. Shiyanov P, Nag A, Raychaudhuri P. Cullin 4A associates with the UV-damaged DNA-binding protein DDB. J Biol Chem. 1999;274(50):35309-35312. doi: 10.1074/jbc.274.50.35309

 

  1. Dohna M, Reincke M, Mincheva A, Allolio B, Solinas-Toldo S, Lichter P. Adrenocortical carcinoma is characterized by a high frequency of chromosomal gains and high-level amplifications. Genes Chromosomes Cancer. 2000;28(2): 145-152.

 

  1. Wang H, Lu Y, Wang M, Wu Y, Wang X, Li Y. Roles of E3 ubiquitin ligases in gastric cancer carcinogenesis and their effects on cisplatin resistance. J Mol Med (Berl). 2021;99(2):193-212. doi: 10.1007/s00109-020-02015-5

 

  1. Wang Y, Wen M, Kwon Y, et al. CUL4A induces epithelial-mesenchymal transition and promotes cancer metastasis by regulating ZEB1 expression. Cancer Res. 2014;74(2): 520-531. doi: 10.1158/0008-5472.CAN-13-2182

 

  1. An J, Liu Z, Liang Q, et al. Overexpression of Rabl3 and Cullin7 is associated with pathogenesis and poor prognosis in hepatocellular carcinoma. Hum Pathol. 2017;67:146-151. doi: 10.1016/j.humpath.2017.07.008

 

  1. Zhang D, Yang G, Li X, Xu C, Ge H. Inhibition of liver carcinoma cell invasion and metastasis by knockdown of cullin7 in vitro and in vivo. Oncol Res. 2016;23(4):171-181. doi: 10.3727/096504016X14519995067562

 

  1. Andrews P, He YJ, Xiong Y. Cytoplasmic localized ubiquitin ligase cullin 7 binds to p53 and promotes cell growth by antagonizing p53 function. Oncogene. 2006;25(33):4534-4548. doi: 10.1038/sj.onc.1209490

 

  1. Qiu N, He Y, Zhang S, Hu X, Chen M, Li H. Cullin 7 is a predictor of poor prognosis in breast cancer patients and is involved in the proliferation and invasion of breast cancer cells by regulating the cell cycle and microtubule stability. Oncol Rep. 2018;39(2):603-610. doi: 10.3892/or.2017.6106

 

  1. Guo H, Wu F, Wang Y, Yan C, Su W. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53. Biochem Biophys Res Commun. 2014;450(4):1370-1376. doi: 10.1016/j.bbrc.2014.06.134

 

  1. Zhou M, Zhang Z, Bao S, et al. Computational recognition of lncRNA signature of tumorinfiltrating B lymphocytes with potential implications in prognosis and immunotherapy of bladder cancer. Brief Bioinform. 2021;22(3):bbaa047. doi: 10.1093/bib/bbaa047

 

  1. Zhang H, Liu M, Du G, et al. Immune checkpoints related- LncRNAs can identify different subtypes of lung cancer and predict immunotherapy and prognosis. J Cancer Res Clin Oncol. 2022;148(7):1597-1612. doi: 10.1007/s00432-022-03940-3

 

Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing