AccScience Publishing / GPD / Volume 1 / Issue 2 / DOI: 10.36922/gpd.v1i2.118
REVIEW

Recent insights into USP7: Construct, pathophysiology, and inhibitors

Yuanming He1 Yueya Zhong1 Yiqian Wang2 Xinliang Mao1*
Show Less
1 Guangzhou and Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences and State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Panyu District, Guangzhou, 511436, China
2 School of Biological Sciences, Guangzhou Medical University, Panyu District, Guangzhou, 511436, China
Submitted: 30 May 2022 | Accepted: 18 July 2022 | Published: 15 August 2022
© 2022 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The ubiquitin-proteasome pathway (UPP) is essential for proteostasis and cellular homeostasis. Most of the human proteins are degraded through the UPP in which proteins should be tagged with a specific polyubiquitin chain in a sequential cascade of E1 ubiquitin (Ub)-activating enzymes, namely, E2 Ub-conjugating enzymes and E3 Ub ligases. Meanwhile, the ubiquitination process can be reversed by deubiquitinating enzymes (DUBs), which protect the target proteins from ubiquitination, and so far, around 100 DUBs have been reported to present in human cells. Ubiquitin-specific protease 7 (USP7) is a member of the DUBs family, which has been reported to play crucial role in the development of human tumors and diseases; however, the molecular mechanisms of disease and malignant tumor progression mediated by USP7 has not been fully elucidated. In addition, the therapeutic potential of USP7 in cancer treatment remains to be further explored. Therefore, this review begins with a review of the structure and function of USP7, and then focuses on the development of USP7 inhibitors and their potential applications in various human diseases.

Keywords
Degradation
Ubiquitin-proteasome pathway
Deubiquitinating enzymes
Ubiquitin specific protease 7
Molecule inhibitors
Funding
Guangzhou Medical University Discipline Construction Funds (Basic Medicine)
Conflict of interest
The authors declare that they have no competing interests.
References
[1]

Nakamura N, 2018, Ubiquitin system. Int J Mol Sci, 19(4): 1080. https://doi.org/10.3390/ijms19041080 

[2]

Hershko A, Heller H, Elias S, et al., 1983, Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem, 258(13): 8206–8214.

[3]

Xu P, Duong DM, Seyfried NT, et al., 2009, Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell, 137(1): 133–145. https://doi.org/10.1016/j.cell.2009.01.041

[4]

Nijman SM, Luna-Vargas MP, Velds A, et al., 2005, A genomic and functional inventory of deubiquitinating enzymes. Cell, 123(5): 773–786. https://doi.org/10.1016/j.cell.2005.11.007 

[5]

Poondla N, Chandrasekaran AP, Kim KS, et al., 2019, Deubiquitinating enzymes as cancer biomarkers: New therapeutic opportunities? BMB Rep, 52(3): 181–189. https://doi.org/10.5483/BMBRep.2019.52.3.048

[6]

Pozhidaeva A, Bezsonova I, 2019, USP7: Structure, substrate specificity, and inhibition. DNA Repair (Amst), 76: 30–39. https://doi.org/10.1016/j.dnarep.2019.02.005

[7]

Wang S, Juan J, Zhang Z, et al., 2017, Inhibition of the deubiquitinase USP5 leads to c-Maf protein degradation and myeloma cell apoptosis. Cell Death Dis, 8(9): e3058. https://doi.org/10.1038/cddis.2017.450

[8]

Zhang C, Chen Y, Gan X, et al., 2017, SAK-HV decreases the self-ubiquitination of MEKK1 to promote macrophage proliferation via MAPK/ERK and JNK Pathways. Int J Mol Sci, 18(4): 835. https://doi.org/10.3390/ijms18040835 

[9]

Lork M, Verhelst K, Beyaert R, 2017, CYLD, A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: So similar, yet so different. Cell Death Differ, 24(7): 1172–1183. https://doi.org/10.1038/cdd.2017.46

[10]

Song MS, Salmena L, Carracedo A, et al., 2008, The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature, 455(7214): 813–817. https://doi.org/10.1038/nature07290

[11]

Jacq X, Kemp M, Martin NM, et al., 2013, Deubiquitylating enzymes and DNA damage response pathways. Cell Biochem Biophys, 67(1): 25–43. https://doi.org/10.1007/s12013-013-9635-3 

[12]

Mathien S, Déléris P, Soulez M, et al., 2017, Deubiquitinating enzyme USP20 regulates extracellular signal-regulated kinase 3 stability and biological activity. Mol Cell Biol, 37(9): e00432–16. https://doi.org/10.1128/MCB.00432-16

[13]

Kim SY, Baek KH, 2019, TGF-β signaling pathway mediated by deubiquitinating enzymes. Cell Mol Life Sci, 76(4): 653–665. https://doi.org/10.1007/s00018-018-2949-y

[14]

Sun T, Liu Z, Yang Q, 2020, The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer, 19(1): 146.

[15]

Wang Q, Ma S, Song N, et al., 2016, Stabilization of histone demethylase PHF8 by USP7 promotes breast carcinogenesis. J Clin Invest, 126(6): 2205–2220. https://doi.org/10.1172/JCI85747

[16]

Zhan M, Sun X, Liu J, et al., 2017, Usp7 promotes medulloblastoma cell survival and metastasis by activating Shh pathway. Biochem Biophys Res Commun, 484(2): 429–434. https://doi.org/10.1016/j.bbrc.2017.01.144 

[17]

Jin Q, Martinez CA, Arcipowski KM, et al., 2019, USP7 cooperates with NOTCH1 to drive the oncogenic transcriptional program in T-cell leukemia. Clin Cancer Res, 25(1): 222–239. https://doi.org/10.1158/1078-0432.CCR-18-1740

[18]

Wang M, Zhang Y, Wang T, et al., 2017, The USP7 inhibitor P5091 induces cell death in ovarian cancers with different P53 status. Cell Physiol Biochem, 43(5): 1755–1766. https://doi.org/10.1159/000484062

[19]

Zhao GY, Lin ZW, Lu CL, et al., 2015, USP7 overexpression predicts a poor prognosis in lung squamous cell carcinoma and large cell carcinoma. Tumour Biol, 36(3): 1721–1729. https://doi.org/10.1007/s13277-014-2773-4

[20]

He Y, Wang S, Tong J, et al., 2020, The deubiquitinase USP7 stabilizes maf proteins to promote myeloma cell survival. J Biol Chem, 295(7): 2084–2096. https://doi.org/10.1074/jbc.RA119.010724

[21]

Li M, Brooks CL, Kon N, et al., 2004, A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell, 13(6): 879–886. https://doi.org/10.1016/s1097-2765(04)00157-1

[22]

Nicklas S, Hillje AL, Okawa S, et al., 2019, A complex of the ubiquitin ligase TRIM32 and the deubiquitinase USP7  balances the level of c-Myc ubiquitination and thereby determines neural stem cell fate specification. Cell Death Differ, 26(4): 728–740. https://doi.org/10.1038/s41418-018-0144-1

[23]

Zheng N, Chu M, Lin M, et al., 2020, USP7 stabilizes EZH2 and enhances cancer malignant progression. Am J Cancer Res, 10(1): 299–313.

[24]

Li M, Chen D, Shiloh A, et al., 2002, Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature, 416(6881): 648–653. https://doi.org/10.1038/nature737

[25]

Tavana O, Gu W, 2017, Modulation of the p53/MDM2 interplay by HAUSP inhibitors. J Mol Cell Biol, 9(1): 45–52. https://doi.org/10.1093/jmcb/mjw049

[26]

Brooks CL, Li M, Hu M, et al., 2007, The p53--Mdm2-- HAUSP complex is involved in p53 stabilization by HAUSP. Oncogene, 26(51): 7262–7266. https://doi.org/10.1038/sj.onc.1210531

[27]

Ma J, Martin JD, Xue Y, et al., 2010, C-terminal region of USP7/HAUSP is critical for deubiquitination activity and contains a second mdm2/p53 binding site. Arch Biochem Biophys, 503(2): 207–212. https://doi.org/10.1016/j.abb.2010.08.020

[28]

Komander D, Clague MJ, Urbé S, 2009, Breaking the chains: Structure and function of the deubiquitinases. Nat Rev Mol Cell Biol, 10(8): 550–563. https://doi.org/10.1038/nrm2731

[29]

Faesen AC, Luna-Vargas MP, Sixma TK, 2012, The role of UBL domains in ubiquitin-specific proteases. Biochem Soc Trans, 40(3): 539–545. https://doi.org/10.1042/BST20120004

[30]

Faesen AC, Dirac AM, Shanmugham A, et al., 2011, Mechanism of USP7/HAUSP activation by its C-terminal ubiquitin-like domain and allosteric regulation by GMP-synthetase. Mol Cell, 44(1): 147–159. https://doi.org/10.1016/j.molcel.2011.06.034 

[31]

Kim RQ, van Dijk WJ, Sixma TK, 2016, Structure of USP7 catalytic domain and three Ubl-domains reveals a connector α-helix with regulatory role. J Struct Biol, 195(1): 11–18. https://doi.org/10.1016/j.jsb.2016.05.005

[32]

van der Knaap JA, Kumar BR, Moshkin YM, et al., 2005, GMP synthetase stimulates histone H2B deubiquitylation by the epigenetic silencer USP7. Mol Cell, 17(5): 695–707. https://doi.org/10.1016/j.molcel.2005.02.013

[33]

Cotto-Rios XM, Békés M, Chapman J, et al., 2012, Deubiquitinases as a signaling target of oxidative stress. Cell Rep, 2(6): 1475–1484. https://doi.org/10.1016/j.celrep.2012.11.011

[34]

Hu M, Li P, Li M, et al., 2002, Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell, 111(7): 1041–1054. https://doi.org/10.1016/s0092-8674(02)01199-6

[35]

Culig Z, Santer FR, 2014, Androgen receptor signaling in prostate cancer. Cancer Metastasis Rev, 33(2-3): 413–427. https://doi.org/10.1007/s10555-013-9474-0

[36]

Swatek KN, Komander D, 2016, Ubiquitin modifications. Cell Res, 26(4): 399–422. https://doi.org/10.1038/cr.2016.39 

[37]

Huang YT, Cheng AC, Tang HC, et al., 2021, USP7 facilitates SMAD3 autoregulation to repress cancer progression in p53-deficient lung cancer. Cell Death Dis, 12(10): 880. https://doi.org/10.1038/s41419-021-04176-8

[38]

Jiang S, Wang X, He Y, et al., 2021, Suppression of USP7 induces BCR-ABL degradation and chronic myelogenous leukemia cell apoptosis. Cell Death Dis, 12(5):456. https://doi.org/10.1038/s41419-021-03732-6

[39]

Ji L, Lu B, Zamponi R, et al., 2019, USP7 inhibits Wnt/β- catenin signaling through promoting stabilization of Axin. Nat Commun, 10(1): 4184. https://doi.org/10.1038/s41467-019-12143-3

[40]

Lee YR, Chen M, Lee JD, et al., 2019, Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science, 364(6441): eaau0159. https://doi.org/10.1126/science.aau0159 

[41]

Wang G, Zhuang Z, Shen S, et al., 2022, Regulation of PTEN and ovarian cancer progression by an E3 ubiquitin ligase RBCK1. Hum Cell, 35(3): 896–908. https://doi.org/10.1007/s13577-022-00681-w 

[42]

He YM, Zhou XM, Jiang SY, et al., 2022, TRIM25 activates AKT/mTOR by inhibiting PTEN via K63-linked polyubiquitination in non-small cell lung cancer. Acta Pharmacol Sin, 43(3): 681–691. https://doi.org/10.1038/s41401-021-00662-z

[43]

Trotman LC, Wang X, Alimonti A, et al., 2007, Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell, 128(1): 141–156. https://doi.org/10.1016/j.cell.2006.11.040 

[44]

van der Horst A, de Vries-Smits AM, Brenkman AB, et al., 2006, FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol, 8(10): 1064–1073. https://doi.org/10.1038/ncb1469

[45]

Qian J, Pentz K, Zhu Q, et al., 2015, USP7 modulates UV-induced PCNA monoubiquitination by regulating DNA polymerase eta stability. Oncogene, 34(36): 4791–4796. https://doi.org/10.1038/onc.2014.394

[46]

Sarkari F, Sanchez-Alcaraz T, Wang S, et al., 2009, EBNA1- mediated recruitment of a histone H2B deubiquitylating complex to the Epstein-Barr virus latent origin of DNA replication. PLoS Pathog, 5(10): e1000624.

[47]

Wu HT, Kuo YC, Hung JJ, et al., 2016, K63-polyubiquitinated HAUSP deubiquitinates HIF-1α and dictates H3K56 acetylation promoting hypoxia-induced tumour progression. Nat Commun, 7: 13644. https://doi.org/10.1038/ncomms13644

[48]

Chen ST, Okada M, Nakato R, et al., 2015, The deubiquitinating enzyme USP7 regulates androgen receptor activity by modulating its binding to chromatin. J Biol Chem, 290(35): 21713–21723. https://doi.org/10.1074/jbc.M114.628255

[49]

Liang L, Peng Y, Zhang J, et al., 2019, Deubiquitylase USP7 regulates human terminal erythroid differentiation by stabilizing GATA1. Haematologica, 104(11): 2178–2187.

[50]

Mitxitorena I, Somma D, Mitchell JP, et al., 2020, The deubiquitinase USP7 uses a distinct ubiquitin-like domain to deubiquitinate NF-ĸB subunits. J Biol Chem, 295(33): 11754–11763. https://doi.org/10.1074/jbc.RA120.014113 

[51]

Song N, Cao C, Tian S, et al., 2020, USP7 Deubiquitinates and stabilizes SIRT1. Anat Rec (Hoboken), 303(5): 1337–1345. https://doi.org/10.1002/ar.24252

[52]

Pan T, Li X, Li Y, et al., 2021, USP7 inhibition induces apoptosis in glioblastoma by enhancing ubiquitination of ARF4. Cancer Cell Int, 21(1): 508. https://doi.org/10.1186/s12935-021-02208-z

[53]

Han Y, Yun CC, 2020, Ubiquitin-specific peptidase 7 (USP7) and USP10 mediate deubiquitination of human NHE3 regulating its expression and activity. Faseb J, 34(12): 16476– 16488. https://doi.org/10.1096/fj.202001875R 

[54]

Yuan Y, Miao Y, Zeng C, et al., 2020, Small-molecule inhibitors of ubiquitin-specific protease 7 enhance Type-I interferon antiviral efficacy by destabilizing SOCS1. Immunology, 159(3): 309–321. https://doi.org/10.1111/imm.13147

[55]

Yan G, Liu N, Tian J, et al., 2021, Deubiquitylation and stabilization of ARMC5 by ubiquitin-specific processing protease 7 (USP7) are critical for RCC proliferation. J Cell Mol Med, 25(6): 3149–3159. https://doi.org/10.1111/jcmm.16306 

[56]

Meulmeester E, Maurice MM, Boutell C, et al., 2005, Loss of HAUSP-mediated deubiquitination contributes to DNA damage-induced destabilization of Hdmx and Hdm2. Mol Cell, 18(5): 565–576. https://doi.org/10.1016/j.molcel.2005.04.024

[57]

Palazón-Riquelme P, Worboys JD, Green J, et al., 2018, USP7 and USP47 deubiquitinases regulate NLRP3 inflammasome activation. EMBO Rep, 19(10): e44766. https://doi.org/10.15252/embr.201744766

[58]

Dong X, Xu X, Yang C, et al., 2021, USP7 regulates the proliferation and differentiation of ATDC5 cells through the Sox9-PTHrP-PTH1R axis. Bone, 143: 115714. https://doi.org/10.1016/j.bone.2020.115714

[59]

Tavana O, Li D, Dai C, et al., 2016, HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma. Nat Med, 22(10): 1180–1186. https://doi.org/10.1038/nm.4180

[60]

Perry M, Biegert M, Kollala SS, et al., 2021, USP11 mediates repair of DNA-protein cross-links by deubiquitinating SPRTN metalloprotease. J Biol Chem, 296: 100396. https://doi.org/10.1016/j.jbc.2021.100396

[61]

Nguyen LK, Muñoz-García J, Maccario H, et al., 2011, Switches, excitable responses and oscillations in the Ring1B/ Bmi1 ubiquitination system. PLoS Comput Biol, 7(12): e1002317. https://doi.org/10.1371/journal.pcbi.1002317

[62]

Shan H, Li X, Xiao X, et al., 2018, USP7 deubiquitinates and stabilizes NOTCH1 in T-cell acute lymphoblastic leukemia. Signal Transduct Target Ther, 3: 29. https://doi.org/10.1038/s41392-018-0028-3

[63]

Lecona E, Rodriguez-Acebes S, Specks J, et al., 2016, USP7 is a SUMO deubiquitinase essential for DNA replication. Nat Struct Mol Biol, 23(4): 270–277. https://doi.org/10.1038/nsmb.3185

[64]

Giovinazzi S, Sirleto P, Aksenova V, et al., 2014, Usp7 protects genomic stability by regulating Bub3. Oncotarget, 5(11): 3728–3742. https://doi.org/10.18632/oncotarget.1989

[65]

