Design of vibro-impact dampers with different optimized parameters affecting the system dynamic behavior

The problem of controlling and mitigating vibrations of the main structure is very important. The use of passive control devices is one solution to this problem. To ensure high efficiency of these devices, their parameters must be optimized. Many authors have addressed the problem of selecting the optimal design for such dampers, but many issues remain unresolved. This paper examines the influence of various optimal designs of the asymmetric single-sided vibro-impact non-linear energy sinks (SSVI NESs), that is, vibro-impact dampers, on system dynamics and damper efficiency in mitigating unwanted vibrations of the main structure. Nine damper designs with different masses and other optimized parameters are considered. These designs exhibit similarly high efficiency but display complex and distinct dynamic behaviors. We show that many damper designs can achieve comparable high performance. Therefore, the results of optimization procedures—which, moreover, allow a considerable degree of arbitrariness in their execution—can be ambiguous. SSVI NESs consistently display complex asymmetrical dynamics with alternating periodic modes and irregular, particularly chaotic, modes across different excitation force frequencies. Although the dynamic behavior of each optimally designed damper varies, this complexity does not affect the damper efficiency, which remains relatively stable.
- Ding H, Chen LQ. Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 2020;100(4):3061-3107. doi: 10.1007/s11071-020-05724-1
- Saeed AS, Abdul Nasar R, Al Shudeifat MA. A review on nonlinear energy sinks: Designs, analysis and applications of impact and rotary types. Nonlinear Dyn. 2023;111(1):1-37. doi: 10.1007/s11071-022-08094-y
- Lu Z, Wang Z, Zhou Y, Lu X. Nonlinear dissipative devices in structural vibration control: A review. J Sound Vib. 2018;423:18-49. doi: 10.1016/j.jsv.2018.02.052
- Lee YS, Vakakis AF, Bergman LA, McFarland DM, Kerschen G, Nucera F. Passive nonlinear targeted energy transfer and its applications to vibration absorption: A review. Proc Inst Mech Eng K J Multi Body Dyn. 2008;222(2):77-134. doi: 10.1243/14644193jmbd118
- Wierschem NE. Targeted Energy Transfer Using Nonlinear Energy Sinks for the Attenuation of Transient Loads on Building Structures. University of Illinois at Urbana Champaign, Newmark Structural Engineering Laboratory Report Series 045; 2014. Available from: https://www.ideals.illinois.edu/items/89701?utm_source=chatgpt.com [Last accessed on 2025 Sep 29].
- Kang X, Tang J, Xia G, Wei J, Zhang F, Sheng Z. Design, optimization, and application of nonlinear energy sink in energy harvesting device. Int J Energy Res. 2024;2024:2811428. doi: 10.1155/2024/2811428
- Geng XF, Ding H, Ji JC, et al. A state-of-the-art review on the dynamic design of nonlinear energy sinks. Eng Struct. 2024;313:118228. doi: 10.1016/j.engstruct.2024.118228
- Liu Q, Hou Z, Zhang Y, et al. Some practical regards on the application of the physics informed sparse identification for strongly NESs. Commun Nonlinear Sci Numer Simul. 2025;143:108610. doi: 10.1016/j.cnsns.2025.108610
- Lin Z, Li H, Li S, et al. An analytical investigation on the vibration suppression performance of the single sided vibro impact nonlinear energy sink. Nonlinear Dyn. 2024;12(7):8067-8082. doi: 10.1007/s42417-024-01345-9
- Weidemann T, Bergman LA, Vakakis AF, Krack M. Energy transfer and localization in a forced cyclic chain of oscillators with vibro impact nonlinear energy sinks. Nonlinear Dyn. 2025;113:14319-60. doi: 10.1007/s11071-025-10928-4
- Kumar R, Kuske R, Yurchenko D. Exploring effective TET through a vibro impact nonlinear energy sink over broad parameter regimes. J Sound Vib. 2024;570:118131. doi: 10.1016/j.jsv.2023.118131
- Al Shudeifat MA, Wierschem N, Quinn DD, Vakakis AF, Bergman LA, Spencer BF. Numerical and experimental investigation of a highly effective single sided vibro impact nonlinear energy sink for shock mitigation. Int J Non Linear Mech. 2013;52:96-109. doi: 10.1016/j.ijnonlinmec.2013.02.004
- Liu R, Kuske R, Yurchenko D. Maps unlock the full dynamics of targeted energy transfer via a vibro impact nonlinear energy sink. Mech Syst Signal Process. 2023;191:110158. doi: 10.1016/j.ymssp.2023.110158
- Sun Y, Páez Chávez J, Liu Y, Perlikowski P. Response analysis of vibro impact systems under periodic and random excitations. Physica D. 2025;472:134476. doi: 10.1016/j.physd.2024.134476
- Li H, Li S, Zhang Z, Xiong H, Ding Q. Effectiveness of vibro impact nonlinear energy sinks for vibration suppression of beams under traveling loads. Mech Syst Signal Process. 2025;223:111861. doi: 10.1016/j.ymssp.2024.111861
