AccScience Publishing / GPD / Online First / DOI: 10.36922/gpd.6557
PERSPECTIVE ARTICLE

Exploring dopamine as the master regulator of brain circuitry and mental health genome

Kenneth Blum1,2,3,4* Eric R. Braverman1 Alireza Sharafshah5 Igor Elman3,6 Kai-Uwe Lewandrowski2,7,8 Abdalla Bowirrat3,9 Albert Pinhasov3 Panayotis K. Thanos3,10 Mark S. Gold11* Catherine A. Dennen12 Edward J. Modestino13 Rajendra D. Badgaiyan9 David Baron4 Brian Fuehrlein14 Daniel Sipple15 John Wesson Ashford16,17 Keerthy Sunder18 Milan Makale19 Kevin Murphy19 Nicole Jafari20 Foojan Zeine21 Aryeh R. Pollack1 Alexander P.L. Lewandrowski1 Jag Khalsa22
Show Less
1 Division of Clinical Neurology, The Blum Institute of Neurogenetics and Behavior, Austin, Texas, United States of America
2 Division of Personalized Pain Therapy Research and Education, Center for Advanced Spine Care of Southern Arizona, Tucson, Arizona, United States of America
3 Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
4 Division of Addiction Research and Education, Center for Sports, Exercise, and Mental Health, Western University of Health Sciences, Pomona, California, United States of America
5 Cellular and Molecular Research Center, School of Medicine, Guilin University of Medical Sciences, Rasht, Iran
6 Department of Psychiatry and Cambridge Health Alliance, Harvard Medical School, Cambridge, Massachusetts, United States of America
7 Department of Orthopaedics, Fundación Universitaria Sanitas, Bogotá D.C., Colombia
8 Department of Orthopaedics, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
9 Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, Ohio, United States of America
10 Department of Pharmacology and Toxicology, Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, New York, United States of America
11 Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
12 Department of Family Medicine, Jefferson Health Northeast, Philadelphia, Pennsylvania, United States of America
13 Department of Psychology, Curry College, Milton, Massachusetts, United States of America
14 Department of Psychiatry, Yale University School of Medicine, New Haven, United States of America
15 M Health Fairview University of Minnesota Medical Center, Minneapolis, Minnesota, United States of America
16 Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, United States of America
17 War Related Illness and Injury Study Center, VA Palo Alto Health Care System, Palo Alto, California, United States of America
18 Department of Medicine, Riverside School of Medicine, University of California, Riverside, California, United States of America
19 Department of Radiation Oncology, University of California San Diego, La Jolla, California, United States of America
20 Department of Applied Clinical Psychology, The Chicago School of Professional Psychology, Los Angeles, United States of America
21 Department of Health Science, California State University at Long Beach, Long Beach, California, United States of America
22 Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
Received: 25 November 2024 | Revised: 7 February 2025 | Accepted: 31 March 2025 | Published online: 3 June 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Artificially increasing dopamine transmission is the common mechanism by which substances with addictive potential lead to addiction. A key area of research in neurobiology is the role of dopamine. Significant advancements have been made in uncovering the intracellular signaling pathways that mediate both dopamine’s immediate effects and its long-term influence on brain function. Recent discoveries have also highlighted specific molecules that could serve as potential therapeutic targets for neurological and psychiatric disorders. While understanding several important caveats, we believe dopamine acts as a master regulator of brain circuitry across major chromosomes mapping the mental health genome. This view may have important clinical relevance, emphasizing the critical role of dopaminergic activity across the genome. Importantly, we are cognizant that dopamine does not work in insolation, and its finite actions are due to a highly interactive network (known as the brain reward cascade), involving at least seven other major neurotransmitters.

Keywords
Dopamine
Addiction
Genetics
Brain reward cascade
Psychiatric disorders
Funding
Kenneth Blum is NIH recipient of R41 MD012318/MD/ NIMHD NIH HHS/United States, while Rajendra D. Badgaiyan is the recipient of NIH R01NS073884.
Conflict of interest
Kenneth Blum and Kai-Uwe Lewandrowski are the Editorial Board Members but were not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper. Kenneth Blum holds patents, both domestic and foreign, related to pro-dopamine regulation complexes and genetic testing for addiction risk.
References
  1. Cruickshank L, Kennedy AR, Shankland N.” CSD Entry TIRZAX: 5-(2-Ammonioethyl)-2-Hydroxyphenolate, Dopamine”. Cambridge Structural Database: Access Structures. England: Cambridge Crystallographic Data Centre; 2013.

