Cracking the genetic code of epidermolysis bullosa with bioinformatics

Epidermolysis bullosa (EB) is a group of rare, inherited skin disorders characterized by skin fragility and blistering due to mutations in genes encoding structural proteins essential for skin integrity. Despite significant advances in understanding the clinical manifestations of EB, the identification of disease-causing mutations and the development of targeted therapies remain challenging due to the complexity of genetic variations. Bioinformatic approaches have emerged as powerful tools to better understand the genetic source and mechanism of EB. This paper explores the role of bioinformatics in analyzing genetic data from EB patients, focusing on the use of whole-genome sequencing and whole-exome sequencing, variant calling and annotation, transcriptomic analysis through RNA sequencing, and protein-structure modeling to identify novel mutations and their impact on skin function. In addition, the applications of bioinformatics, including personalized treatment strategies, early diagnosis, and development of gene editing therapies, are discussed. While challenges such as data complexity and limited databases remain, bioinformatics hold significant promise in advancing our understanding of EB and improving patient outcomes through more precise and tailored therapeutic interventions. Future integration of artificial intelligence, expanded genetic databases, and clinical decision support tools will further enhance the potential of bioinformatics in the management of rare skin disorders like EB.
- Tu WT, Hou PC, Chen PC, et al. Mutational analysis of epidermolysis bullosa in Taiwan by whole-exome sequencing complemented by RNA sequencing: A series of 77 patients. Orphanet J Rare Dis. 2022;17(1):451. doi: 10.1186/s13023-022-02605-1
- Nikolova SE, Kamburova ZB, Vasilev PP, Kovacheva KS, Yordanova IA. Autosomal recessive type of dystrophic epidermolysis bullosa with a novel variant in the COL7A1 gene. Biomed Rep. 2024;21(5):167. doi: 10.3892/br.2024.1855
- Pesch M, König S, Aumailley M. Targeted disruption of the lama3 Gene in adult mice is sufficient to induce skin inflammation and fibrosis. J Investig Dermatol. 2017;137(2):332-340. doi: 10.1016/j.jid.2016.07.040
- Boeira VL, Souza ES, Rocha Bde O, et al. Inherited epidermolysis bullosa: Clinical and therapeutic aspects. An Bras Dermatol. 2013;88(2):185-198. doi: 10.1590/s0365-05962013000200001
- Nyström A, Bruckner-Tuderman L, Kiritsi D. Dystrophic epidermolysis bullosa: Secondary disease mechanisms and disease modifiers. Mini review. Front Genet. 2021;12:737272.
- Has C, Liu L, Bolling MC, et al. Clinical practice guidelines for laboratory diagnosis of epidermolysis bullosa. Br J Dermatol. 2020;182(3):574-592. doi: 10.1111/bjd.18128
- Van den Akker PC, Pasmooij AM, Meijer R, Scheffer H, Jonkman MF. Somatic mosaicism for the COL7A1 mutation p.Gly2034Arg in the unaffected mother of a patient with dystrophic epidermolysis bullosa pruriginosa. Br J Dermatol. 2015;172(3):778-781. doi: 10.1111/bjd.13336
- Sharo AG, Zou Y, Adhikari AN, Brenner SE. ClinVar and HGMD genomic variant classification accuracy has improved over time, as measured by implied disease burden. Genome Med. 2023;15(1):51. doi: 10.1186/s13073-023-01199-y
- Anand V, Gupta S, Koundal D, Mahajan S, Pandit A, Zaguia A. Deep learning based automated diagnosis of skin diseases using dermoscopy. Comput Mater Continua. 2021;71:3145-3160. doi: 10.32604/cmc.2022.022788
- Chen F, Wei R, Wang Y, et al. Identification of deep intronic variants in junctional epidermolysis bullosa using genome sequencing and splicing assays. NPJ Genomic Med. 2025;10(1):8. doi: 10.1038/s41525-025-00466-8
- Dillon OJ, Lunke S, Stark Z, et al. Exome sequencing has higher diagnostic yield compared to simulated disease-specific panels in children with suspected monogenic disorders. Eur J Hum Genet. 2018;26(5):644-651. doi: 10.1038/s41431-018-0099-1
- McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297-1303. doi: 10.1101/gr.107524.110
- Tella S, Sultana S, Madireddy S, Nallari P, Ananthapur V. Epidermolysis bullosa: A report of three cases with novel heterozygous deletions in plec and homozygous non sense mutations in COL7A1 genes. Indian J Dermatol. 2022;67(1):45-49. doi: 10.4103/ijd.ijd_880_20
- Landrum MJ, Lee JM, Benson M, et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062-D1067. doi: 10.1093/nar/gkx1153
- McConnell H, Andrews TD, Field MA. Efficacy of computational predictions of the functional effect of idiosyncratic pharmacogenetic variants. PeerJ. 2021;9:e11774. doi: 10.7717/peerj.11774
- Hoffmann D, Haapasalo A. Patient-derived skin fibroblasts as a model to study frontotemporal lobar degeneration. Neural Regen Res. 2022;17(12):2669-2671. doi: 10.4103/1673-5374.335814
- Liu Y, Elmas A, Huang KL. Mutation Impact on mRNA Versus Protein Expression Across Human Cancers. [bioRxiv Preprint]; 2023. doi: 10.1101/2023.11.13.566942
- Wang Z, Gerstein M, Snyder M. RNA-Seq: A revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57-63. doi: 10.1038/nrg2484
- Suárez-Fariñas M, Ungar B, Correa da Rosa J, et al. RNA sequencing atopic dermatitis transcriptome profiling provides insights into novel disease mechanisms with potential therapeutic implications. J Allergy Clin Immunol. 2015;135(5):1218-1227. doi: 10.1016/j.jaci.2015.03.003
- Wikramanayake TC, Stojadinovic O, Tomic-Canic M. Epidermal differentiation in barrier maintenance and wound healing. Adv Wound Care (New Rochelle). 2014;3(3):272-280. doi: 10.1089/wound.2013.0503
- Chamcheu JC, Siddiqui IA, Syed DN, Adhami VM, Liovic M, Mukhtar H. Keratin gene mutations in disorders of human skin and its appendages. Arch Biochem Biophys. 2011;508(2):123-137. doi: 10.1016/j.abb.2010.12.019
- Varki R, Sadowski S, Uitto J, Pfendner E. Epidermolysis bullosa. II. Type VII collagen mutations and phenotype-genotype correlations in the dystrophic subtypes. J Med Genet. 2007;44(3):181-192. doi: 10.1136/jmg.2006.045302
- Vaquero-Garcia J, Barrera A, Gazzara MR, et al. A new view of transcriptome complexity and regulation through the lens of local splicing variations. Elife. 2016;5:e11752. doi: 10.7554/eLife.11752
- Valastyan JS, Lindquist S. Mechanisms of protein-folding diseases at a glance. Dis Model Mech. 2014;7(1):9-14. doi: 10.1242/dmm.013474
- Kotalevskaya YY, Stepanov VA. Molecular genetic basis of epidermolysis bullosa. Vavilovskii Zhurnal Genet Selektsii. 2023;27(1):18-27. doi: 10.18699/vjgb-23-04
- Schwede T. Protein modeling: What happened to the “protein structure gap”? Structure. 2013;21(9):1531-1540. doi: 10.1016/j.str.2013.08.007
- Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10(6):845-858. doi: 10.1038/nprot.2015.053
- Xiong D, Lee D, Li L, Zhao Q, Yu H. Implications of disease-related mutations at protein-protein interfaces. Curr Opin Struct Biol. 2022;72:219-225. doi: 10.1016/j.sbi.2021.11.012
- Hollingsworth SA, Dror RO. Molecular dynamics simulation for all. Neuron. 2018;99(6):1129-1143. doi: 10.1016/j.neuron.2018.08.011
- Puglisi R. Protein mutations and stability, a link with disease: The case study of frataxin. Biomedicines. 2022;10(2):425. doi: 10.3390/biomedicines10020425
- Turczynski S, Titeux M, Tonasso L, Décha A, Ishida- Yamamoto A, Hovnanian A. Targeted exon skipping restores type VII collagen expression and anchoring fibril formation in an in vivo RDEB model. J Invest Dermatol. 2016;136(12):2387-2395. doi: 10.1016/j.jid.2016.07.029
- Nyström A, Pattaroni C, Kern JS. The role of fibroblasts in dystrophic epidermolysis bullosa pathogenesis and current treatment approaches. JID Innov. 2025;5(3):100353. doi: 10.1016/j.xjidi.2025.100353