Yamaguchi L, Nishiyama A, Misaki T, et al., 2017, Usp7-dependent histone H3 deubiquitylation regulates maintenance of DNA methylation. Sci Rep, 7(1): 55. https://doi.org/10.1038/s41598-017-00136-5 

[66]

Han JJW, Ho DV, Kim HM, et al., 2021, The deubiquitinating enzyme USP7 regulates the transcription factor Nrf1 by modulating its stability in response to toxic metal exposure. J Biol Chem, 296: 100732. https://doi.org/10.1016/j.jbc.2021.100732

[67]

Dar A, Shibata E, Dutta A, 2013, Deubiquitination of Tip60 by USP7 determines the activity of the p53-dependent apoptotic pathway. Mol Cell Biol, 33(16): 3309–3320. https://doi.org/10.1128/MCB.00358-13

[68]

Das S, Chandrasekaran AP, Jo KS, et al., 2020, HAUSP stabilizes Cdc25A and protects cervical cancer cells from DNA damage response. Biochim Biophys Acta Mol Cell Res, 1867(12): 118835. https://doi.org/10.1016/j.bbamcr.2020.118835

[69]

Qing P, Han L, Bin L, et al., 2011, USP7 regulates the stability and function of HLTF through deubiquitination. J Cell Biochem, 112(12): 3856–3862. https://doi.org/10.1002/jcb.23317

[70]

Zemp I, Lingner J, 2014, The shelterin component TPP1 is a binding partner and substrate for the deubiquitinating enzyme USP7. J Biol Chem, 289(41): 28595–28606. https://doi.org/10.1074/jbc.M114.596056

[71]

Galarreta A, Valledor P, Ubieto-Capella P, et al., 2021, USP7 limits CDK1 activity throughout the cell cycle. Embo J, 40(11): e99692. https://doi.org/10.15252/embj.201899692 

[72]

Holowaty MN, Sheng Y, Nguyen T, et al., 2003, Protein interaction domains of the ubiquitin-specific protease, USP7/HAUSP. J Biol Chem, 278(48): 47753–47761. https://doi.org/10.1074/jbc.M307200200

[73]

Zhao XB, Ji FY, Li HR, et al., 2020, P22077 inhibits LPS-induced inflammatory response by promoting K48-linked ubiquitination and degradation of TRAF6. Aging (Albany NY), 12(11): 10969–10982. https://doi.org/10.18632/aging.103309

[74]

Alonso-de Vega I, Martín Y, Smits VA, 2014, USP7 controls Chk1 protein stability by direct deubiquitination. Cell Cycle, 13(24): 3921–3926. https://doi.org/10.4161/15384101.2014.973324 

[75]

Daubeuf S, Singh D, Tan Y, et al., 2009, HSV ICP0 recruits USP7 to modulate TLR-mediated innate response. Blood, 113(14): 3264–3275. https://doi.org/10.1182/blood-2008-07-168203

[76]

Spardy N, Covella K, Cha E, et al., 2009, Human papillomavirus 16 E7 oncoprotein attenuates DNA damage checkpoint control by increasing the proteolytic turnover of claspin. Cancer Res, 69(17): 7022–7029. https://doi.org/10.1158/0008-5472.CAN-09-0925

[77]

Zaman MM, Nomura T, Takagi T, et al., 2013, Ubiquitination-deubiquitination by the TRIM27-USP7 complex regulates tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol, 33(24): 4971–4984. https://doi.org/10.1128/MCB.00465-13

[78]

Yoshihara H, Fukushima T, Hakuno F, et al., 2012, Insulin/ insulin-like growth factor (IGF) stimulation abrogates an association between a deubiquitinating enzyme USP7 and insulin receptor substrates (IRSs) followed by proteasomal degradation of IRSs. Biochem Biophys Res Commun, 423(1): 122–127. https://doi.org/10.1016/j.bbrc.2012.05.093

[79]

Sarkari F, Wheaton K, La Delfa A, et al., 2013, Ubiquitin-specific protease 7 is a regulator of ubiquitin-conjugating enzyme UbE2E1. J Biol Chem, 288(23): 16975–16985. https://doi.org/10.1074/jbc.M113.469262

[80]

Bhattacharya S, Ghosh MK, 2015, HAUSP regulates c-MYC expression via de-ubiquitination of TRRAP. Cell Oncol (Dordr), 38(4): 265–277. https://doi.org/10.1007/s13402-015-0228-6

[81]

Li N, Zhao Z, Liu P, et al., 2021, Upregulation of deubiquitinase USP7 by transcription factor FOXO6 promotes EC progression via targeting the JMJD3/CLU axis. Mol Ther Oncolytics, 20: 583–595. https://doi.org/10.1016/j.omto.2020.12.008

[82]

Episkopou H, Diman A, Claude E, et al., 2019, TSPYL5 depletion induces specific death of ALT cells through USP7- dependent proteasomal degradation of POT1. Mol Cell, 75(3): 469–482.e466. https://doi.org/10.1016/j.molcel.2019.05.027 

[83]

Felle M, Joppien S, Németh A, et al., 2011, The USP7/Dnmt1 complex stimulates the DNA methylation activity of Dnmt1 and regulates the stability of UHRF1. Nucleic Acids Res, 39(19): 8355–8365. https://doi.org/10.1093/nar/gkr528

[84]

Zhu Q, Ding N, Wei S, et al., 2020, USP7-mediated deubiquitination differentially regulates CSB but not UVSSA upon UV radiation-induced DNA damage. Cell Cycle, 19(1): 124–141. https://doi.org/10.1080/15384101.2019.1695996

[85]

Lu X, Zhang Y, Zheng Y, et al., 2021, The miRNA-15b/USP7/ KDM6B axis engages in the initiation of osteoporosis by modulating osteoblast differentiation and autophagy. J Cell Mol Med, 25(4): 2069–2081. https://doi.org/10.1111/jcmm.16139