- Weidemann T, Carassale L, Denoël V, Krack M. On the broadband efficacy of impact absorbers. J Sound Vib. 2024;572:118161. doi: 10.1016/j.jsv.2023.118161
- Li S, Li J, Zhu H, Lai SK. Dynamical analysis and numerical verification of a nonsmooth nonlinear energy sink. Int J Non Linear Mech. 2023;151:104381. doi: 10.1016/j.ijnonlinmec.2023.104381
- Gong C, Fang X, Cheng L. Multi state dynamics and model similarity of a vibro impact nonlinear system. Int J Non Linear Mech. 2024;163:104765. doi: 10.1016/j.ijnonlinmec.2024.104765
- Wang Y, Zhang J, Wang W, Wang Z, Hong J, Fang B. Research on the influence of finite contact stiffness on vibration reduction of a vibro impact nonlinear energy sink system. Int J Non Linear Mech. 2025;170:104991. doi: 10.1016/j.ijnonlinmec.2024.104991
- Lizunov P, Pogorelova O, Postnikova T. The synergistic effect of the multiple parameters of vibro impact nonlinear energy sink. J Appl Math. 2023;1(3):199. doi: 10.59400/jam.v1i3.199
- Lizunov P, Pogorelova O, Postnikova T. The influence of various optimization procedures on the dynamics and efficiency of nonlinear energy sink with synergistic effect consideration. Physica D. 2024;463:134167. doi: 10.1016/j.physd.2024.134167
- Boroson E, Missoum S. Stochastic optimization of nonlinear energy sinks. Struct Multidiscip Optim. 2017;55(2):633-646. doi: 10.1007/s00158-016-1526-y
- Snoun C, Bergeot B, Berger S. Robust optimization of nonlinear energy sinks used for mitigation of friction induced limit cycle oscillations. Eur J Mech A Solids. 2022;93:104529. doi: 10.1016/j.euromechsol.2022.104529
- Qiu D, Seguy S, Paredes M. Design criteria for optimally tuned vibro impact nonlinear energy sink. J Sound Vib. 2019;442:497-513. doi: 10.1016/j.jsv.2018.11.021
- Zhang J, Yin S, Guo B, Liu Y. Vibro impact dynamics of an experimental rig with two sided constraint and bidirectional drift. J Sound Vib. 2024;571:118021. doi: 10.1016/j.jsv.2023.118021
- Li T, Seguy S, Berlioz A. Optimization mechanism of targeted energy transfer with vibro impact energy sink under periodic and transient excitation. Nonlinear Dyn. 2017;87(4):2415-2433. doi: 10.1007/s11071-016-3200-8
- MathWorks. MATLAB Product Information. Available from: https://www.mathworks.com/products/matlab.html [Last accessed on 2025 Sep 29].
- Costa D, Kuske R, Yurchenko D. Qualitative changes in bifurcation structure for soft vs hard impact models of a vibro impact energy harvester. Chaos. 2022;32(10):103120. doi: 10.1063/5.0101050
- Lo Feudo S, Job S, Cavallo M, et al. Finite contact duration modeling of a vibro impact nonlinear energy sink to protect a civil engineering frame structure against seismic events. Eng Struct. 2022;259:114137. doi: 10.1016/j.engstruct.2022.114137
- Okolewski A, Blazejczyk Okolewska B. Hard vs soft impacts in oscillatory systems’ modeling revisited. Chaos. 2021;31(8):083110. doi: 10.1063/5.0057029
- Blazejczyk Okolewska B, Czolczynski K, Kapitaniak T. Classification principles of types of mechanical systems with impacts - fundamental assumptions and rules. Eur J Mech A Solids. 2004;23(3):517-537. doi: 10.1016/j.euromechsol.2004.02.005
- Andreaus U, Chiaia B, Placidi L. Soft impact dynamics of deformable bodies. Contin Mech Thermodyn. 2013;25(2-4):375-398. doi: 10.1007/s00161-012-0266-5
- Johnson KL. Contact Mechanics. Cambridge: Cambridge University Press; 1987.
- Goldsmith W. The Theory and Physical Behaviour of Colliding Solids. London: Edward Arnold Publishers Ltd.; 1960.
- Foale S, Bishop SR. Bifurcations in impact oscillations. Nonlinear Dyn. 1994;6(3):285-299. doi: 10.1007/BF00053387
- Lizunov PP, Pogorelova O, Postnikova T. Vibro-impact damper dynamics depending on system parameters. Preprint, Version 1. Research Square. 2023. Available from: https://doi.org/10.21203/rs.3.rs-2786639/v1 [Last accessed on 2025 Sep 29].
- Saeed S, Al Shudeifat MA, Cantwell WJ, Vakakis AF. Two dimensional nonlinear energy sink for effective passive seismic mitigation. Commun Nonlinear Sci Numer Simul. 2021;99:105787. doi: 10.1016/j.cnsns.2021.105787
- Youssef B, Leine RI. A complete set of design rules for a vibro impact NES based on a multiple scales approximation of a nonlinear mode. J Sound Vib. 2021;501:116043. doi: 10.1016/j.jsv.2021.116043
- Al Shudeifat MA, Saeed AS. Comparison of a modified vibro impact nonlinear energy sink with other kinds of NESs. Meccanica. 2021;56(4):735-752. doi: 10.1007/s11012-020-01193-3
- Lizunov P, Pogorelova O, Postnikova T. Tuning of vibro impact nonlinear energy sinks under changing structural parameters. Strength Mater Theory Struct. 2025;(114):11-22. doi: 10.32347/2410-2547.2025.114.11-22