 

  1. Cruickshank L, Kennedy AR, Shankland N. Tautomeric and ionization forms of dopamine and tyramine in the solid state. J Mol Struct. 2013;1051:132-136. doi: 10.1016/j.molstruc.2013.08.002

 

  1. IUPHAR/BPS Guide to Pharmacology. Basel: International Union of Basic and Clinical Pharmacology; 2016.

 

  1. Berridge KC. The debate over dopamine’s role in reward: The case for incentive salience. Psychopharmacology (Berl). 2007;191(3):391-431. doi: 10.1007/s00213-006-0578-x

 

  1. Wise RA, Robble MA. Dopamine and addiction. Annu Rev Psychol. 2020;71(1):79-106. doi: 10.1146/annurev-psych-010418-103337

 

  1. Schultz W. Multiple dopamine functions at different time courses. Annu Rev Neurosci. 2007;30:259-288. doi: 10.1146/annurev.neuro.28.061604.135722

 

  1. Björklund A, Dunnett SB. Dopamine neuron systems in the brain: An update. Trends Neurosci. 2007;30(5):194-202. doi: 10.1016/j.tins.2007.03.006

 

  1. Dahlstroem A, Fuxe K. Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl. 1964:SUPPL 232:1-55.

 

  1. Malenka RC, Nestler EJ, Hyman SE. Widely projecting systems: Monoamines, acetylcholine, and orexin. In: Sydor A, Brown RY, editors. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience. Ch. 6. United States: McGraw-Hill Medical; 2009.

 

  1. Christine CW, Aminoff MJ. Clinical differentiation of Parkinsonian syndromes: Prognostic and therapeutic relevance. Am J Med. 2004;117(6):412-419. doi: 10.1016/j.amjmed.2004.03.032

 

  1. Fadok JP, Dickerson TM, Palmiter RD. Dopamine is necessary for cue-dependent fear conditioning. J Neurosci. 1974;29(36):11089-11097. doi: 10.1523/JNEUROSCI.1616-09.2009.PMC2759996

 

  1. Tang W, Kochubey O, Kintscher M, Schneggenburger R. A VTA to basal amygdala dopamine projection contributes to signal salient somatosensory events during fear learning. J Neurosci. 2020;40(20):3969-3980. doi: 10.1523/JNEUROSCI.1796-19.2020

 

  1. Jo YS, Heymann G, Zweifel LS. Dopamine neurons reflect the uncertainty in fear generalization. Neuron. 2006;100(4):916-925. doi: 10.1016/j.neuron.2018.09.028.PMC6226 002

 

  1. Ben-Jonathan N, Hnasko R. Dopamine as a prolactin (PRL) inhibitor. Endocr Rev. 2001;22(6):724-763. doi: 10.1210/edrv.22.6.0451

 

  1. Witkovsky P. Dopamine and retinal function. Doc Ophthalmol. 2004;108(1):17-40. doi: 10.1023/b: doop.0000019487.88486.0a

 

  1. Singh SV, Staes N, Guevara EE, et al. Evolution of ASPM coding variation in apes and associations with brain structure in chimpanzees. Genes Brain Behav. 2019;18(7):e12582. doi: 10.1111/gbb.12582

 

  1. Yoshihara D, Fujiwara N, Kitanaka N, et al. The absence of the SOD1 gene causes abnormal monoaminergic neurotransmission and motivational impairment-like behavior in mice. Free Radic Res. 2016;50(11):1245-1256. doi: 10.1080/10715762.2016.1234048

 

  1. Franklin GL, Teive HAG, Tensini FS, et al. The Huntington’s disease gene discovery. Mov Disord. 2024;39(2):227-234. doi: 10.1002/mds.29703

 

  1. Sokoloff P, Le Foll B. A historical perspective on the dopamine D3 receptor. Curr Top Behav Neurosci. 2023;60:1-28. doi: 10.1007/7854_2022_315

 

  1. O’Higgins M, Benito A, Real-López M, Gil-Miravet I, Ochoa E, Haro G. Relationship of DRD5 and MAO-B VNTR polymorphisms with paranoid and antisocial personality disorders in polydrug users. Personal Ment Health. 2023;17(1):77-86. doi: 10.1002/pmh.1563

 

  1. Zhang HY, De Biase L, Chandra R, et al. Repeated cocaine administration upregulates CB2 receptor expression in striatal medium-spiny neurons that express dopamine D1 receptors in mice. Acta Pharmacol Sin. 2022;43(4):876-888. doi: 10.1038/s41401-021-00712-6

 

  1. Chmielowiec J, Chmielowiec K, Strońska-Pluta A, et al. Methylation in the promoter region of the dopamine transporter DAT1 gene in people addicted to nicotine. Int J Environ Res Public Health. 2022;19(14):8602. doi: 10.3390/ijerph19148602

 

  1. Ma JZ, Beuten J, Payne TJ, Dupont RT, Elston RC, Li MD. Haplotype analysis indicates an association between the DOPA decarboxylase (DDC) gene and nicotine dependence. Hum Mol Genet. 2005;14(12):1691-1698. doi: 10.1093/hmg/ddi177

 

  1. Lohoff FW, Carr GV, Brookshire B, Ferraro TN, Lucki I. Deletion of the vesicular monoamine transporter 1 (vmat1/ slc18a1) gene affects dopamine signaling. Brain Res. 2019;1712:151-157. doi: 10.1016/j.brainres.2019.01.029

 

  1. Fernàndez-Castillo N, Ribasés M, Roncero C, Casas M, Gonzalvo B, Cormand B. Association study between the DAT1, DBH and DRD2 genes and cocaine dependence in a Spanish sample. Psychiatr Genet. 2010;20(6):317-320. doi: 10.1097/YPG.0b013e32833b6320

 

  1. Randesi M, van den Brink W, Levran O, et al. VMAT2 gene (SLC18A2) variants associated with a greater risk for developing opioid dependence. Pharmacogenomics. 2019;20(5):331-341. doi: 10.2217/pgs-2018-0137

 

  1. Liu JL, Li SQ, Zhu F, et al. Tyrosine hydroxylase gene polymorphisms contribute to opioid dependence and addiction by affecting promoter region function. Neuromolecular Med. 2020;22(3):391-400. doi: 10.1007/s12017-020-08597-0

 

  1. Blum K, Bowirrat A, Elman I, et al. Evidence for the DRD2 gene as a determinant of Reward Deficiency Syndrome (RDS). Clin Exp Psychol. 2023;9(4):8-11.

 

  1. Zhang R, Dang W, Zhang J, et al. Methylation quantitative locus rs3758653 in the DRD4 gene is associated with duration from first heroin exposure to addiction. Brain Res. 2022;1775:147746. doi: 10.1016/j.brainres.2021.147746

 

  1. Mahajan SD, Aalinkeel R, Reynolds JL, et al. Therapeutic targeting of “DARPP-32”: A key signaling molecule in the dopiminergic pathway for the treatment of opiate addiction. Int Rev Neurobiol. 2009;88:199-222. doi: 10.1016/S0074-7742(09)88008-2

 

  1. Tunbridge EM, Huber A, Farrell SM, Stumpenhorst K, Harrison PJ, Walton ME. The role of catechol-O-methyltransferase in reward processing and addiction. CNS Neurol Disord Drug Targets. 2012;11(3):306-323. doi: 10.2174/187152712800672409

 

  1. Tu PC, Chen MH, Chang WC, et al. Identification of common neural substrates with connectomic abnormalities in four major psychiatric disorders: A connectome-wide association study. Eur Psychiatry. 2020;64(1):e8. doi: 10.1192/j.eurpsy.2020.106

 

  1. Xie C, Xiang S, Shen C, et al. A shared neural basis underlying psychiatric comorbidity. Nat Med. 2023;29(5):1232-1242. doi: 10.1038/s41591-023-02317-4

 

  1. Fusar-Poli P, Solmi M, Brondino N, et al. Transdiagnostic psychiatry: A systematic review. World Psychiatry. 2019;18(2):192-207. doi: 10.1002/wps.20631

 

  1. Van Den Akker M, Buntinx F, Knottnerus JA. Comorbidity or multimorbidity: What’s in a name? A review of literature. Eur J Gen Pract. 1996;2:65-70.

 

  1. Plana-Ripoll O, Pedersen CB, Holtz Y, et al. Exploring comorbidity within mental disorders among a Danish national population. JAMA Psychiatry. 2019;76(3):259. doi: 10.1001/jamapsychiatry.2018.3658

 

  1. Kessler RC, Amminger GP, Aguilar-Gaxiola S, Alonso J, Lee S. Age of onset of mental disorders: A review of recent literature. Curr Opin Psychiatry. 2007;20(4):359-364. doi: 10.1097/yco.0b013e32816ebc8c

 

  1. Insel TR. The NIMH research domain criteria (RDoC) Project: Precision medicine for psychiatry. Am J Psychiatry. 2014;171:395-397. doi: 10.1176/appi.ajp.2014.14020138

 

  1. Park BY, Kebets V, Larivière S, et al. Multiscale neural gradients reflect transdiagnostic effects of major psychiatric conditions on cortical morphology. Commun Biol. 2022;5(1):1024. doi: 10.1038/s42003-022-03963-z

 

  1. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. Lancet. 2013;381(9875):1371-1379. doi: 10.1016/s0140-6736(12)62129-1

 

  1. Su TP, Chen MH, Tu PC. Using big data of genetics, health claims, and brain imaging to challenge the categorical classification in mental illness. J Chin Med Assoc. 2022;85(2):139-144. doi: 10.1097/JCMA.0000000000000675

 

  1. Nakamura Y, Ishida T, Tanaka SC, et al. Distinctive alterations in the mesocorticolimbic circuits in various psychiatric disorders. Psychiatry Clin Neurosci. 2023;77(6):345-354. doi: 10.1111/pcn.13542

 

  1. Liston C, Cohen M, Teslovich M, Levenson T, Casey D. Atypical prefrontal connectivity in attention-deficit/hyperactivity disorder: Pathway to disease or pathological end point? Biol Psychiatry. 2011;69:1168-1177.

 

  1. Wang AR, Kuijper FM, Barbosa DAN, et al. Human habit neural circuitry may be perturbed in eating disorders. Sci Transl Med. 2023;15(689):eabo4919. doi: 10.1126/scitranslmed.abo4919

 

  1. Xue X, Zong W, Glausier JR, et al. Molecular rhythm alterations in prefrontal cortex and nucleus accumbens associated with opioid use disorder. Transl Psychiatry. 2022;12(1):123. doi: 10.1038/s41398-022-01894-1

 

  1. Blum K, Noble EP, Sheridan PJ, et al. Allelic association of human dopamine D2 receptor gene in alcoholism. JAMA. 1990;263(15):2055-2060. doi: 10.1001/jama.1990.03440150063027

 

  1. Blum K, Febo M, McLaughlin T, Cronjé FJ, Han D, Gold SM. Hatching the behavioral addiction egg: Reward Deficiency Solution System (RDSS)TM as a function of dopaminergic neurogenetics and brain functional connectivity linking all addictions under a common rubric. J Behav Addict. 2014;3(3):149-156. doi: 10.1556/JBA.3.2014.019

 

  1. Fiore VG, Dolan RJ, Strausfeld NJ, Hirth F. Evolutionarily conserved mechanisms for the selection and maintenance of behavioural activity. Philos Trans R Soc Lond B Biol Sci. 2015;370(1684):20150053. doi: 10.1098/rstb.2015.0053

 

  1. Qian A, Wang X, Liu H, et al. Dopamine D4 receptor gene associated with the frontal-striatal-cerebellar loop in children with ADHD: A resting-state fMRI study. Neurosci Bull. 2018;34(3):497-506. doi: 10.1007/s12264-018-0217-7

 

  1. Drabant EM, Hariri AR, Meyer-Lindenberg A, et al. Catechol O-methyltransferase val158met genotype and neural mechanisms related to affective arousal and regulation. Arch Gen Psychiatry. 2006;63(12):1396-1406. doi: 10.1001/archpsyc.63.12.1396

 

  1. Schmack K, Schlagenhauf F, Sterzer P, et al. Catechol- O-methyltransferase val158met genotype influences neural processing of reward anticipation. Neuroimage. 2008;42(4):1631-1638. doi: 10.1016/j.neuroimage.2008.06.019

 

  1. Bourque VR, Poulain C, Proulx C, et al. Genetic and phenotypic similarity across major psychiatric disorders: A systematic review and quantitative assessment. Transl Psychiatry. 2024;14(1):171. doi: 10.1038/s41398-024-02866-3

 

  1. Polderman TJC, Benyamin B, de Leeuw CA, et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet. 2015;47(7):702-709. doi: 10.1038/ng.3285

 

  1. Brainstorm Consortium, Anttila V, Bulik-Sullivan B, et al. Analysis of shared heritability in common disorders of the brain. Science. 2018;360:eaap8757. doi: 10.1126/science.aap8757

 

  1. Lee PH, Feng YCA, Smoller JW. Pleiotropy and cross- disorder genetics among psychiatric disorders. Biol Psychiatry. 2021;89(1):20-31. doi: 10.1016/j.biopsych.2020.09.026

 

  1. Hettwer MD, Larivière S, Park BY, et al. Coordinated cortical thickness alterations across six neurodevelopmental and psychiatric disorders. Nat Commun. 2022;13(1):6851. doi: 10.1038/s41467-022-34367-6

 

  1. Moreau CA, Urchs SGW, Kuldeep K, et al. Mutations associated with neuropsychiatric conditions delineate functional brain connectivity dimensions contributing to autism and schizophrenia. Nat Commun. 2020;11(1):5272. doi: 10.1038/s41467-020-18997-2

 

  1. Gandal MJ, Haney JR, Parikshak NN, et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Focus (Am Psychiatr Publ). 2019;17(1):66-72. doi: 10.1176/appi.focus.17103

 

  1. Opel N, Goltermann J, Hermesdorf M, Berger K, Baune BT, Dannlowski U. Cross-disorder analysis of brain structural abnormalities in six major psychiatric disorders: A secondary analysis of mega- and meta-analytical findings from the ENIGMA consortium. Biol Psychiatry. 2020;88(9):678-686. doi: 10.1016/j.biopsych.2020.04.027

 

  1. Writing Committee for the Attention-Deficit/Hyperactivity Disorder, Autism Spectrum Disorder, Bipolar Disorder, et al. Virtual Histology of Cortical Thickness and Shared Neurobiology in 6 Psychiatric Disorders [published correction appears in JAMA Psychiatry. 2021 Jan 1;78(1):112. doi: 10.1001/jamapsychiatry.2020.3094.]. JAMA Psychiatry. 2021;78(1):47-63. doi: 10.1001/jamapsychiatry.2020.2694

 

  1. Moreau CA, Kumar K, Harvey A, et al. Brain functional connectivity mirrors genetic pleiotropy in psychiatric conditions. Brain. 2023;146(4):1686-1696. doi: 10.1093/brain/awac315

 

  1. Romero C, Werme J, Jansen PR, et al. Exploring the genetic overlap between twelve psychiatric disorders. Nat Genet. 2022;54(12):1795-1802. doi: 10.1038/s41588-022-01245-2

 

  1. Pettersson E, Larsson H, Lichtenstein P. Common psychiatric disorders share the same genetic origin: A multivariate sibling study of the Swedish population. Mol Psychiatry. 2016;21(5):717-721. doi: 10.1038/mp.2015.116

 

  1. Kendler KS, Ohlsson H, Sundquist J, Sundquist K. Family genetic risk scores and the genetic architecture of major affective and psychotic disorders in a Swedish national sample. JAMA Psychiatry. 2021;78(7):735-743. doi: 10.1001/jamapsychiatry.2021.0336

 

  1. Ligthart L, Boomsma DI. Causes of comorbidity: Pleiotropy or causality? Shared genetic and environmental influences on migraine and neuroticism. Twin Res Hum Genet. 2012;15(2):158-165. doi: 10.1375/twin.15.2.158

 

  1. Sey NYA, Hu B, Mah W, et al. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nat Neurosci. 2020;23(4):583-593. doi: 10.1038/s41593-020-0603-0

 

  1. Orozco G, Schoenfelder S, Walker N, Eyre S, Fraser P. 3D genome organization links non-coding disease-associated variants to genes. Front Cell Dev Biol. 2022;10:995388. doi: 10.3389/fcell.2022.995388

 

  1. Girault JA, Greengard P. The neurobiology of dopamine signaling. Arch Neurol. 2004;61(5):641. doi: 10.1001/archneur.61.5.641

 

  1. Colita CI, Hermann DM, Filfan M, et al. Optimizing chronotherapy in psychiatric care: The impact of circadian rhythms on medication timing and efficacy. Clocks Sleep. 2024;6(4):635-655. doi: 10.3390/clockssleep6040043

 

  1. Samanta S, Bagchi D, Gold M, Badgaiyan R, Barh D, Blum K. A complex relationship among the circadian rhythm, reward circuit and substance use disorder (SUD). Psychol Res Behav Manag. 2024;17:3485-3501. doi: 10.2147/prbm.s473310

 

  1. Lyte M. Microbial Endocrinology: An Ongoing Personal Journey/Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health. Cham: Springer; 2016.

 

  1. Oleskin AV, Shenderov BA. Probiotics and psychobiotics: The role of microbial neurochemicals. Probiotics Antimicrob Proteins. 2019;11(4):1071-1085. doi: 10.1007/s12602-019-09583-0

 

Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing