Molecular binding of 11q to NS2B–NS3 proteases of dengue and West Nile viruses

Dengue virus (DENV) and West Nile virus (WNV) are mosquito-borne pathogens that cause severe health burdens globally. Despite their impact, no clinically approved antiviral therapies are currently available. The NS2B–NS3 protease is essential for viral genome replication in both viruses, increasing viral loads in infected individuals. Therefore, targeting and inhibiting this protease would significantly reduce viral replication. In a recent molecular dynamics (MD) simulation study, N-(((2,6-dibromophenyl) amino) methyl)-4-morpholinobenzamide (11q) was found to bind more strongly to the NS2B–NS3 protease of the Zika virus (ZIKV) than SYC–1307, a known ZIKV protease inhibitor. Notably, 11q was also observed to inhibit influenza virus replication. Given the high structural and sequence similarity of the NS2B–NS3 protease across ZIKV, DENV, and WNV, it was necessary to evaluate whether 11q can bind to the proteases of DENV and WNV to inhibit their activities. Using molecular docking, MD, and binding free energy studies, we found that 11q strongly binds to the NS2B–NS3 proteases of DENV and WNV with binding free energies of −15.80 ± 3.34 kcal/mol and −13.13 ± 2.56 kcal/mol, respectively. The slightly more favorable binding of 11q to the DENV protease is comparable to that observed with the ZIKV protease. Interestingly, the binding affinities of 11q for all three viral proteases surpass that of the ZIKV–SYC–1307 complex. Therefore, it is proposed that 11q may act as a pan-antiviral agent against ZIKV, DENV, and WNV proteases. However, experimental verification of its protease inhibition activities is required before it can be repurposed for therapeutic use against these viral diseases.

- Malavige G, Fernando S, Fernando DJ, Seneviratne SL. Dengue viral infections. Postgrad Med J. 2004;80(948): 588-601. doi: 10.1136/pgmj.2004.019638
- Guzman MG, Harris E. Dengue. Lancet. 2015;385(9966): 453-465. doi: 10.1016/S0140-6736(14)60572-9
- Cregar-Hernandez L, Jiao GS, Johnson AT, Lehrer AT, Wong TAS, Margosiak SA. Small molecule pan-dengue and west nile virus NS3 protease inhibitors. Antivir Chem Chemother. 2011;21(5):209-218. doi: 10.3851/IMP1767
- Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504-507. doi: 10.1038/nature12060
- Lim SP, Shi PY. West nile virus drug discovery. Viruses. 2013;5(12):2977-3006. doi: 10.3390/v5122977
- Petersen LR, Brault AC, Nasci RS. West nile virus: Review of the literature. JAMA. 2013;310(3):308-315. doi: 10.1001/jama.2013.8042
- Li J, Lim SP, Beer D, et al. Functional profiling of recombinant NS3 proteases from all four serotypes of dengue virus using tetrapeptide and octapeptide substrate libraries. J Biol Chem. 2005;280(31):28766-28774. doi: 10.1074/jbc.M500588200
- Yusof R, Clum S, Wetzel M, Murthy HK, Padmanabhan R. Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. J Biol Chem. 2000;275(14):9963-9969. doi: 10.1074/jbc.275.14.9963
- Lima AB, Behnam MA, El Sherif Y, Nitsche C, Vechi SM, Klein CD. Dual inhibitors of the dengue and West Nile virus NS2B-NS3 proteases: Synthesis, biological evaluation and docking studies of novel peptide-hybrids. Bioorg Med Chem. 2015;23(17):5748-5755. doi: 10.1016/j.bmc.2015.07.012
- Wengler G, Wengler G. The NS 3 nonstructural protein of flaviviruses contains an RNA triphosphatase activity. Virology. 1993;197(1):265-273. doi: 10.1006/viro.1993.1587
- Apte-Sengupta S, Sirohi D, Kuhn RJ. Coupling of replication and assembly in flaviviruses. Curr Opin Virol. 2014;9:134-142. doi: 10.1016/j.coviro.2014.09.020
- Noble CG, Seh CC, Chao AT, Shi PY. Ligand-bound structures of the dengue virus protease reveal the active conformation. J Virol. 2012;86(1):438-446. doi: 10.1128/JVI.06225-11
- Erbel P, Schiering N, D’Arcy A, et al. Structural basis for the activation of flaviviral NS3 proteases from dengue and West nile virus. Nat Struct Mol Biol. 2006;13(4):372-373. doi: 10.1038/nsmb1073
- Luo D, Vasudevan SG, Lescar J. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antivir Res. 2015;118:148-158. doi: 10.1016/j.antiviral.2015.03.014
- Purohit P, Sahoo S, Panda M, Sahoo PS, Meher BR. Targeting the DENV NS2B-NS3 protease with active antiviral phytocompounds: Structure-based virtual screening, molecular docking and molecular dynamics simulation studies. J Mol Model. 2022;28(11):365. doi: 10.1007/s00894-022-05355-w
- Chakraborty T, Alcamo IE. Dengue Fever and Other Hemorrhagic Viruses. New York: Infobase Publishing; 2008.
- Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol. 1990;44:649-688. doi: 10.1146/annurev.mi.44.100190.003245
- Colpitts TM, Conway MJ, Montgomery RR, Fikrig E. West nile virus: Biology, transmission, and human infection. Clin Microbiol Rev. 2012;25(4):635-648. doi: 10.1128/CMR.00045-12
- Lei J, Hansen G, Nitsche C, Klein CD, Zhang L, Hilgenfeld R. Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science. 2016;353(6298):503-505. doi: 10.1126/science.aag2419
- Zhang Z, Li Y, Loh YR, et al. Crystal structure of unlinked NS2B-NS3 protease from Zika virus. Science. 2016;354(6319):1597-1600. doi: 10.1126/science.aai9309
- Pant S, Jena NR. C-terminal extended hexapeptides as potent inhibitors of the NS2B-NS3 protease of the ZIKA virus. Front Med. 2022;9:921060. doi: 10.3389/fmed.2022.921060
- Yadav R, Jena NR. Paritaprevir as a pan-antiviral against different flaviviruses. Front Mol Biosci. 2025;12:1524951. doi: 10.3389/fmolb.2025.1524951
- Pant S, Jena NR. Repurposing of antiparasitic drugs against the NS2B-NS3 protease of the Zika virus. J Biomol Struct Dyn. 2023;42:10101-10113. doi: 10.1080/07391102.2023.2255648
- Li Y, Zhang Z, Phoo WW, et al. Structural dynamics of Zika virus NS2B-NS3 protease binding to dipeptide inhibitors. Structure. 2017;25(8):1242-1250.e3. doi: 10.1016/j.str.2017.06.006
- Li Y, Zhang Z, Phoo WW, et al. Structural insights into the inhibition of Zika virus NS2B-NS3 protease by a small-molecule inhibitor. Structure. 2018;26(4):555-564.e3. doi: 10.1016/j.str.2018.02.005
- Pant S, Bhattacharya G, Jena NR. Structures and dynamics of peptide and peptidomimetic inhibitors bound to the NS2B-NS3 protease of the ZIKA virus. J Biomol Struct Dyn. 2023;41(7):3076-3088. doi: 10.1080/07391102.2022.2045223
- Phoo WW, Zhang Z, Wirawan M, et al. Structures of Zika virus NS2B-NS3 protease in complex with peptidomimetic inhibitors. Antivir Res. 2018;160:17-24. doi: 10.1016/j.antiviral.2018.10.006
- Yang CC, Hsieh YC, Lee SJ, et al. Novel dengue virus-specific NS2B/NS3 protease inhibitor, BP2109, discovered by a high-throughput screening assay. Antimicrob Agents Chemother. 2011;55(1):229-238. doi: 10.1128/AAC.00855-10
- Baltina LA, Tasi YT, Huang SH, et al. Glycyrrhizic acid derivatives as dengue virus inhibitors. Bioorg Med Chem Lett. 2019;29(20):126645. doi: 10.1016/j.bmcl.2019.126645
- Lai H, Prasad GS, Padmanabhan R. Characterization of 8-hydroxyquinoline derivatives containing aminobenzothiazole as inhibitors of dengue virus type 2 protease in vitro. Antivir Res. 2013;97(1):74-80. doi: 10.1016/j.antiviral.2012.10.009
- Dang M, Lim L, Roy A, Song J. Myricetin Allosterically Inhibits Dengue NS2B-NS3 Protease as Studied by NMR and MD Simulations. bioRxiv. 2021. doi: 10.1101/2021.12.13.472523
- Norshidah H, Leow CH, Ezleen KE, et al. Assessing the potential of NS2B/NS3 protease inhibitors biomarker in curbing dengue virus infections: In silico vs. In vitro approach. Front Cell Infect Microbiol. 2023;13:1061937. doi: 10.3389/fcimb.2023.1061937
- Liu X, Liang J, Yu Y, et al. Discovery of aryl benzoyl hydrazide derivatives as novel potent broad-spectrum inhibitors of influenza A virus RNA-dependent RNA polymerase (RdRp). J Med Chem. 2022;65(5):3814-3832. doi: 10.1021/acs.jmedchem.1c01257
- Yao Y, Huo T, Lin YL, et al. Discovery, X-ray crystallography and antiviral activity of allosteric inhibitors of flavivirus NS2B-NS3 protease. J Am Chem Soc. 2019;141(17):6832-6836. doi: 10.1021/jacs.9b02505
- Chang HH, Huber RG, Bond PJ, et al. Systematic analysis of protein identity between Zika virus and other arthropod-borne viruses. Bull World Health Organ. 2016;95(7):517-525. doi: 10.2471/BLT.16.182105
- Huber RG, Lim XN, Ng WC, et al. Structure mapping of dengue and Zika viruses reveals functional long-range interactions. Nat Commun. 2019;10(1):1408. doi: 10.1038/s41467-019-09391-8
- Klamt A, Mennucci B, Tomasi J, et al. On the performance of continuum solvation methods. A comment on “Universal approaches to solvation modeling.” Acc Chem Res. 2009;42(4):489-492. doi: 10.1021/ar800187p
- Dennington R, Keith T, Millam J. GaussView V. 5. Shawnee Mission: Semichem Inc.; 2009.
- Yadav RP, Jena NR. Aryl benzoyl hydrazide derivatives as the potent inhibitors of the NS2B-NS3 protease and RNA-dependent RNA polymerase of the zika virus, 2025, (under review).
- Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-461. doi: 10.1002/jcc.21334
- Blum C, Roli A, Sampels M. Hybrid Metaheuristics: An Emerging Approach to Optimization. Vol 114. Germany: Springer; 2008. doi: 10.1007/978-3-540-78295-7
- Baxter J. Local optima avoidance in depot location. J Oper Res Soc. 1981;32(9):815-819.
- Mark P, Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A. 2001;105(43):9954-9960. doi: 10.1021/jp003020w
- Onufriev AV, Izadi S. Water models for biomolecular simulations. Wiley Interdiscip Rev Comput Mol Sci. 2018;8(2):e1347. doi: 10.1002/wcms.1347
- Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. Ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015;11(8):3696-3713. doi: 10.1021/acs.jctc.5b00255
- Huang L, Roux B. Automated force field parameterization for nonpolarizable and polarizable atomic models based on ab initio target data. J Chem Theory Comput. 2013;9(8):3543-3556. doi: 10.1021/ct4003477
- Sprenger KG, Jaeger VW, Pfaendtner J. The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. J Phys Chem B. 2015;119(18):5882-5895. doi: 10.1021/acs.jpcb.5b00689
- Meza JC. Steepest descent. Wiley Interdiscip Rev Comput Stat. 2010;2(6):719-722. doi: 10.1002/wics.117
- Štich I, Car R, Parrinello M, Baroni S. Conjugate gradient minimization of the energy functional: A new method for electronic structure calculation. Phys Rev B. 1989;39(8):4997. doi: 10.1103/physrevb.39.4997
- Berendsen HJ, Postma JP, Van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81(8):3684-3690. doi: 10.1063/1.448118
- Kräutler V, Van Gunsteren WF, Hünenberger PH. A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J Comput Chem. 2001;22(5):501-508. doi: 10.1002/1096-987X(20010415)22:5<501:AID-JCC1021>3.0.CO;2-V
- Darden T, York D, Pedersen L. Particle mesh ewald: An N log (N) method for ewald sums in large systems. J Chem Phys. 1993;98(12):10089-10092. doi: 10.1063/1.464397
- Homeyer N, Gohlke H. Free energy calculations by the molecular mechanics poisson boltzmann surface area method. Mol Inform. 2012;31(2):114-122. doi: 10.1002/minf.201100135