[86]

Lee KW, Cho JG, Kim CM, et al., 2013, Herpesvirus-associated ubiquitin-specific protease (HAUSP) modulates peroxisome proliferator-activated receptor γ (PPARγ) stability through its deubiquitinating activity. J Biol Chem, 288(46): 32886–32896. https://doi.org/10.1074/jbc.M113.496331

[87]

Salsman J, Jagannathan M, Paladino P, et al., 2012, Proteomic profiling of the human cytomegalovirus UL35 gene products reveals a role for UL35 in the DNA repair response. J Virol, 86(2): 806–820. https://doi.org/10.1128/JVI.05442-11

[88]

Heimbucher T, Hunter T, 2015, The C. elegans ortholog of USP7 controls DAF-16 stability in insulin/IGF-1-like signaling. Worm, 4(4): e1103429. https://doi.org/10.1080/21624054.2015.1103429

[89]

Jäger W, Santag S, Weidner-Glunde M, et al., 2012, The ubiquitin-specific protease USP7 modulates the replication of Kaposi’s sarcoma-associated herpesvirus latent episomal DNA. J Virol, 86(12): 6745–6757. https://doi.org/10.1128/JVI.06840-11

[90]

Maertens GN, El Messaoudi-Aubert S, Elderkin S, et al., 2010, Ubiquitin-specific proteases 7 and 11 modulate polycomb regulation of the INK4a tumour suppressor. Embo J, 29(15): 2553–2565. https://doi.org/10.1038/emboj.2010.129

[91]

Sarasin A, 2012, UVSSA and USP7: New players regulating transcription-coupled nucleotide excision repair in human cells. Genome Med, 4(5): 44. https://doi.org/10.1186/gm343

[92]

Frey Y, Franz-Wachtel M, Macek B, et al., 2022, Proteasomal turnover of the RhoGAP tumor suppressor DLC1 is regulated by HECTD1 and USP7. Sci Rep, 12(1): 5036.

[93]

Yi L, Cui Y, Xu Q, et al., 2016, Stabilization of LSD1 by deubiquitinating enzyme USP7 promotes glioblastoma cell tumorigenesis and metastasis through suppression of the p53 signaling pathway. Oncol Rep, 36(5): 2935–2945. https://doi.org/10.3892/or.2016.5099

[94]

Xiang Q, Ju H, Li Q, et al., 2018, Human herpesvirus 8 interferon regulatory factors 1 and 3 mediate replication and latency activities via interactions with USP7 deubiquitinase. J Virol, 92(7): e02003–17. https://doi.org/10.1128/JVI.02003-17 

[95]

Du Z, Song J, Wang Y, et al., 2010, DNMT1 stability is regulated by proteins coordinating deubiquitination and acetylation-driven ubiquitination. Sci Signal, 3(146): ra80. https://doi.org/10.1126/scisignal.2001462

[96]

Bhattacharya S, Ghosh MK, 2014, HAUSP, a novel deubiquitinase for Rb MDM2 the critical regulator. Febs J, 281(13): 3061–3078. https://doi.org/10.1111/febs.12843

[97]

Lee HR, Choi WC, Lee S, et al., 2011, Bilateral inhibition of HAUSP deubiquitinase by a viral interferon regulatory factor protein. Nat Struct Mol Biol, 18(12): 1336–1344. https://doi.org/10.1038/nsmb.2142

[98]

Ching W, Koyuncu E, Singh S, et al., 2013, A ubiquitin-specific protease possesses a decisive role for adenovirus replication and oncogene-mediated transformation. PLoS Pathog, 9(3): e1003273. https://doi.org/10.1371/journal.ppat.1003273 

[99]

Yang P, Xie J, Li Y, et al., 2020, Deubiquitinase USP7-mediated MCL-1 up-regulation enhances arsenic and benzo(a)pyrene co-exposure-induced cancer stem cell-like property and tumorigenesis. Theranostics, 10(20): 9050–9065. https://doi.org/10.7150/thno.47897 

[100]

Huang Q, Qin D, Pei D, et al., 2022, UBE2O and USP7 co-regulate RECQL4 ubiquitinylation and homologous recombination-mediated DNA repair. FASEB J, 36(1): e22112. https://doi.org/10.1096/fj.202100974RRR

[101]

Wu Y, Gu H, Bao Y, et al., 2022, USP7 sustains an active epigenetic program via stabilizing MLL2 and WDR5 in diffuse large B-cell lymphoma. Cell Biochem Funct, 40(4): 379–390. https://doi.org/10.1002/cbf.3702

[102]

Holowaty MN, Zeghouf M, Wu H, et al., 2003, Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7. J Biol Chem, 278(32): 29987–29994. https://doi.org/10.1074/jbc.M303977200

[103]

Meulmeester E, Pereg Y, Shiloh Y, et al., 2005, ATM-mediated phosphorylations inhibit Mdmx/Mdm2 stabilization by HAUSP in favor of p53 activation. Cell Cycle, 4(9): 1166–1170. https://doi.org/10.4161/cc.4.9.1981

[104]

de Bie P, Zaaroor-Regev D, Ciechanover A, 2010, Regulation of the Polycomb protein RING1B ubiquitination by USP7. Biochem Biophys Res Commun, 400(3): 389–395. https://doi.org/10.1016/j.bbrc.2010.08.082

[105]

He J, Zhu Q, Wani G, et al., 2014, Ubiquitin-specific protease 7 regulates nucleotide excision repair through deubiquitinating XPC protein and preventing XPC protein from undergoing ultraviolet light-induced and VCP/p97 protein-regulated proteolysis. J Biol Chem, 289(39): 27278– 27289. https://doi.org/10.1074/jbc.M114.589812

[106]

Xia X, Liao Y, Huang C, et al., 2019, Deubiquitination and stabilization of estrogen receptor α by ubiquitin-specific protease 7 promotes breast tumorigenesis. Cancer Lett, 465: 118–128. https://doi.org/10.1016/j.canlet.2019.09.003 

[107]

Sun X, Ding Y, Zhan M, et al., 2019, Usp7 regulates Hippo pathway through deubiquitinating the transcriptional coactivator Yorkie. Nat Commun, 10(1): 411. https://doi.org/10.1038/s41467-019-08334-7

[108]

Lee JE, Park CM, Kim JH, 2020, USP7 deubiquitinates and stabilizes EZH2 in prostate cancer cells. Genet Mol Biol, 43(2): e20190338. https://doi.org/10.1590/1678-4685-GMB-2019-0338

[109]

Khoronenkova SV, Dianov GL, 2013, USP7S-dependent inactivation of Mule regulates DNA damage signalling and repair. Nucleic Acids Res, 41(3): 1750–1756. https://doi.org/10.1093/nar/gks1359

[110]

Zhu Q, Sharma N, He J, et al., 2015, USP7 deubiquitinase promotes ubiquitin-dependent DNA damage signaling by stabilizing RNF168. Cell Cycle, 14(9): 1413–1425. https://doi.org/10.1080/15384101.2015.1007785

[111]

Ni W, Lin S, Bian S, et al., 2020, USP7 mediates pathological hepatic de novo lipogenesis through promoting stabilization and transcription of ZNF638. Cell Death Dis, 11(10): 843.

[112]

Franqui-Machin R, Hao M, Bai H, et al., 2018, Destabilizing NEK2 overcomes resistance to proteasome inhibition in multiple myeloma. J Clin Invest, 128(7): 2877–2893. https://doi.org/10.1172/JCI98765

[113]

Kim JM, Yang YS, Park KH, et al., 2020, A RUNX2 stabilization pathway mediates physiologic and pathologic bone formation. Nat Commun, 11(1): 2289. https://doi.org/10.1038/s41467-020-16038-6

[114]

Ma P, Yang X, Kong Q, et al., 2014, The ubiquitin ligase RNF220 enhances canonical Wnt signaling through USP7- mediated deubiquitination of β-catenin. Mol Cell Biol, 34(23): 4355–4366. https://doi.org/10.1128/MCB.00731-14

[115]

Jang SY, Jang SW, Ko J, 2012, Regulation of ADP-ribosylation factor 4 expression by small leucine zipper protein and involvement in breast cancer cell migration. Cancer Lett, 314(2): 185–197. https://doi.org/10.1016/j.canlet.2011.09.028

[116]

Hofseth LJ, Hussain SP, Harris CC, 2004, p53: 25 years after its discovery. Trends Pharmacol Sci, 25(4): 177–181. https://doi.org/10.1016/j.tips.2004.02.009

[117]

Sabapathy K, Lane DP, 2018, Therapeutic targeting of p53: All mutants are equal, but some mutants are more equal than others. Nat Rev Clin Oncol, 15(1): 13–30. https://doi.org/10.1038/nrclinonc.2017.151

[118]

Kruse JP, Gu W, 2009, Modes of p53 regulation. Cell, 137(4): 609–622. https://doi.org/10.1016/j.cell.2009.04.050

[119]

Momand J, Zambetti GP, Olson DC, et al., 1992, The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell, 69(7): 1237–1245. https://doi.org/10.1016/0092-8674(92)90644-r

[120]

Hu M, Gu L, Li M, et al., 2006, Structural basis of competitive recognition of p53 and MDM2 by HAUSP/ USP7: Implications for the regulation of the p53-MDM2 pathway. PLoS Biol, 4(2): e27. https://doi.org/10.1371/journal.pbio.0040027

[121]

Sheng Y, Saridakis V, Sarkari F, et al., 2006, Molecular recognition of p53 and MDM2 by USP7/HAUSP. Nat Struct Mol Biol, 13(3): 285–291. https://doi.org/10.1038/nsmb1067

[122]

Cummins JM, Rago C, Kohli M, et al., 2004, Tumour suppression: Disruption of HAUSP gene stabilizes p53. Nature, 428(6982):1 p following 486. https://doi.org/10.1038/nature02501

[123]

Ali A, Raja R, Farooqui SR, et al., 2017, USP7 deubiquitinase controls HIV-1 production by stabilizing Tat protein. Biochem J, 474(10): 1653–1668. https://doi.org/10.1042/BCJ20160304

[124]

Gao L, Zhu D, Wang Q, et al., 2021, Proteome analysis of USP7 substrates revealed its role in melanoma through PI3K/Akt/FOXO and AMPK pathways. Front Oncol, 11: 650165. https://doi.org/10.3389/fonc.2021.650165

[125]

Yao Y, Zhang Y, Shi M, et al., 2018, Blockade of deubiquitinase USP7 overcomes bortezomib resistance by suppressing NF-κB signaling pathway in multiple myeloma. J Leukoc Biol, 104(6): 1105–1115. https://doi.org/10.1002/JLB.2A1017-420RR

[126]

Cai J, Chen HY, Peng SJ, et al., 2018, USP7-TRIM27 axis negatively modulates antiviral type I IFN signaling. Faseb J, 32(10): 5238–5249. https://doi.org/10.1096/fj.201700473RR 

[127]

Colleran A, Collins PE, O’Carroll C, et al., 2013, Deubiquitination of NF-κB by ubiquitin-specific protease-7 promotes transcription. Proc Natl Acad Sci U S A, 110(2): 618–623. https://doi.org/10.1073/pnas.1208446110

[128]

Zeng M, Zhang X, Xing W, et al., 2022, Cigarette smoke extract mediates cell premature senescence in chronic obstructive pulmonary disease patients by up-regulating USP7 to activate p300-p53/p21 pathway. Toxicol Lett, 359: 31–45. https://doi.org/10.1016/j.toxlet.2022.01.017

[129]

Duan D, Shang M, Han Y, et al., 2022, EZH2-CCF-cGAS Axis Promotes Breast Cancer Metastasis. Int J Mol Sci, 23(3): 1788. https://doi.org/10.3390/ijms23031788

[130]

Qi SM, Cheng G, Cheng XD, et al., 2020, Targeting USP7- mediated deubiquitination of MDM2/MDMX-p53 pathway for cancer therapy: Are we there yet? Front Cell Dev Biol, 8: 233. https://doi.org/10.3389/fcell.2020.00233

[131]

Cheng X, Zhang B, Guo F, et al., 2022, Deubiquitination of FBP1 by USP7 blocks FBP1-DNMT1 interaction and decreases the sensitivity of pancreatic cancer cells to PARP inhibitors. Mol Oncol, 16(7): 1591–1607. https://doi.org/10.1002/1878-0261.13149

[132]

Zhang T, Periz G, Lu YN, et al., 2020, USP7 regulates ALS-associated proteotoxicity and quality control through the NEDD4L-SMAD pathway. Proc Natl Acad Sci U S A, 117(45): 28114–28125. https://doi.org/10.1073/pnas.2014349117 

[133]

Hou R, Li Y, Luo X, et al., 2022, ENKUR expression induced by chemically synthesized cinobufotalin suppresses malignant activities of hepatocellular carcinoma by modulating β-catenin/c-Jun/MYH9/USP7/c-Myc axis. Int J Biol Sci, 18(6): 2553–2567. https://doi.org/10.7150/ijbs.67476

[134]

Tang LJ, Zhou YJ, Xiong XM, et al., 2021, Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/ TfR1 pathway in the rat hearts after ischemia/reperfusion. Free Radic Biol Med, 162: 339–352. https://doi.org/10.1016/j.freeradbiomed.2020.10.307

[135]

Yang X, Jin J, Yang J, et al., 2021, Expression of ubiquitin-specific protease 7 in oral squamous cell carcinoma promotes tumor cell proliferation and invasion. Genet Mol Biol, 44(4): e20210058. https://doi.org/10.1590/1678-4685-GMB-2021-0058

[136]

Li T, Guan J, Li S, et al., 2014, HSCARG downregulates NF-κB signaling by interacting with USP7 and inhibiting NEMO ubiquitination. Cell Death Dis, 5(5): e1229. https://doi.org/10.1038/cddis.2014.197

[137]

Liu G, Liu Q, Yan B, et al., 2020, USP7 inhibition alleviates H(2)O(2)-induced injury in chondrocytes via inhibiting NOX4/NLRP3 pathway. Front Pharmacol, 11: 617270. https://doi.org/10.3389/fphar.2020.617270

[138]

Forand A, Koumakis E, Rousseau A, et al., 2016, Disruption of the phosphate transporter Pit1 in hepatocytes improves glucose metabolism and insulin signaling by modulating the USP7/IRS1 interaction. Cell Rep, 16(10): 2736–2748. https://doi.org/10.1016/j.celrep.2016.08.012

[139]

Li Q, Sun H, Luo D, et al., 2021, Lnc-RP11-536 K7.3/SOX2/ HIF-1α signaling axis regulates oxaliplatin resistance in patient-derived colorectal cancer organoids. J Exp Clin Cancer Res, 40(1): 348. https://doi.org/10.1186/s13046-021-02143-x

[140]

Zhou Z, Yao X, Li S, et al., 2015, Deubiquitination of Ci/ Gli by Usp7/hausp regulates hedgehog signaling. Dev Cell, 34(1): 58–72. https://doi.org/10.1016/j.devcel.2015.05.016 

[141]

Wilson P, Abdelmoti L, Norcross R, et al., 2021, The role of USP7 in the Shoc2-ERK1/2 signaling axis and noonan-like syndrome with loose anagen hair. J Cell Sci, 134(21): jcs258922. https://doi.org/10.1242/jcs.258922

[142]

von Locquenghien M, Rozalén C, Celià-Terrassa T, 2021, Interferons in cancer immunoediting: Sculpting metastasis and immunotherapy response. J Clin Invest, 131(1): e143296. https://doi.org/10.1172/JCI143296

[143]

Takaoka A, Yanai H, 2006, Interferon signalling network in innate defence. Cell Microbiol, 8(6): 907–922. https://doi.org/10.1111/j.1462-5822.2006.00716.x

[144]

Chu TS, 1974, Interferon and its clinical application. Zhonghua Yi Xue Za Zhi, 9: 576–579. 

[145]

Xu LG, Wang YY, Han KJ, et al., 2005, VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell, 19(6): 727–740. https://doi.org/10.1016/j.molcel.2005.08.014

[146]

Fitzgerald KA, McWhirter SM, Faia KL, et al., 2003, IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol, 4(5): 491–496. https://doi.org/10.1038/ni921

[147]

Yu CF, Peng WM, Schlee M, et al., 2018, SOCS1 and SOCS3 target IRF7 degradation to suppress TLR7-mediated Type I IFN production of human plasmacytoid dendritic cells. J Immunol, 200(12): 4024–4035. https://doi.org/10.4049/jimmunol.1700510

[148]

Blumer T, Coto-Llerena M, Duong FHT, et al., 2017, SOCS1 is an inducible negative regulator of interferon λ (IFN- λ)-induced gene expression in vivo. J Biol Chem, 292(43): 17928–17938. https://doi.org/10.1074/jbc.M117.788877 

[149]

Ding L, Li J, Li W, et al., 2018, p53 mediated IFN-β signaling to affect viral replication upon TGEV infection. Vet Microbiol, 227: 61–68. https://doi.org/10.1016/j.vetmic.2018.10.025 

[150]

Lee HR, Toth Z, Shin YC, et al., 2009, Kaposi’s sarcoma-associated herpesvirus viral interferon regulatory factor 4 targets MDM2 to deregulate the p53 tumor suppressor pathway. J Virol, 83(13): 6739–6747. https://doi.org/10.1128/JVI.02353-08

[151]

Li X, Wang T, Tao Y, et al., 2022, Inhibition of USP7 suppresses advanced glycation end-induced cell cycle arrest and senescence of human umbilical vein endothelial cells through ubiquitination of p53. Acta Biochim Biophys Sin (Shanghai), 54(3): 311–320. https://doi.org/10.3724/abbs.2022003

[152]

Mandras SA, Mehta HS, Vaidya A, 2020, Pulmonary hypertension: A brief guide for clinicians. Mayo Clin Proc, 95(9): 1978–1988. https://doi.org/10.1016/j.mayocp.2020.04.039 

[153]

Poch D, Mandel J, 2021, Pulmonary hypertension. Ann Intern Med, 174(4): ITC49–ITC64. https://doi.org/10.7326/AITC202104200

[154]

Zhu Y, Zhang Q, Yan X, et al., 2021, Ubiquitin-specific protease 7 mediates platelet-derived growth factor-induced pulmonary arterial smooth muscle cells proliferation. Pulm Circ, 11(4): 20458940211046131. https://doi.org/10.1177/20458940211046131

[155]

Uhlen M, Zhang C, Lee S, et al., 2017, A pathology atlas of the human cancer transcriptome. Science, 357(6352): eaan2507. https://doi.org/10.1126/science.aan2507 

[156]

Davoodpour P, Landström M, Welsh M, 2007, Reduced tumor growth in vivo and increased c-Abl activity in PC3 prostate cancer cells overexpressing the Shb adapter protein. BMC Cancer, 7: 161.

[157]

Qu CF, Chen TY, Wang YT, et al., 2018, Primary prevention model of liver cancer in rural China. Zhonghua Zhong Liu Za Zhi, 40(7): 481–489. https://doi.org/10.3760/cma.j.issn.0253-3766.2018.07.001

[158]

Dong L, Yu L, Bai C, et al., 2018, USP27-mediated cyclin E stabilization drives cell cycle progression and hepatocellular tumorigenesis. Oncogene, 37(20): 2702–2713. https://doi.org/10.1038/s41388-018-0137-z

[159]

Zhang W, Zhang J, Xu C, et al., 2020, Ubiquitin-specific protease 7 is a drug-able target that promotes hepatocellular carcinoma and chemoresistance. Cancer Cell Int, 20: 28. https://doi.org/10.1186/s12935-020-1109-2

[160]

Cai JB, Shi GM, Dong ZR, et al., 2015, Ubiquitin-specific protease 7 accelerates p14(ARF) degradation by deubiquitinating thyroid hormone receptor-interacting protein 12 and promotes hepatocellular carcinoma progression. Hepatology, 61(5): 1603–1614. https://doi.org/10.1002/hep.27682

[161]

Chauhan D, Tian Z, Nicholson B, et al., 2012, A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell, 22(3): 345–358.

[162]

Colland F, Formstecher E, Jacq X, et al., 2009, Small-molecule inhibitor of USP7/HAUSP ubiquitin protease stabilizes and activates p53 in cells. Mol Cancer Ther, 8(8): 2286–2295. https://doi.org/10.1158/1535-7163.MCT-09-0097

[163]

Nicholson B, Suresh Kumar KG, 2011, The multifaceted roles of USP7: New therapeutic opportunities. Cell Biochem Biophys, 60(1–2): 61–68. 

[164]

Reverdy C, Conrath S, Lopez R, et al., 2012, Discovery of specific inhibitors of human USP7/HAUSP deubiquitinating enzyme. Chem Biol, 19(4): 467–477. https://doi.org/10.1016/j.chembiol.2012.02.007

[165]

Altun M, Kramer HB, Willems LI, et al., 2011, Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem Biol, 18(11): 1401–1412. https://doi.org/10.1016/j.chembiol.2011.08.018 

[166]

Fan YH, Cheng J, Vasudevan SA, et al., 2013, USP7 inhibitor P22077 inhibits neuroblastoma growth via inducing p53- mediated apoptosis. Cell Death Dis, 4(10): e867. https://doi.org/10.1038/cddis.2013.400

[167]

Shin SB, Kim CH, Jang HR, 2020, Combination of inhibitors of USP7 and PLK1 has a strong synergism against paclitaxel resistance. Int J Mol Sci, 21(22): 8629. https://doi.org/10.3390/ijms21228629

[168]

Fu C, Zhu X, Xu P, et al., 2019, Pharmacological inhibition of USP7 promotes antitumor immunity and contributes to colon cancer therapy. Oncol Targets Ther, 12: 609–617. https://doi.org/10.2147/OTT.S182806

[169]

Yang L, Cao N, Miao Y, et al., 2021, Morin acts as a USP7 inhibitor to hold back the migration of rheumatoid arthritis fibroblast-like synoviocytes in a “Prickle1-mTORC2” dependent manner. Mol Nutr Food Res, 65(19): e2100367. https://doi.org/10.1002/mnfr.202100367

[170]

Yu Z, Wei X, Liu L, et al., 2022, Indirubin-3’-monoxime acts as proteasome inhibitor: Therapeutic application in multiple myeloma. EBioMedicine, 78: 103950. https://doi.org/10.1016/j.ebiom.2022.103950

[171]

Hu T, Zhang J, Sha B, et al., 2019, Targeting the overexpressed USP7 inhibits esophageal squamous cell carcinoma cell growth by inducing NOXA-mediated apoptosis. Mol Carcinog, 58(1): 42–54. https://doi.org/10.1002/mc.22905

[172]

Becker K, Marchenko ND, Palacios G, et al., 2008, A role of HAUSP in tumor suppression in a human colon carcinoma xenograft model. Cell Cycle, 7(9): 1205–1213. https://doi.org/10.4161/cc.7.9.5756

Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing